JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording.
PUBLISHED: 06-01-2009
Neural circuits are exquisitely organized, consisting of many different neuronal subpopulations. However, it is difficult to assess the functional roles of these subpopulations using conventional extracellular recording techniques because these techniques do not easily distinguish spikes from different neuronal populations. To overcome this limitation, we have developed PINP (Photostimulation-assisted Identification of Neuronal Populations), a method of tagging neuronal populations for identification during in vivo electrophysiological recording. The method is based on expressing the light-activated channel channelrhodopsin-2 (ChR2) to restricted neuronal subpopulations. ChR2-tagged neurons can be detected electrophysiologically in vivo since illumination of these neurons with a brief flash of blue light triggers a short latency reliable action potential. We demonstrate the feasibility of this technique by expressing ChR2 in distinct populations of cortical neurons using two different strategies. First, we labeled a subpopulation of cortical neurons-mainly fast-spiking interneurons-by using adeno-associated virus (AAV) to deliver ChR2 in a transgenic mouse line in which the expression of Cre recombinase was driven by the parvalbumin promoter. Second, we labeled subpopulations of excitatory neurons in the rat auditory cortex with ChR2 based on projection target by using herpes simplex virus 1 (HSV1), which is efficiently taken up by axons and transported retrogradely; we find that this latter population responds to acoustic stimulation differently from unlabeled neurons. Tagging neurons is a novel application of ChR2, used in this case to monitor activity instead of manipulating it. PINP can be readily extended to other populations of genetically identifiable neurons, and will provide a useful method for probing the functional role of different neuronal populations in vivo.
A major challenge in neurophysiology has been to characterize the response properties and function of the numerous inhibitory cell types in the cerebral cortex. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex using a method developed by Lima and colleagues1. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. This technique – termed “PINP”, or Photostimulation-assisted Identification of Neuronal Populations – can be implemented with standard extracellular recording equipment. It can serve as an inexpensive and accessible alternative to calcium imaging or visually-guided patching, for the purpose of targeting extracellular recordings to genetically-identified cells. Here we provide a set of guidelines for optimizing the method in everyday practice. We refined our strategy specifically for targeting parvalbumin-positive (PV+) cells, but have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons.
23 Related JoVE Articles!
Play Button
Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation
Authors: Taruna Ikrar, Nicholas D. Olivas, Yulin Shi, Xiangmin Xu.
Institutions: University of California, Irvine, University of California, Irvine.
Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits.
Neuroscience, Issue 56, glutamate uncaging, whole cell recording, GFP, transgenic, interneurons
Play Button
Optogenetic Perturbation of Neural Activity with Laser Illumination in Semi-intact Drosophila Larvae in Motion
Authors: Teruyuki Matsunaga, Akira Fushiki, Akinao Nose, Hiroshi Kohsaka.
Institutions: The University of Tokyo, The University of Tokyo.
Drosophila larval locomotion is a splendid model system in developmental and physiological neuroscience, by virtue of the genetic accessibility of the underlying neuronal components in the circuits1-6. Application of optogenetics7,8 in the larval neural circuit allows us to manipulate neuronal activity in spatially and temporally patterned ways9-13. Typically, specimens are broadly illuminated with a mercury lamp or LED, so specificity of the target neurons is controlled by binary gene expression systems such as the Gal4-UAS system14,15. In this work, to improve the spatial resolution to "sub-genetic resolution", we locally illuminated a subset of neurons in the ventral nerve cord using lasers implemented in a conventional confocal microscope. While monitoring the motion of the body wall of the semi-intact larvae, we interactively activated or inhibited neural activity with channelrhodopsin16,17 or halorhodopsin18-20, respectively. By spatially and temporally restricted illumination of the neural tissue, we can manipulate the activity of specific neurons in the circuit at a specific phase of behavior. This method is useful for studying the relationship between the activities of a local neural assembly in the ventral nerve cord and the spatiotemporal pattern of motor output.
Neuroscience, Issue 77, Molecular Biology, Neurobiology, Developmental Biology, Bioengineering, Cellular Biology, Motor Neurons, Neurosciences, Drosophila, Optogenetics, Channelrhodopsin-2, Halorhodopsin, laser, confocal microscopy, animal model
Play Button
Channelrhodopsin2 Mediated Stimulation of Synaptic Potentials at Drosophila Neuromuscular Junctions
Authors: Nicholas J. Hornstein, Stefan R. Pulver, Leslie C. Griffith.
