JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
GluRdelta2 expression in the mature cerebellum of hotfoot mice promotes parallel fiber synaptogenesis and axonal competition.
PUBLISHED: 01-23-2009
Glutamate receptor delta 2 (GluRdelta2) is selectively expressed in the cerebellum, exclusively in the spines of the Purkinje cells (PCs) that are in contact with parallel fibers (PFs). Although its structure is similar to ionotropic glutamate receptors, it has no channel function and its ligand is unknown. The GluRdelta2-null mice, such as knockout and hotfoot have profoundly altered cerebellar circuitry, which causes ataxia and impaired motor learning. Notably, GluRdelta2 in PC-PF synapses regulates their maturation and strengthening and induces long term depression (LTD). In addition, GluRdelta2 participates in the highly territorial competition between the two excitatory inputs to the PC; the climbing fiber (CF), which innervates the proximal dendritic compartment, and the PF, which is connected to spiny distal branchlets. Recently, studies have suggested that GluRdelta2 acts as an adhesion molecule in PF synaptogenesis. Here, we provide in vivo and in vitro evidence that supports this hypothesis. Through lentiviral rescue in hotfoot mice, we noted a recovery of PC-PF contacts in the distal dendritic domain. In the proximal domain, we observed the formation of new spines that were innervated by PFs and a reduction in contact with the CF; ie, the pattern of innervation in the PC shifted to favor the PF input. Moreover, ectopic expression of GluRdelta2 in HEK293 cells that were cocultured with granule cells or in cerebellar Golgi cells in the mature brain induced the formation of new PF contacts. Collectively, our observations show that GluRdelta2 is an adhesion molecule that induces the formation of PF contacts independently of its cellular localization and promotes heterosynaptic competition in the PC proximal dendritic domain.
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Published: 11-14-2014
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
24 Related JoVE Articles!
Play Button
Primer-Free Aptamer Selection Using A Random DNA Library
Authors: Weihua Pan, Ping Xin, Susan Patrick, Stacey Dean, Christine Keating, Gary Clawson.
Institutions: Pennsylvania State University, Pennsylvania State University, Pennsylvania State University, Pennsylvania State University.
Aptamers are highly structured oligonucleotides (DNA or RNA) that can bind to targets with affinities comparable to antibodies 1. They are identified through an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX) to recognize a wide variety of targets, from small molecules to proteins and other macromolecules 2-4. Aptamers have properties that are well suited for in vivo diagnostic and/or therapeutic applications: Besides good specificity and affinity, they are easily synthesized, survive more rigorous processing conditions, they are poorly immunogenic, and their relatively small size can result in facile penetration of tissues. Aptamers that are identified through the standard SELEX process usually comprise ~80 nucleotides (nt), since they are typically selected from nucleic acid libraries with ~40 nt long randomized regions plus fixed primer sites of ~20 nt on each side. The fixed primer sequences thus can comprise nearly ~50% of the library sequences, and therefore may positively or negatively compromise identification of aptamers in the selection process 3, although bioinformatics approaches suggest that the fixed sequences do not contribute significantly to aptamer structure after selection 5. To address these potential problems, primer sequences have been blocked by complementary oligonucleotides or switched to different sequences midway during the rounds of SELEX 6, or they have been trimmed to 6-9 nt 7, 8. Wen and Gray 9 designed a primer-free genomic SELEX method, in which the primer sequences were completely removed from the library before selection and were then regenerated to allow amplification of the selected genomic fragments. However, to employ the technique, a unique genomic library has to be constructed, which possesses limited diversity, and regeneration after rounds of selection relies on a linear reamplification step. Alternatively, efforts to circumvent problems caused by fixed primer sequences using high efficiency partitioning are met with problems regarding PCR amplification 10. We have developed a primer-free (PF) selection method that significantly simplifies SELEX procedures and effectively eliminates primer-interference problems 11, 12. The protocols work in a straightforward manner. The central random region of the library is purified without extraneous flanking sequences and is bound to a suitable target (for example to a purified protein or complex mixtures such as cell lines). Then the bound sequences are obtained, reunited with flanking sequences, and re-amplified to generate selected sub-libraries. As an example, here we selected aptamers to S100B, a protein marker for melanoma. Binding assays showed Kd s in the 10-7 - 10-8 M range after a few rounds of selection, and we demonstrate that the aptamers function effectively in a sandwich binding format.
Cellular Biology, Issue 41, aptamer, selection, S100B, sandwich
Play Button
Microvascular Decompression: Salient Surgical Principles and Technical Nuances
Authors: Jonathan Forbes, Calvin Cooper, Walter Jermakowicz, Joseph Neimat, Peter Konrad.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center.
