JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Long-term functional side-effects of stimulants and sedatives in Drosophila melanogaster.
PUBLISHED: 01-30-2009
Small invertebrate animals, such as nematodes and fruit flies, are increasingly being used to test candidate drugs both for specific therapeutic purposes and for long-term health effects. Some of the protocols used in these experiments feature such experimental design features as lifelong virginity and very low densities. By contrast, the ability of both fruit flies and nematodes to resist stress is frequently correlated with their longevity and other functional measures, suggesting that low-stress assays are not necessarily the only useful protocol for testing the long-term effects of drugs.
Authors: Jared K. Woods, Suzanne Kowalski, Blanka Rogina.
Published: 04-10-2014
Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases.
23 Related JoVE Articles!
Play Button
Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae
Authors: Bibhudatta Mishra, Mostafa Ghannad-Rezaie, Jiaxing Li, Xin Wang, Yan Hao, Bing Ye, Nikos Chronis, Catherine A. Collins.
Institutions: University of Michigan, University of Michigan, University of Michigan, University of Michigan, University of Michigan.
Live imaging is an important technique for studying cell biological processes, however this can be challenging in live animals. The translucent cuticle of the Drosophila larva makes it an attractive model organism for live imaging studies. However, an important challenge for live imaging techniques is to noninvasively immobilize and position an animal on the microscope. This protocol presents a simple and easy to use method for immobilizing and imaging Drosophila larvae on a polydimethylsiloxane (PDMS) microfluidic device, which we call the 'larva chip'. The larva chip is comprised of a snug-fitting PDMS microchamber that is attached to a thin glass coverslip, which, upon application of a vacuum via a syringe, immobilizes the animal and brings ventral structures such as the nerve cord, segmental nerves, and body wall muscles, within close proximity to the coverslip. This allows for high-resolution imaging, and importantly, avoids the use of anesthetics and chemicals, which facilitates the study of a broad range of physiological processes. Since larvae recover easily from the immobilization, they can be readily subjected to multiple imaging sessions. This allows for longitudinal studies over time courses ranging from hours to days. This protocol describes step-by-step how to prepare the chip and how to utilize the chip for live imaging of neuronal events in 3rd instar larvae. These events include the rapid transport of organelles in axons, calcium responses to injury, and time-lapse studies of the trafficking of photo-convertible proteins over long distances and time scales. Another application of the chip is to study regenerative and degenerative responses to axonal injury, so the second part of this protocol describes a new and simple procedure for injuring axons within peripheral nerves by a segmental nerve crush.
Bioengineering, Issue 84, Drosophila melanogaster, Live Imaging, Microfluidics, axonal injury, axonal degeneration, calcium imaging, photoconversion, laser microsurgery
Play Button
Neurocircuit Assays for Seizures in Epilepsy Mutants of Drosophila
Authors: Iris C. Howlett, Mark A. Tanouye.
Institutions: University of California, Berkeley, University of California, Berkeley.
Drosophila melanogaster is a useful tool for studying seizure like activity. A variety of mutants in which seizures can be induced through either physical shock or electrical stimulation is available for study of various aspects of seizure activity and behavior. All flies, including wild-type, will undergo seizure-like activity if stimulated at a high enough voltage. Seizure like activity is an all-or-nothing response and each genotype has a specific seizure threshold. The seizure threshold of a specific genotype of fly can be altered either by treatment with a drug or by genetic suppression or enhancement. The threshold is easily measured by electrophysiology. Seizure-like activity can be induced via high frequency electrical stimulation delivered directly to the brain and recorded through the dorsal longitudinal muscles (DLMs) in the thorax. The DLMs are innervated by part of the giant fiber system. Starting with low voltage, high frequency stimulation, and subsequently raising the voltage in small increments, the seizure threshold for a single fly can be measured.
Neuroscience, Issue 26, elecrophysiology, Drosophila, seizures, epilepsy, giant fiber
Play Button
Insulin Injection and Hemolymph Extraction to Measure Insulin Sensitivity in Adult Drosophila melanogaster
Authors: Aaron T. Haselton, Yih-Woei C. Fridell.