Institutions: Brandeis.
The Drosophila larval neuromuscular preparation has proven to be a useful tool for studying synaptic physiology1,2,3. Currently, the only means available to evoke excitatory junctional potentials (EJPs) in this preparation involves the use of suction electrodes. In both research and teaching labs, students often have difficulty maneuvering and manipulating this type of stimulating electrode. In the present work, we show how to remotely stimulate synaptic potentials at the larval NMJ without the use of suction electrodes. By expressing channelrhodopsin2 (ChR2) 4,5,6 in Drosophila motor neurons using the GAL4-UAS system 7, and making minor changes to a basic electrophysiology rig, we were able to reliably evoke EJPs with pulses of blue light. This technique could be of particular use in neurophysiology teaching labs where student rig practice time and resources are limited.
Neuroscience, Issue 25, Intracellular neurophysiology, Drosophila melanogaster larvae, Channelrhodopsin2
Play Button
Optical Recording of Suprathreshold Neural Activity with Single-cell and Single-spike Resolution
Authors: Gayathri Nattar Ranganathan, Helmut J. Koester.
Institutions: The University of Texas at Austin.
Signaling of information in the vertebrate central nervous system is often carried by populations of neurons rather than individual neurons. Also propagation of suprathreshold spiking activity involves populations of neurons. Empirical studies addressing cortical function directly thus require recordings from populations of neurons with high resolution. Here we describe an optical method and a deconvolution algorithm to record neural activity from up to 100 neurons with single-cell and single-spike resolution. This method relies on detection of the transient increases in intracellular somatic calcium concentration associated with suprathreshold electrical spikes (action potentials) in cortical neurons. High temporal resolution of the optical recordings is achieved by a fast random-access scanning technique using acousto-optical deflectors (AODs)1. Two-photon excitation of the calcium-sensitive dye results in high spatial resolution in opaque brain tissue2. Reconstruction of spikes from the fluorescence calcium recordings is achieved by a maximum-likelihood method. Simultaneous electrophysiological and optical recordings indicate that our method reliably detects spikes (>97% spike detection efficiency), has a low rate of false positive spike detection (< 0.003 spikes/sec), and a high temporal precision (about 3 msec) 3. This optical method of spike detection can be used to record neural activity in vitro and in anesthetized animals in vivo3,4.
Neuroscience, Issue 67, functional calcium imaging, spatiotemporal patterns of activity, dithered random-access scanning
Play Button
Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents
Authors: Mikhail Kislin, Ekaterina Mugantseva, Dmitry Molotkov, Natalia Kulesskaya, Stanislav Khirug, Ilya Kirilkin, Evgeny Pryazhnikov, Julia Kolikova, Dmytro Toptunov, Mikhail Yuryev, Rashid Giniatullin, Vootele Voikar, Claudio Rivera, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki, Neurotar LTD, University of Eastern Finland, University of Helsinki.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal’s brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Empty Value, Issue 88, awake, in vivo two-photon microscopy, blood vessels, dendrites, dendritic spines, Ca2+ imaging, intrinsic optical imaging, patch-clamp
Play Button
The Swimmeret System of Crayfish: A Practical Guide for the Dissection of the Nerve Cord and Extracellular Recordings of the Motor Pattern
Authors: Henriette A. Seichter, Felix Blumenthal, Carmen R. Smarandache-Wellmann.
Institutions: University of Cologne.