Trigeminal neuralgia is a disorder associated with severe episodes of lancinating pain in the distribution of the trigeminal nerve. Previous reports indicate that 80-90% of cases are related to compression of the trigeminal nerve by an adjacent vessel. The majority of patients with trigeminal neuralgia eventually require surgical management in order to achieve remission of symptoms. Surgical options for management include ablative procedures (e.g., radiosurgery, percutaneous radiofrequency lesioning, balloon compression, glycerol rhizolysis, etc.) and microvascular decompression. Ablative procedures fail to address the root cause of the disorder and are less effective at preventing recurrence of symptoms over the long term than microvascular decompression. However, microvascular decompression is inherently more invasive than ablative procedures and is associated with increased surgical risks. Previous studies have demonstrated a correlation between surgeon experience and patient outcome in microvascular decompression. In this series of 59 patients operated on by two neurosurgeons (JSN and PEK) since 2006, 93% of patients demonstrated substantial improvement in their trigeminal neuralgia following the procedure—with follow-up ranging from 6 weeks to 2 years. Moreover, 41 of 66 patients (approximately 64%) have been entirely pain-free following the operation. In this publication, video format is utilized to review the microsurgical pathology of this disorder. Steps of the operative procedure are reviewed and salient principles and technical nuances useful in minimizing complications and maximizing efficacy are discussed.
Medicine, Issue 53, microvascular, decompression, trigeminal, neuralgia, operation, video
Play Button
Assay for Pathogen-Associated Molecular Pattern (PAMP)-Triggered Immunity (PTI) in Plants
Authors: Suma Chakravarthy, André C. Velásquez, Gregory B. Martin.
Institutions: Boyce Thompson Institute for Plant Research, Cornell University.
To perceive potential pathogens in their environment, plants use pattern recognition receptors (PRRs) present on their plasma membranes. PRRs recognize conserved microbial features called pathogen-associated molecular patterns (PAMPs) and this detection leads to PAMP-triggered immunity (PTI), which effectively prevents colonization of plant tissues by non-pathogens1,2. The most well studied system in PTI is the FLS2-dependent pathway3. FLS2 recognizes the PAMP flg22 that is a component of bacterial flagellin. Successful pathogens possess virulence factors or effectors that can suppress PTI and allow the pathogen to cause disease1. Some plants in turn possess resistance genes that detect effectors or their activity, which leads to effector-triggered immunity (ETI)2. We describe a cell death-based assay for PTI modified from Oh and Collmer4. The assay was standardized in N. benthamiana, which is being used increasingly as a model system for the study of plant-pathogen interactions5. PTI is induced by infiltration of a non-pathogenic bacterial strain into leaves. Seven hours later, a bacterial strain that either causes disease or which activates ETI is infiltrated into an area overlapping the original infiltration zone. PTI induced by the first infiltration is able to delay or prevent the appearance of cell death due to the second challenge infiltration. Conversely, the appearance of cell death in the overlapping area of inoculation indicates a breakdown of PTI. Four different combinations of inducers of PTI and challenge inoculations were standardized (Table 1). The assay was tested on non-silenced N. benthamiana plants that served as the control and plants silenced for FLS2 that were predicted to be compromised in their ability to develop PTI.
Jove Infectious Diseases, Plant Biology, Issue 31, plant immunity, pathogen-associated molecular pattern (PAMP), PAMP-triggered immunity (PTI), effector-triggered immunity (ETI), Nicotiana benthamiana
Play Button
Functional Analysis of the Larval Feeding Circuit in Drosophila
Authors: Parag K. Bhatt, Wendi S. Neckameyer.
Institutions: Saint Louis University School of Medicine.
The serotonergic feeding circuit in Drosophila melanogaster larvae can be used to investigate neuronal substrates of critical importance during the development of the circuit. Using the functional output of the circuit, feeding, changes in the neuronal architecture of the stomatogastric system can be visualized. Feeding behavior can be recorded by observing the rate of retraction of the mouth hooks, which receive innervation from the brain. Locomotor behavior is used as a physiological control for feeding, since larvae use their mouth hooks to traverse across an agar substrate. Changes in feeding behavior can be correlated with the axonal architecture of the neurites innervating the gut. Using immunohistochemistry it is possible to visualize and quantitate these changes. Improper handling of the larvae during behavior paradigms can alter data as they are very sensitive to manipulations. Proper imaging of the neurite architecture innervating the gut is critical for precise quantitation of number and size of varicosities as well as the extent of branch nodes. Analysis of most circuits allow only for visualization of neurite architecture or behavioral effects; however, this model allows one to correlate the functional output of the circuit with the impairments in neuronal architecture.