Institutions: State University of New York, University of Connecticut.
Conserved nutrient sensing mechanisms exist between mammal and fruit fly where peptides resembling mammalian insulin and glucagon, respectively function to maintain glucose homeostasis during developmental larval stages 1,2. Studies on largely post-mitotic adult flies have revealed perturbation of glucose homeostasis as the result of genetic ablation of insulin-like peptide (ILP) producing cells (IPCs) 3. Thus, adult fruit flies hold great promise as a suitable genetic model system for metabolic disorders including type II diabetes. To further develop the fruit fly system, comparable physiological assays used to measure glucose tolerance and insulin sensitivity in mammals must be established. To this end, we have recently described a novel procedure for measuring oral glucose tolerance response in the adult fly and demonstrated the importance of adult IPCs in maintaining glucose homeostasis 4,5. Here, we have modified a previously described procedure for insulin injection 6 and combined it with a novel hemolymph extraction method to measure peripheral insulin sensitivity in the adult fly. Uniquely, our protocol allows direct physiological measurements of the adult fly's ability to dispose of a peripheral glucose load upon insulin injection, a methodology that makes it feasible to characterize insulin signaling mutants and potential interventions affecting glucose tolerance and insulin sensitivity in the adult fly.
Physiology, Issue 52, insulin injection, hemolymph, insulin tolerance test, Drosophila insulin-like peptide (DILP), insulin-like producing cells (IPCs)
Play Button
Drosophila Adult Olfactory Shock Learning
Authors: Bilal R. Malik, James J.L. Hodge.
Institutions: University of Bristol.
Drosophila have been used in classical conditioning experiments for over 40 years, thus greatly facilitating our understanding of memory, including the elucidation of the molecular mechanisms involved in cognitive diseases1-7. Learning and memory can be assayed in larvae to study the effect of neurodevelopmental genes8-10 and in flies to measure the contribution of adult plasticity genes1-7. Furthermore, the short lifespan of Drosophila facilitates the analysis of genes mediating age-related memory impairment5,11-13. The availability of many inducible promoters that subdivide the Drosophila nervous system makes it possible to determine when and where a gene of interest is required for normal memory as well as relay of different aspects of the reinforcement signal3,4,14,16. Studying memory in adult Drosophila allows for a detailed analysis of the behavior and circuitry involved and a measurement of long-term memory15-17. The length of the adult stage accommodates longer-term genetic, behavioral, dietary and pharmacological manipulations of memory, in addition to determining the effect of aging and neurodegenerative disease on memory3-6,11-13,15-21. Classical conditioning is induced by the simultaneous presentation of a neutral odor cue (conditioned stimulus, CS+) and a reinforcement stimulus, e.g., an electric shock or sucrose, (unconditioned stimulus, US), that become associated with one another by the animal1,16. A second conditioned stimulus (CS-) is subsequently presented without the US. During the testing phase, Drosophila are simultaneously presented with CS+ and CS- odors. After the Drosophila are provided time to choose between the odors, the distribution of the animals is recorded. This procedure allows associative aversive or appetitive conditioning to be reliably measured without a bias introduced by the innate preference for either of the conditioned stimuli. Various control experiments are also performed to test whether all genotypes respond normally to odor and reinforcement alone.
Neuroscience, Issue 90, Drosophila, Pavlovian learning, classical conditioning, learning, memory, olfactory, electric shock, associative memory
Play Button
Appetitive Associative Olfactory Learning in Drosophila Larvae
Authors: Anthi A. Apostolopoulou, Annekathrin Widmann, Astrid Rohwedder, Johanna E. Pfitzenmaier, Andreas S. Thum.
Institutions: University of Konstanz, University of Fribourg.