Here we demonstrate the dissection of the crayfish abdominal nerve cord. The preparation comprises the last two thoracic ganglia (T4, T5) and the chain of abdominal ganglia (A1 to A6). This chain of ganglia includes the part of the central nervous system (CNS) that drives coordinated locomotion of the pleopods (swimmerets): the swimmeret system. It is known for over five decades that in crayfish each swimmeret is driven by its own independent pattern generating kernel that generates rhythmic alternating activity 1-3. The motor neurons innervating the musculature of each swimmeret comprise two anatomically and functionally distinct populations 4. One is responsible for the retraction (power stroke, PS) of the swimmeret. The other drives the protraction (return stroke, RS) of the swimmeret. Motor neurons of the swimmeret system are able to produce spontaneously a fictive motor pattern, which is identical to the pattern recorded in vivo 1. The aim of this report is to introduce an interesting and convenient model system for studying rhythm generating networks and coordination of independent microcircuits for students’ practical laboratory courses. The protocol provided includes step-by-step instructions for the dissection of the crayfish’s abdominal nerve cord, pinning of the isolated chain of ganglia, desheathing the ganglia and recording the swimmerets fictive motor pattern extracellularly from the isolated nervous system. Additionally, we can monitor the activity of swimmeret neurons recorded intracellularly from dendrites. Here we also describe briefly these techniques and provide some examples. Furthermore, the morphology of swimmeret neurons can be assessed using various staining techniques. Here we provide examples of intracellular (by iontophoresis) dye filled neurons and backfills of pools of swimmeret motor neurons. In our lab we use this preparation to study basic functions of fictive locomotion, the effect of sensory feedback on the activity of the CNS, and coordination between microcircuits on a cellular level.
Neurobiology, Issue 93, crustacean, dissection, extracellular recording, fictive locomotion, motor neurons, locomotion
Play Button
Electrophysiological Recording in the Brain of Intact Adult Zebrafish
Authors: Lindsey Johnston, Rebecca E. Ball, Seth Acuff, John Gaudet, Andrew Sornborger, James D. Lauderdale.
Institutions: University of Georgia, University of Georgia, Oklahoma State University, University of Georgia, University of California, Davis.
Previously, electrophysiological studies in adult zebrafish have been limited to slice preparations or to eye cup preparations and electrorentinogram recordings. This paper describes how an adult zebrafish can be immobilized, intubated, and used for in vivo electrophysiological experiments, allowing recording of neural activity. Immobilization of the adult requires a mechanism to deliver dissolved oxygen to the gills in lieu of buccal and opercular movement. With our technique, animals are immobilized and perfused with habitat water to fulfill this requirement. A craniotomy is performed under tricaine methanesulfonate (MS-222; tricaine) anesthesia to provide access to the brain. The primary electrode is then positioned within the craniotomy window to record extracellular brain activity. Through the use of a multitube perfusion system, a variety of pharmacological compounds can be administered to the adult fish and any alterations in the neural activity can be observed. The methodology not only allows for observations to be made regarding changes in neurological activity, but it also allows for comparisons to be made between larval and adult zebrafish. This gives researchers the ability to identify the alterations in neurological activity due to the introduction of various compounds at different life stages.
Neuroscience, Issue 81, Zebrafish, adult, Electrophysiology, in vivo, craniotomy, perfusion, neural activity
Play Button
Juxtasomal Biocytin Labeling to Study the Structure-function Relationship of Individual Cortical Neurons
Authors: Rajeevan T. Narayanan, Hemanth Mohan, Robin Broersen, Roel de Haan, Anton W. Pieneman, Christiaan P.J. de Kock.
Institutions: VU University Amsterdam.
The cerebral cortex is characterized by multiple layers and many distinct cell-types that together as a network are responsible for many higher cognitive functions including decision making, sensory-guided behavior or memory. To understand how such intricate neuronal networks perform such tasks, a crucial step is to determine the function (or electrical activity) of individual cell types within the network, preferentially when the animal is performing a relevant cognitive task. Additionally, it is equally important to determine the anatomical structure of the network and the morphological architecture of the individual neurons to allow reverse engineering the cortical network. Technical breakthroughs available today allow recording cellular activity in awake, behaving animals with the valuable option of post hoc identifying the recorded neurons. Here, we demonstrate the juxtasomal biocytin labeling technique, which involves recording action potential spiking in the extracellular (or loose-patch) configuration using conventional patch pipettes. The juxtasomal recording configuration is relatively stable and applicable across behavioral conditions, including anesthetized, sedated, awake head-fixed, and even in the freely moving animal. Thus, this method allows linking cell-type specific action potential spiking during animal behavior to reconstruction of the individual neurons and ultimately, the entire cortical microcircuit. In this video manuscript, we show how individual neurons in the juxtasomal configuration can be labeled with biocytin in the urethane-anaesthetized rat for post hoc identification and morphological reconstruction.