Neuroscience, Issue 81, Neural Pathways, Drosophila, Microscopy, Neuroimaging, Behavior, Behavior Mechanisms, Dopamine, Immunohistochemistry, neurite, proventriculus, serotonin, varicosities, animal model
Play Button
An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time
Authors: Starlyn L. M. Okada, Nicole S. Stivers, Peter K. Stys, David P. Stirling.
Institutions: University of Louisville, University of Calgary.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.
Neuroscience, Issue 93, spinal cord injury, axon, myelin, two-photon excitation microscopy, Nile Red, axonal degeneration, axonal dieback, axonal retraction
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
Play Button
Organotypic Slice Cultures to Study Oligodendrocyte Dynamics and Myelination
Authors: Robert A. Hill, Jelena Medved, Kiran D. Patel, Akiko Nishiyama.
Institutions: University of Connecticut, University of Connecticut, Yale University School of Medicine.
NG2 expressing cells (polydendrocytes, oligodendrocyte precursor cells) are the fourth major glial cell population in the central nervous system. During embryonic and postnatal development they actively proliferate and generate myelinating oligodendrocytes. These cells have commonly been studied in primary dissociated cultures, neuron cocultures, and in fixed tissue. Using newly available transgenic mouse lines slice culture systems can be used to investigate proliferation and differentiation of oligodendrocyte lineage cells in both gray and white matter regions of the forebrain and cerebellum. Slice cultures are prepared from early postnatal mice and are kept in culture for up to 1 month. These slices can be imaged multiple times over the culture period to investigate cellular behavior and interactions. This method allows visualization of NG2 cell division and the steps leading to oligodendrocyte differentiation while enabling detailed analysis of region-dependent NG2 cell and oligodendrocyte functional heterogeneity. This is a powerful technique that can be used to investigate the intrinsic and extrinsic signals influencing these cells over time in a cellular environment that closely resembles that found in vivo.
Neuroscience, Issue 90, NG2, CSPG4, polydendrocyte, oligodendrocyte progenitor cell, oligodendrocyte, myelin, organotypic slice culture, time-lapse
Play Button
Isolation and Culture of Mouse Cortical Astrocytes
Authors: Sebastian Schildge, Christian Bohrer, Kristina Beck, Christian Schachtrup.
Institutions: University of Freiburg , University of Freiburg .
Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.
Neuroscience, Issue 71, Neurobiology, Cellular Biology, Medicine, Molecular Biology, Anatomy, Physiology, brain, mouse, astrocyte culture, astrocyte, fibroblast, fibrinogen, chondroitin sulfate proteoglycan, neuronal regeneration, cell culture, animal model
Play Button
Electroporation of the Hindbrain to Trace Axonal Trajectories and Synaptic Targets in the Chick Embryo
Authors: Ayelet Kohl, Yoav Hadas, Avihu Klar, Dalit Sela-Donenfeld.
Institutions: The Hebrew University of Jerusalem, The Hebrew University of Jerusalem.
Electroporation of the chick embryonic neural tube has many advantages such as being quick and efficient for the expression of foreign genes into neuronal cells. In this manuscript we provide a method that demonstrates uniquely how to electroporate DNA into the avian hindbrain at E2.75 in order to specifically label a subset of neuronal progenitors, and how to follow their axonal projections and synaptic targets at much advanced stages of development, up to E14.5. We have utilized novel genetic tools including specific enhancer elements, Cre/Lox - based plasmids and the PiggyBac-mediated DNA transposition system to drive GFP expression in a subtype of hindbrain cells (the dorsal most subgroup of interneurons, dA1). Axonal trajectories and targets of dA1 axons are followed at early and late embryonic stages at various brainstem regions. This strategy contributes advanced techniques for targeting cells of interest in the embryonic hindbrain and for tracing circuit formation at multiple stages of development.
Neuroscience, Issue 75, Neurobiology, Developmental Biology, Cellular Biology, Molecular Biology, Anatomy, Physiology, Genetics, Electroporation, Chick, Hindbrain, Axon, Interneuron, dA1, PiggyBac, Enhancer, Synapse, neurons, axons, GFP expression, in ovo, embryonic hindbrain, brain, animal model
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
The Analysis of Purkinje Cell Dendritic Morphology in Organotypic Slice Cultures
Authors: Josef P. Kapfhammer, Olivia S. Gugger.
Institutions: University of Basel.
Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents 3. Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells 11 are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period 4. We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.