In the following we describe the methodological details of appetitive associative olfactory learning in Drosophila larvae. The setup, in combination with genetic interference, provides a handle to analyze the neuronal and molecular fundamentals of specifically associative learning in a simple larval brain. Organisms can use past experience to adjust present behavior. Such acquisition of behavioral potential can be defined as learning, and the physical bases of these potentials as memory traces1-4. Neuroscientists try to understand how these processes are organized in terms of molecular and neuronal changes in the brain by using a variety of methods in model organisms ranging from insects to vertebrates5,6. For such endeavors it is helpful to use model systems that are simple and experimentally accessible. The Drosophila larva has turned out to satisfy these demands based on the availability of robust behavioral assays, the existence of a variety of transgenic techniques and the elementary organization of the nervous system comprising only about 10,000 neurons (albeit with some concessions: cognitive limitations, few behavioral options, and richness of experience questionable)7-10. Drosophila larvae can form associations between odors and appetitive gustatory reinforcement like sugar11-14. In a standard assay, established in the lab of B. Gerber, animals receive a two-odor reciprocal training: A first group of larvae is exposed to an odor A together with a gustatory reinforcer (sugar reward) and is subsequently exposed to an odor B without reinforcement 9. Meanwhile a second group of larvae receives reciprocal training while experiencing odor A without reinforcement and subsequently being exposed to odor B with reinforcement (sugar reward). In the following both groups are tested for their preference between the two odors. Relatively higher preferences for the rewarded odor reflect associative learning - presented as a performance index (PI). The conclusion regarding the associative nature of the performance index is compelling, because apart from the contingency between odors and tastants, other parameters, such as odor and reward exposure, passage of time and handling do not differ between the two groups9.
Neuroscience, Issue 72, Developmental Biology, Neurobiology, Biochemistry, Molecular Biology, Physiology, Behavior, Drosophila, fruit fly, larvae, instar, olfaction, olfactory system, odor, 1-octanol, OCT, learning, reward, sugar, feeding, animal model
Play Button
Assessing Differences in Sperm Competitive Ability in Drosophila
Authors: Shu-Dan Yeh, Carolus Chan, José M. Ranz.
Institutions: University of California, Irvine.
Competition among conspecific males for fertilizing the ova is one of the mechanisms of sexual selection, i.e. selection that operates on maximizing the number of successful mating events rather than on maximizing survival and viability 1. Sperm competition represents the competition between males after copulating with the same female 2, in which their sperm are coincidental in time and space. This phenomenon has been reported in multiple species of plants and animals 3. For example, wild-caught D. melanogaster females usually contain sperm from 2-3 males 4. The sperm are stored in specialized organs with limited storage capacity, which might lead to the direct competition of the sperm from different males 2,5. Comparing sperm competitive ability of different males of interest (experimental male types) has been performed through controlled double-mating experiments in the laboratory 6,7. Briefly, a single female is exposed to two different males consecutively, one experimental male and one cross-mating reference male. The same mating scheme is then followed using other experimental male types thus facilitating the indirect comparison of the competitive ability of their sperm through a common reference. The fraction of individuals fathered by the experimental and reference males is identified using markers, which allows one to estimate sperm competitive ability using simple mathematical expressions 7,8. In addition, sperm competitive ability can be estimated in two different scenarios depending on whether the experimental male is second or first to mate (offense and defense assay, respectively) 9, which is assumed to be reflective of different competence attributes. Here, we describe an approach that helps to interrogate the role of different genetic factors that putatively underlie the phenomenon of sperm competitive ability in D. melanogaster.
Developmental Biology, Issue 78, Molecular Biology, Cellular Biology, Genetics, Biochemistry, Spermatozoa, Drosophila melanogaster, Biological Evolution, Phenotype, genetics (animal and plant), animal biology, double-mating experiment, sperm competitive ability, male fertility, Drosophila, fruit fly, animal model
Play Button
Cytological Analysis of Spermatogenesis: Live and Fixed Preparations of Drosophila Testes
Authors: Poojitha Sitaram, Sarah Grace Hainline, Laura Anne Lee.