Bioengineering, Issue 84, biocytin, juxtasomal, morphology, physiology, action potential, structure-function, histology, reconstruction, neurons, electrophysiological recordings
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Improved Preparation and Preservation of Hippocampal Mouse Slices for a Very Stable and Reproducible Recording of Long-term Potentiation
Authors: Agnès Villers, Laurence Ris.
Institutions: University of Mons.
Long-term potentiation (LTP) is a type of synaptic plasticity characterized by an increase in synaptic strength and believed to be involved in memory encoding. LTP elicited in the CA1 region of acute hippocampal slices has been extensively studied. However the molecular mechanisms underlying the maintenance phase of this phenomenon are still poorly understood. This could be partly due to the various experimental conditions used by different laboratories. Indeed, the maintenance phase of LTP is strongly dependent on external parameters like oxygenation, temperature and humidity. It is also dependent on internal parameters like orientation of the slicing plane and slice viability after dissection. The optimization of all these parameters enables the induction of a very reproducible and very stable long-term potentiation. This methodology offers the possibility to further explore the molecular mechanisms involved in the stable increase in synaptic strength in hippocampal slices. It also highlights the importance of experimental conditions in in vitro investigation of neurophysiological phenomena.
Neuroscience, Issue 76, Neurobiology, Anatomy, Physiology, Biomedical Engineering, Surgery, Memory Disorders, Learning, Memory, Neurosciences, Neurophysiology, hippocampus, long-term potentiation, mice, acute slices, synaptic plasticity, in vitro, electrophysiology, animal model
Play Button
Optogenetic Stimulation of Escape Behavior in Drosophila melanogaster
Authors: Saskia E.J. de Vries, Tom Clandinin.
Institutions: Stanford University .
A growing number of genetically encoded tools are becoming available that allow non-invasive manipulation of the neural activity of specific neurons in Drosophila melanogaster1. Chief among these are optogenetic tools, which enable the activation or silencing of specific neurons in the intact and freely moving animal using bright light. Channelrhodopsin (ChR2) is a light-activated cation channel that, when activated by blue light, causes depolarization of neurons that express it. ChR2 has been effective for identifying neurons critical for specific behaviors, such as CO2 avoidance, proboscis extension and giant-fiber mediated startle response2-4. However, as the intense light sources used to stimulate ChR2 also stimulate photoreceptors, these optogenetic techniques have not previously been used in the visual system. Here, we combine an optogenetic approach with a mutation that impairs phototransduction to demonstrate that activation of a cluster of loom-sensitive neurons in the fly's optic lobe, Foma-1 neurons, can drive an escape behavior used to avoid collision. We used a null allele of a critical component of the phototransduction cascade, phospholipase C-β, encoded by the norpA gene, to render the flies blind and also use the Gal4-UAS transcriptional activator system to drive expression of ChR2 in the Foma-1 neurons. Individual flies are placed on a small platform surrounded by blue LEDs. When the LEDs are illuminated, the flies quickly take-off into flight, in a manner similar to visually driven loom-escape behavior. We believe that this technique can be easily adapted to examine other behaviors in freely moving flies.
Neurobiology, Issue 71, Neuroscience, Genetics, Anatomy, Physiology, Molecular Biology, Cellular Biology, Behavior, optogenetics, channelrhodopsin, ChR2, escape behavior, neurons, fruit fly, Drosophila melanogaster, animal model
Play Button
Selective Viral Transduction of Adult-born Olfactory Neurons for Chronic in vivo Optogenetic Stimulation
Authors: Gabriel Lepousez, Mariana Alonso, Sebastian Wagner, Benjamin W. Gallarda, Pierre-Marie Lledo.
Institutions: Institut Pasteur and Centre National de la Recherche Scientifique (CNRS).
Local interneurons are continuously regenerated in the olfactory bulb of adult rodents1-3. In this process, called adult neurogenesis, neural stem cells in the walls of the lateral ventricle give rise to neuroblasts that migrate for several millimeters along the rostral migratory stream (RMS) to reach and incorporate into the olfactory bulb. To study the different steps and the impact of adult-born neuron integration into preexisting olfactory circuits, it is necessary to selectively label and manipulate the activity of this specific population of neurons. The recent development of optogenetic technologies offers the opportunity to use light to precisely activate this specific cohort of neurons without affecting surrounding neurons4,5. Here, we present a series of procedures to virally express Channelrhodopsin2(ChR2)-YFP in a temporally restricted cohort of neuroblasts in the RMS before they reach the olfactory bulb and become adult-born neurons. In addition, we show how to implant and calibrate a miniature LED for chronic in vivo stimulation of ChR2-expressing neurons.