Neuroscience, Issue 61, dendritic development, dendritic branching, cerebellum, Purkinje cells
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Fast Micro-iontophoresis of Glutamate and GABA: A Useful Tool to Investigate Synaptic Integration
Authors: Christina Müller, Stefan Remy.
Institutions: University of Bonn, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE).
One of the fundamental interests in neuroscience is to understand the integration of excitatory and inhibitory inputs along the very complex structure of the dendritic tree, which eventually leads to neuronal output of action potentials at the axon. The influence of diverse spatial and temporal parameters of specific synaptic input on neuronal output is currently under investigation, e.g. the distance-dependent attenuation of dendritic inputs, the location-dependent interaction of spatially segregated inputs, the influence of GABAergig inhibition on excitatory integration, linear and non-linear integration modes, and many more. With fast micro-iontophoresis of glutamate and GABA it is possible to precisely investigate the spatial and temporal integration of glutamatergic excitation and GABAergic inhibition. Critical technical requirements are either a triggered fluorescent lamp, light-emitting diode (LED), or a two-photon scanning microscope to visualize dendritic branches without introducing significant photo-damage of the tissue. Furthermore, it is very important to have a micro-iontophoresis amplifier that allows for fast capacitance compensation of high resistance pipettes. Another crucial point is that no transmitter is involuntarily released by the pipette during the experiment. Once established, this technique will give reliable and reproducible signals with a high neurotransmitter and location specificity. Compared to glutamate and GABA uncaging, fast iontophoresis allows using both transmitters at the same time but at very distant locations without limitation to the field of view. There are also advantages compared to focal electrical stimulation of axons: with micro-iontophoresis the location of the input site is definitely known and it is sure that only the neurotransmitter of interest is released. However it has to be considered that with micro-iontophoresis only the postsynapse is activated and presynaptic aspects of neurotransmitter release are not resolved. In this article we demonstrate how to set up micro-iontophoresis in brain slice experiments.
Neuroscience, Issue 77, Neurobiology, Molecular Biology, Cellular Biology, Physiology, Biomedical Engineering, Biophysics, Biochemistry, biology (general), animal biology, Nervous System, Life Sciences (General), Neurosciences, brain slices, dendrites, inhibition, excitation, glutamate, GABA, micro-iontophoresis, iontophoresis, neurons, patch clamp, whole cell recordings
Play Button
Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration
Authors: Anna Holubowska, Chaitali Mukherjee, Mayur Vadhvani, Judith Stegmüller.
Institutions: Max Planck Institute of Experimental Medicine, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).
Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration.
Neuroscience, Issue 85, axons, dendrites, neuronal migration, cerebellum, cultured neurons, transfection, in vivo electroporation
Play Button
Laser Nanosurgery of Cerebellar Axons In Vivo
Authors: Anna L. Allegra Mascaro, Leonardo Sacconi, Francesco Saverio Pavone.
Institutions: University of Florence, National Research Council, University of Florence, International Center for Computational Neurophotonics (ICON Foundation).
Only a few neuronal populations in the central nervous system (CNS) of adult mammals show local regrowth upon dissection of their axon. In order to understand the mechanism that promotes neuronal regeneration, an in-depth analysis of the neuronal types that can remodel after injury is needed. Several studies showed that damaged climbing fibers are capable of regrowing also in adult animals1,2. The investigation of the time-lapse dynamics of degeneration and regeneration of these axons within their complex environment can be performed by time-lapse two-photon fluorescence (TPF) imaging in vivo3,4. This technique is here combined with laser surgery, which proved to be a highly selective tool to disrupt fluorescent structures in the intact mouse cortex5-9. This protocol describes how to perform TPF time-lapse imaging and laser nanosurgery of single axonal branches in the cerebellum in vivo. Olivocerebellar neurons are labeled by anterograde tracing with a dextran-conjugated dye and then monitored by TPF imaging through a cranial window. The terminal portion of their axons are then dissected by irradiation with a Ti:Sapphire laser at high power. The degeneration and potential regrowth of the damaged neuron are monitored by TPF in vivo imaging during the days following the injury.
Neuroscience, Issue 89, axonal labeling, neuronal tracing, in vivo imaging, two-photon microscopy, cerebellum, climbing fibers, laser axotomy, craniotomy
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons
Authors: Sam A. Booker, Jie Song, Imre Vida.
Institutions: Charité Universitätmedizin.
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Neuroscience, Issue 91, electrophysiology, acute slice, whole-cell patch-clamp recording, neuronal morphology, immunocytochemistry, parvalbumin, hippocampus, inhibition, GABAergic interneurons, synaptic transmission, IPSC, GABA-B receptor
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
Play Button
Multi-photon Intracellular Sodium Imaging Combined with UV-mediated Focal Uncaging of Glutamate in CA1 Pyramidal Neurons
Authors: Christian Kleinhans, Karl W. Kafitz, Christine R. Rose.