Institutions: Vanderbilt University Medical Center.
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes3-12. Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.
Basic Protocol, Issue 83, Drosophila melanogaster, dissection, testes, spermatogenesis, meiosis, germ cells, phase-contrast microscopy, immunofluorescence
Play Button
Live Imaging of Drosophila Larval Neuroblasts
Authors: Dorothy A. Lerit, Karen M. Plevock, Nasser M. Rusan.
Institutions: National Institutes of Health.
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications.
Neuroscience, Issue 89, live imaging, Drosophila, neuroblast, stem cell, asymmetric division, centrosome, brain, cell cycle, mitosis
Play Button
Electrophysiological Recording From Drosophila Labellar Taste Sensilla
Authors: Rebecca Delventhal, Aidan Kiely, John R. Carlson.
Institutions: Yale University.
The peripheral taste response of insects can be powerfully investigated with electrophysiological techniques. The method described here allows the researcher to measure gustatory responses directly and quantitatively, reflecting the sensory input that the insect nervous system receives from taste stimuli in its environment. This protocol outlines all key steps in performing this technique. The critical steps in assembling an electrophysiology rig, such as selection of necessary equipment and a suitable environment for recording, are delineated. We also describe how to prepare for recording by making appropriate reference and recording electrodes, and tastant solutions. We describe in detail the method used for preparing the insect by insertion of a glass reference electrode into the fly in order to immobilize the proboscis. We show traces of the electrical impulses fired by taste neurons in response to a sugar and a bitter compound. Aspects of the protocol are technically challenging and we include an extensive description of some common technical challenges that may be encountered, such as lack of signal or excessive noise in the system, and potential solutions. The technique has limitations, such as the inability to deliver temporally complex stimuli, observe background firing immediately prior to stimulus delivery, or use water-insoluble taste compounds conveniently. Despite these limitations, this technique (including minor variations referenced in the protocol) is a standard, broadly accepted procedure for recording Drosophila neuronal responses to taste compounds.
Neuroscience, Issue 84, Drosophila, insect, taste, neuron, electrophysiology, labellum, extracellular recording, labellar taste sensilla
Play Button
Measurement of Metabolic Rate in Drosophila using Respirometry
Authors: Andriy S. Yatsenko, April K. Marrone, Mariya M. Kucherenko, Halyna R. Shcherbata.
Institutions: Max Planck Institute for Biophysical Chemistry.
Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate.
Physiology, Issue 88, Insects, Diptera, Metabolism, Drosophila, energy homeostasis, respiration, carbon dioxide (CO2), oxygen (O2)
Play Button
Purification of Transcripts and Metabolites from Drosophila Heads
Authors: Kurt Jensen, Jonatan Sanchez-Garcia, Caroline Williams, Swati Khare, Krishanu Mathur, Rita M. Graze, Daniel A. Hahn, Lauren M. McIntyre, Diego E. Rincon-Limas, Pedro Fernandez-Funez.
Institutions: University of Florida , University of Florida , University of Florida , University of Florida .
For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease.
Genetics, Issue 73, Biochemistry, Molecular Biology, Neurobiology, Neuroscience, Bioengineering, Cellular Biology, Anatomy, Neurodegenerative Diseases, Biological Assay, Drosophila, fruit fly, head separation, purification, mRNA, RNA, cDNA, DNA, transcripts, metabolites, replicates, SCA3, neurodegeneration, NMR, gene expression, animal model
Play Button
Assaying Locomotor Activity to Study Circadian Rhythms and Sleep Parameters in Drosophila
Authors: Joanna C. Chiu, Kwang Huei Low, Douglas H. Pike, Evrim Yildirim, Isaac Edery.
Institutions: Rutgers University, University of California, Davis, Rutgers University.
Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties.
Neuroscience, Issue 43, circadian rhythm, locomotor activity, Drosophila, period, sleep, Trikinetics
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Measurement of Lifespan in Drosophila melanogaster
Authors: Nancy J. Linford, Ceyda Bilgir, Jennifer Ro, Scott D. Pletcher.