Neuroscience, Issue 58, Olfactory bulb, Olfactory neurons, in vivo, viral transduction, mouse, LED
Play Button
A Method for High Fidelity Optogenetic Control of Individual Pyramidal Neurons In vivo
Authors: Shinya Nakamura, Michael V. Baratta, Donald C. Cooper.
Institutions: University of Colorado Boulder, University of Colorado Boulder.
Optogenetic methods have emerged as a powerful tool for elucidating neural circuit activity underlying a diverse set of behaviors across a broad range of species. Optogenetic tools of microbial origin consist of light-sensitive membrane proteins that are able to activate (e.g., channelrhodopsin-2, ChR2) or silence (e.g., halorhodopsin, NpHR) neural activity ingenetically-defined cell types over behaviorally-relevant timescales. We first demonstrate a simple approach for adeno-associated virus-mediated delivery of ChR2 and NpHR transgenes to the dorsal subiculum and prelimbic region of the prefrontal cortex in rat. Because ChR2 and NpHR are genetically targetable, we describe the use of this technology to control the electrical activity of specific populations of neurons (i.e., pyramidal neurons) embedded in heterogeneous tissue with high temporal precision. We describe herein the hardware, custom software user interface, and procedures that allow for simultaneous light delivery and electrical recording from transduced pyramidal neurons in an anesthetized in vivo preparation. These light-responsive tools provide the opportunity for identifying the causal contributions of different cell types to information processing and behavior.
Neuroscience, Issue 79, Genetic Techniques, Genetics, Behavioral, Biological Science Disciplines, Neurosciences, genetics (animal and plant), Investigative Techniques, Behavior and Behavior Mechanisms, Behavioral Disciplines and Activities, Natural Science Disciplines, Optogenetics, prefrontal cortex, subiculum, virus injection, in vivo recording, Neurophysiology, prelimbic, optrode, molecular neurogenetics, Gene targeting
Play Button
Laser-scanning Photostimulation of Optogenetically Targeted Forebrain Circuits
Authors: Charles C. Lee, Ying-Wan Lam, Kazuo Imaizumi, S. Murray Sherman.
Institutions: Louisiana State University, University of Chicago.
The sensory forebrain is composed of intricately connected cell types, of which functional properties have yet to be fully elucidated. Understanding the interactions of these forebrain circuits has been aided recently by the development of optogenetic methods for light-mediated modulation of neuronal activity. Here, we describe a protocol for examining the functional organization of forebrain circuits in vitro using laser-scanning photostimulation of channelrhodopsin, expressed optogenetically via viral-mediated transfection. This approach also exploits the utility of cre-lox recombination in transgenic mice to target expression in specific neuronal cell types. Following transfection, neurons are physiologically recorded in slice preparations using whole-cell patch clamp to measure their evoked responses to laser-scanning photostimulation of channelrhodopsin expressing fibers. This approach enables an assessment of functional topography and synaptic properties. Morphological correlates can be obtained by imaging the neuroanatomical expression of channelrhodopsin expressing fibers using confocal microscopy of the live slice or post-fixed tissue. These methods enable functional investigations of forebrain circuits that expand upon more conventional approaches.
Neuroscience, Issue 82, optogenetics, cortex, thalamus, channelrhodopsin, photostimulation, auditory, visual, somatosensory
Play Button
Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons
Authors: Sam A. Booker, Jie Song, Imre Vida.
Institutions: Charité Universitätmedizin.
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Neuroscience, Issue 91, electrophysiology, acute slice, whole-cell patch-clamp recording, neuronal morphology, immunocytochemistry, parvalbumin, hippocampus, inhibition, GABAergic interneurons, synaptic transmission, IPSC, GABA-B receptor
Play Button
Retrograde Fluorescent Labeling Allows for Targeted Extracellular Single-unit Recording from Identified Neurons In vivo
Authors: Ariel M. Lyons-Warren, Tsunehiko Kohashi, Steven Mennerick, Bruce A. Carlson.
Institutions: Washington University in St. Louis , Nagoya University, Washington University in St. Louis .