Institutions: Heinrich Heine University Düsseldorf.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.
Neuroscience, Issue 92, Neurosciences, two-photon microscopy, patch-clamp, UV-flash photolysis, mouse, hippocampus, caged compounds, glutamate, brain slice, dendrite, sodium signals
Play Button
Generation of Bone Marrow Derived Murine Dendritic Cells for Use in 2-photon Imaging
Authors: Melanie P. Matheu, Debasish Sen, Michael D Cahalan, Ian Parker.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Several methods for the preparation of murine dendritic cells can be found in the literature. Here, we present a method that produces greater than 85% CD11c high dendritic cells in culture that home to the draining lymph node after subcutaneous injection and present antigen to antigen specific T cells (see video). Additionally, we use Essen Instruments Incucyte to track dendritic cell maturation, where, at day 10, the morphology of the cultured cells is typical of a mature dendritic cell and <85% of cells are CD11chigh. The study of antigen presentation in peripheral lymph nodes by 2-photon imaging revealed that there are three distinct phases of dendritic cell and T cell interaction1, 2. Phase I consists of brief serial contacts between highly motile antigen specific T cells and antigen carrying dendritic cells1, 2. Phase two is marked by prolonged contacts between antigen-specific T cell and antigen bearing dendritic cells1, 2. Finally, phase III is characterized by T cells detaching from dendritic cells, regaining motility and beginning to divide1, 2. This is one example of the type of antigen-specific interactions that can be analyzed by two-photon imaging of antigen-loaded cell tracker dye-labeled dendritic cells.
Immunology, Issue 17, dendritic cells, mouse, bone marrow, 2-photon imaging, cell culture
Play Button
Understanding Cerebellar Pattern Formation
Authors: Kathleen J. Millen.
Institutions: University of Chicago.
Neuroscience, Issue 9, Brain, Development, Neuron
Play Button
Electrophysiological Recording in the Drosophila Embryo
Authors: Kaiyun Chen, David E. Featherstone, Kendal Broadie.
Institutions: University of Illinois, Vanderbilt University.
Drosophila is a premier genetic model for the study of both embryonic development and functional neuroscience. Traditionally, these fields are quite isolated from each other, with largely independent histories and scientific communities. However, the interface between these usually disparate fields is the developmental programs underlying acquisition of functional electrical signaling properties and differentiation of functional chemical synapses during the final phases of neural circuit formation. This interface is a critically important area for investigation. In Drosophila, these phases of functional development occur during a period of <8 hours (at 25°C) during the last third of embryogenesis. This late developmental period was long considered intractable to investigation owing to the deposition of a tough, impermeable epidermal cuticle. A breakthrough advance was the application of water-polymerizing surgical glue that can be locally applied to the cuticle to enable controlled dissection of late-stage embryos. With a dorsal longitudinal incision, the embryo can be laid flat, exposing the ventral nerve cord and body wall musculature to experimental investigation. Whole-cell patch-clamp techniques can then be employed to record from individually-identifiable neurons and somatic muscles. These recording configurations have been used to track the appearance and maturation of ionic currents and action potential propagation in both neurons and muscles. Genetic mutants affecting these electrical properties have been characterized to reveal the molecular composition of ion channels and associated signaling complexes, and to begin exploration of the molecular mechanisms of functional differentiation. A particular focus has been the assembly of synaptic connections, both in the central nervous system and periphery. The glutamatergic neuromuscular junction (NMJ) is most accessible to a combination of optical imaging and electrophysiological recording. A glass suction electrode is used to stimulate the peripheral nerve, with excitatory junction current (EJC) recordings made in the voltage-clamped muscle. This recording configuration has been used to chart the functional differentiation of the synapse, and track the appearance and maturation of presynaptic glutamate release properties. In addition, postsynaptic properties can be assayed independently via iontophoretic or pressure application of glutamate directly to the muscle surface, to measure the appearance and maturation of the glutamate receptor fields. Thus, both pre- and postsynaptic elements can be monitored separately or in combination during embryonic synaptogenesis. This system has been heavily used to isolate and characterize genetic mutants that impair embryonic synapse formation, and thus reveal the molecular mechanisms governing the specification and differentiation of synapse connections and functional synaptic signaling properties.
Neuroscience, Issue 27, Drosophila, embryo, whole-cell patch-clamp, muscle, neuron, neuromuscular junction, synapse
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.