Institutions: University of Michigan , University of Michigan .
Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals. The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts1-4. In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download ( dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying fly handling and data collection, and standardizing data analysis. We will also discuss the many potential pitfalls in the design, collection, and interpretation of lifespan data, and we provide steps to avoid these dangers.
Developmental Biology, Issue 71, Cellular Biology, Molecular Biology, Anatomy, Physiology, Entomology, longevity, lifespan, aging, Drosophila melanogaster, fruit fly, Drosophila, mortality, animal model
Play Button
The FlyBar: Administering Alcohol to Flies
Authors: Kim van der Linde, Emiliano Fumagalli, Gregg Roman, Lisa C. Lyons.
Institutions: Florida State University, University of Houston.
Fruit flies (Drosophila melanogaster) are an established model for both alcohol research and circadian biology. Recently, we showed that the circadian clock modulates alcohol sensitivity, but not the formation of tolerance. Here, we describe our protocol in detail. Alcohol is administered to the flies using the FlyBar. In this setup, saturated alcohol vapor is mixed with humidified air in set proportions, and administered to the flies in four tubes simultaneously. Flies are reared under standardized conditions in order to minimize variation between the replicates. Three-day old flies of different genotypes or treatments are used for the experiments, preferably by matching flies of two different time points (e.g., CT 5 and CT 17) making direct comparisons possible. During the experiment, flies are exposed for 1 hr to the pre-determined percentage of alcohol vapor and the number of flies that exhibit the Loss of Righting reflex (LoRR) or sedation are counted every 5 min. The data can be analyzed using three different statistical approaches. The first is to determine the time at which 50% of the flies have lost their righting reflex and use an Analysis of the Variance (ANOVA) to determine whether significant differences exist between time points. The second is to determine the percentage flies that show LoRR after a specified number of minutes, followed by an ANOVA analysis. The last method is to analyze the whole times series using multivariate statistics. The protocol can also be used for non-circadian experiments or comparisons between genotypes.
Neuroscience, Issue 87, neuroscience, alcohol sensitivity, Drosophila, Circadian, sedation, biological rhythms, undergraduate research
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
Play Button
Quantitative Measurement of the Immune Response and Sleep in Drosophila
Authors: Tzu-Hsing Kuo, Arun Handa, Julie A. Williams.
Institutions: University of Pennsylvania Perelman School of Medicine.
A complex interaction between the immune response and host behavior has been described in a wide range of species. Excess sleep, in particular, is known to occur as a response to infection in mammals 1 and has also recently been described in Drosophila melanogaster2. It is generally accepted that sleep is beneficial to the host during an infection and that it is important for the maintenance of a robust immune system3,4. However, experimental evidence that supports this hypothesis is limited4, and the function of excess sleep during an immune response remains unclear. We have used a multidisciplinary approach to address this complex problem, and have conducted studies in the simple genetic model system, the fruitfly Drosophila melanogaster. We use a standard assay for measuring locomotor behavior and sleep in flies, and demonstrate how this assay is used to measure behavior in flies infected with a pathogenic strain of bacteria. This assay is also useful for monitoring the duration of survival in individual flies during an infection. Additional measures of immune function include the ability of flies to clear an infection and the activation of NFκB, a key transcription factor that is central to the innate immune response in Drosophila. Both survival outcome and bacterial clearance during infection together are indicators of resistance and tolerance to infection. Resistance refers to the ability of flies to clear an infection, while tolerance is defined as the ability of the host to limit damage from an infection and thereby survive despite high levels of pathogen within the system5. Real-time monitoring of NFκB activity during infection provides insight into a molecular mechanism of survival during infection. The use of Drosophila in these straightforward assays facilitates the genetic and molecular analyses of sleep and the immune response and how these two complex systems are reciprocally influenced.