The overall goal of this method is to record single-unit responses from an identified population of neurons. In vivo electrophysiological recordings from individual neurons are critical for understanding how neural circuits function under natural conditions. Traditionally, these recordings have been performed 'blind', meaning the identity of the recorded cell is unknown at the start of the recording. Cellular identity can be subsequently determined via intracellular1, juxtacellular2 or loose-patch3 iontophoresis of dye, but these recordings cannot be pre-targeted to specific neurons in regions with functionally heterogeneous cell types. Fluorescent proteins can be expressed in a cell-type specific manner permitting visually-guided single-cell electrophysiology4-6. However, there are many model systems for which these genetic tools are not available. Even in genetically accessible model systems, the desired promoter may be unknown or genetically homogenous neurons may have varying projection patterns. Similarly, viral vectors have been used to label specific subgroups of projection neurons7, but use of this method is limited by toxicity and lack of trans-synaptic specificity. Thus, additional techniques that offer specific pre-visualization to record from identified single neurons in vivo are needed. Pre-visualization of the target neuron is particularly useful for challenging recording conditions, for which classical single-cell recordings are often prohibitively difficult8-11. The novel technique described in this paper uses retrograde transport of a fluorescent dye applied using tungsten needles to rapidly and selectively label a specific subset of cells within a particular brain region based on their unique axonal projections, thereby providing a visual cue to obtain targeted electrophysiological recordings from identified neurons in an intact circuit within a vertebrate CNS. The most significant novel advancement of our method is the use of fluorescent labeling to target specific cell types in a non-genetically accessible model system. Weakly electric fish are an excellent model system for studying neural circuits in awake, behaving animals12. We utilized this technique to study sensory processing by "small cells" in the anterior exterolateral nucleus (ELa) of weakly electric mormyrid fish. "Small cells" are hypothesized to be time comparator neurons important for detecting submillisecond differences in the arrival times of presynaptic spikes13. However, anatomical features such as dense myelin, engulfing synapses, and small cell bodies have made it extremely difficult to record from these cells using traditional methods11, 14. Here we demonstrate that our novel method selectively labels these cells in 28% of preparations, allowing for reliable, robust recordings and characterization of responses to electrosensory stimulation.
Neuroscience, Issue 76, Neurobiology, Physiology, Cellular Biology, Molecular Biology, Fluorescent imaging, weakly electric fish, sensory processing, tract-tracing, electrophysiology, neuron, individual axons, labeling, injection, surgery, recording, mormyrids, animal model
Play Button
Optogenetic Activation of Zebrafish Somatosensory Neurons using ChEF-tdTomato
Authors: Ana Marie S. Palanca, Alvaro Sagasti.
Institutions: University of California, Los Angeles .
Larval zebrafish are emerging as a model for describing the development and function of simple neural circuits. Due to their external fertilization, rapid development, and translucency, zebrafish are particularly well suited for optogenetic approaches to investigate neural circuit function. In this approach, light-sensitive ion channels are expressed in specific neurons, enabling the experimenter to activate or inhibit them at will and thus assess their contribution to specific behaviors. Applying these methods in larval zebrafish is conceptually simple but requires the optimization of technical details. Here we demonstrate a procedure for expressing a channelrhodopsin variant in larval zebrafish somatosensory neurons, photo-activating single cells, and recording the resulting behaviors. By introducing a few modifications to previously established methods, this approach could be used to elicit behavioral responses from single neurons activated up to at least 4 days post-fertilization (dpf). Specifically, we created a transgene using a somatosensory neuron enhancer, CREST3, to drive the expression of the tagged channelrhodopsin variant, ChEF-tdTomato. Injecting this transgene into 1-cell stage embryos results in mosaic expression in somatosensory neurons, which can be imaged with confocal microscopy. Illuminating identified cells in these animals with light from a 473 nm DPSS laser, guided through a fiber optic cable, elicits behaviors that can be recorded with a high-speed video camera and analyzed quantitatively. This technique could be adapted to study behaviors elicited by activating any zebrafish neuron. Combining this approach with genetic or pharmacological perturbations will be a powerful way to investigate circuit formation and function.
Neuroscience, Issue 71, Developmental Biology, Molecular Biology, Cellular Biology, Biochemistry, Bioengineering, Anatomy, Physiology, Zebrafish, Behavior, Animal, Touch, optogenetics, channelrhodopsin, ChEF, sensory neuron, Rohon-Beard, Danio rerio, somatosensory, neurons, microinjection, confocal microscopy, high speed video, animal model
Play Button
Optogenetic Stimulation of the Auditory Nerve
Authors: Victor H. Hernandez, Anna Gehrt, Zhizi Jing, Gerhard Hoch, Marcus Jeschke, Nicola Strenzke, Tobias Moser.
Institutions: University Medical Center Goettingen, University of Goettingen, University Medical Center Goettingen, University of Goettingen, University of Guanajuato.
Direct electrical stimulation of spiral ganglion neurons (SGNs) by cochlear implants (CIs) enables open speech comprehension in the majority of implanted deaf subjects1-6. Nonetheless, sound coding with current CIs has poor frequency and intensity resolution due to broad current spread from each electrode contact activating a large number of SGNs along the tonotopic axis of the cochlea7-9. Optical stimulation is proposed as an alternative to electrical stimulation that promises spatially more confined activation of SGNs and, hence, higher frequency resolution of coding. In recent years, direct infrared illumination of the cochlea has been used to evoke responses in the auditory nerve10. Nevertheless it requires higher energies than electrical stimulation10,11 and uncertainty remains as to the underlying mechanism12. Here we describe a method based on optogenetics to stimulate SGNs with low intensity blue light, using transgenic mice with neuronal expression of channelrhodopsin 2 (ChR2)13 or virus-mediated expression of the ChR2-variant CatCh14. We used micro-light emitting diodes (µLEDs) and fiber-coupled lasers to stimulate ChR2-expressing SGNs through a small artificial opening (cochleostomy) or the round window. We assayed the responses by scalp recordings of light-evoked potentials (optogenetic auditory brainstem response: oABR) or by microelectrode recordings from the auditory pathway and compared them with acoustic and electrical stimulation.
Neuroscience, Issue 92, hearing, cochlear implant, optogenetics, channelrhodopsin, optical stimulation, deafness
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Using Affordable LED Arrays for Photo-Stimulation of Neurons
Authors: Matthew Valley, Sebastian Wagner, Benjamin W. Gallarda, Pierre-Marie Lledo.
Institutions: Institut Pasteur and Centre National de la Recherche Scientifique (CNRS).
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations1,2. With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channelrhodopsin-2 (ChR2) allows researchers to activate neurons with light3,4. By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
Neuroscience, Issue 57, Adult neurogenesis, Channelrhodopsin, Neural stem cells, Plasticity, Synapses, Electrophysiology
Play Button
Paired Whole Cell Recordings in Organotypic Hippocampal Slices
Authors: Chantelle Fourie, Marianna Kiraly, Daniel V. Madison, Johanna M. Montgomery.
Institutions: University of Auckland, Stanford University.
Pair recordings involve simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling not only direct electrophysiological characterization of the synaptic connections between individual neurons, but also pharmacological manipulation of either the presynaptic or the postsynaptic neuron. When carried out in organotypic hippocampal slice cultures, the probability that two neurons are synaptically connected is significantly increased. This preparation readily enables identification of cell types, and the neurons maintain their morphology and properties of synaptic function similar to that in native brain tissue. A major advantage of paired whole cell recordings is the highly precise information it can provide on the properties of synaptic transmission and plasticity that are not possible with other more crude techniques utilizing extracellular axonal stimulation. Paired whole cell recordings are often perceived as too challenging to perform. While there are challenging aspects to this technique, paired recordings can be performed by anyone trained in whole cell patch clamping provided specific hardware and methodological criteria are followed. The probability of attaining synaptically connected paired recordings significantly increases with healthy organotypic slices and stable micromanipulation allowing independent attainment of pre- and postsynaptic whole cell recordings. While CA3-CA3 pyramidal cell pairs are most widely used in the organotypic slice hippocampal preparation, this technique has also been successful in CA3-CA1 pairs and can be adapted to any neurons that are synaptically connected in the same slice preparation. In this manuscript we provide the detailed methodology and requirements for establishing this technique in any laboratory equipped for electrophysiology.
Neuroscience, Issue 91, hippocampus, paired recording, whole cell recording, organotypic slice, synapse, synaptic transmission, synaptic plasticity
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.