Immunology, Issue 70, Neuroscience, Medicine, Physiology, Pathology, Microbiology, immune response, sleep, Drosophila, infection, bacteria, luciferase reporter assay, animal model
Play Button
Studying Aggression in Drosophila (fruit flies)
Authors: Sibu Mundiyanapurath, Sarah Certel, Edward A. Kravitz.
Institutions: Harvard Medical School.
Aggression is an innate behavior that evolved in the framework of defending or obtaining resources. This complex social behavior is influenced by genetic, hormonal and environmental factors. In many organisms, aggression is critical to survival but controlling and suppressing aggression in distinct contexts also has become increasingly important. In recent years, invertebrates have become increasingly useful as model systems for investigating the genetic and systems biological basis of complex social behavior. This is in part due to the diverse repertoire of behaviors exhibited by these organisms. In the accompanying video, we outline a method for analyzing aggression in Drosophila whose design encompasses important eco-ethological constraints. Details include steps for: making a fighting chamber; isolating and painting flies; adding flies to the fight chamber; and video taping fights. This approach is currently being used to identify candidate genes important in aggression and in elaborating the neuronal circuitry that underlies the output of aggression and other social behaviors.
Neuroscience, Issue 2, Drosophila, behavior
Play Button
A Simple Way to Measure Ethanol Sensitivity in Flies
Authors: Thomas Maples, Adrian Rothenfluh.
Institutions: University of Texas Southwestern Medical Center.
Low doses of ethanol cause flies to become hyperactive, while high doses are sedating. The sensitivity to ethanol-induced sedation of a given fly strain is correlated with that strain s ethanol preference, and therefore sedation is a highly relevant measure to study the genetics of alcohol responses and drinking. We demonstrate a simple way to expose flies to ethanol and measure its intoxicating effects. The assay we describe can determine acute sensitivity, as well as ethanol tolerance induced by repeat exposure. It does not require a technically involved setup, and can therefore be applied in any laboratory with basic fly culture tools.
Neuroscience, Issue 48, Drosophila, behavior, alcohol, addiction
Play Button
An Optimized Protocol for Rearing Fopius arisanus, a Parasitoid of Tephritid Fruit Flies
Authors: Nicholas Manoukis, Scott Geib, Danny Seo, Michael McKenney, Roger Vargas, Eric Jang.
Institutions: US Pacific Basin Agricultural Research Center.
Fopius arisanus (Sonan) is an important parasitoid of Tephritid fruit flies for at least two reasons. First, it is the one of only three opiine parasitoids known to infect the host during the egg stage1. Second, it has a wide range of potential fruit fly hosts. Perhaps due to its life history, F. arisanus has been a successfully used for biological control of fruit flies in multiple tropical regions2-4. One impediment to the wide use of F. arisanus for fruit fly control is that it is difficult to establish a stable laboratory colony5-9. Despite this difficulty, in the 1990s USDA researchers developed a reliable method to maintain laboratory populations of F. arisanus10-12. There is significant interest in F. arisanus biology13,14, especially regarding its ability to colonize a wide variety of Tephritid hosts14-17; interest is especially driven by the alarming spread of Bactrocera fruit fly pests to new continents in the last decade18. Further research on F. arisanus and additional deployments of this species as a biological control agent will benefit from optimizations and improvements of rearing methods. In this protocol and associated video article we describe an optimized method for rearing F. arisanus based on a previously described approach12. The method we describe here allows rearing of F. arisanus in a small scale without the use of fruit, using materials available in tropical regions around the world and with relatively low manual labor requirements.
Developmental Biology, Issue 53, Biological control, Tephritidae, parasitoid, French Polynesia, insectary
Play Button
Operant Learning of Drosophila at the Torque Meter
Authors: Bjoern Brembs.
Institutions: Free University of Berlin.
For experiments at the torque meter, flies are kept on standard fly medium at 25°C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.
Neuroscience, Issue 16, operant, learning, Drosophila, fruit fly, insect, invertebrate, neuroscience, neurobiology, fly, conditioning
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.