JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK.
PUBLISHED: 05-05-2009
Cancer cells activate the biosynthesis of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in order to sustain an increasing demand for phospholipids with appropriate acyl composition during cell replication. We have previously shown that a stable knockdown of stearoyl-CoA desaturase 1 (SCD1), the main Delta9-desaturase that converts SFA into MUFA, in cancer cells decreases the rate of lipogenesis, reduces proliferation and in vitro invasiveness, and dramatically impairs tumor formation and growth. Here we report that pharmacological inhibition of SCD1 with a novel small molecule in cancer cells promoted the activation of AMP-activated kinase (AMPK) and the subsequent reduction of acetylCoA carboxylase activity, with a concomitant inhibition of glucose-mediated lipogenesis. The pharmacological inhibition of AMPK further decreased proliferation of SCD1-depleted cells, whereas AMPK activation restored proliferation to control levels. Addition of supraphysiological concentrations of glucose or pyruvate, the end product of glycolysis, did not reverse the low proliferation rate of SCD1-ablated cancer cells. Our data suggest that cancer cells require active SCD1 to control the rate of glucose-mediated lipogenesis, and that when SCD1 activity is impaired cells downregulate SFA synthesis via AMPK-mediated inactivation of acetyl-CoA carboxylase, thus preventing the harmful effects of SFA accumulation.
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Published: 11-01-2013
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
23 Related JoVE Articles!
Play Button
Bioenergetic Profile Experiment using C2C12 Myoblast Cells
Authors: David G. Nicholls, Victor M. Darley-Usmar, Min Wu, Per Bo Jensen, George W. Rogers, David A. Ferrick.
Institutions: Novato, CA, University of Alabama at Birmingham - UAB, North Billerica, MA.
The ability to measure cellular metabolism and understand mitochondrial dysfunction, has enabled scientists worldwide to advance their research in understanding the role of mitochondrial function in obesity, diabetes, aging, cancer, cardiovascular function and safety toxicity. Cellular metabolism is the process of substrate uptake, such as oxygen, glucose, fatty acids, and glutamine, and subsequent energy conversion through a series of enzymatically controlled oxidation and reduction reactions. These intracellular biochemical reactions result in the production of ATP, the release of heat and chemical byproducts, such as lactate and CO2 into the extracellular environment. Valuable insight into the physiological state of cells, and the alteration of the state of those cells, can be gained through measuring the rate of oxygen consumed by the cells, an indicator of mitochondrial respiration - the Oxygen Consumption Rate - or OCR. Cells also generate ATP through glycolysis, i.e.: the conversion of glucose to lactate, independent of oxygen. In cultured wells, lactate is the primary source of protons. Measuring the lactic acid produced indirectly via protons released into the extracellular medium surrounding the cells, which causes acidification of the medium provides the Extra-Cellular Acidification Rate - or ECAR. In this experiment, C2C12 myoblast cells are seeded at a given density in Seahorse cell culture plates. The basal oxygen consumption (OCR) and extracellular acidification (ECAR) rates are measured to establish baseline rates. The cells are then metabolically perturbed by three additions of different compounds (in succession) that shift the bioenergetic profile of the cell. This assay is derived from a classic experiment to assess mitochondria and serves as a framework with which to build more complex experiments aimed at understanding both physiologic and pathophysiologic function of mitochondria and to predict the ability of cells to respond to stress and/or insults.
Cellular Biology, Issue 46, Mitochondrial dysfunction, cellular, bioenergetics, metabolism, cancer, obesity, diabetes, aging, neurodegeneration
Play Button
Determination of Tolerable Fatty Acids and Cholera Toxin Concentrations Using Human Intestinal Epithelial Cells and BALB/c Mouse Macrophages
Authors: Farshad Tamari, Joanna Tychowski, Laura Lorentzen.
Institutions: Kingsborough Community College, University of Texas at Austin, Kean University.
The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections.
Infection, Issue 75, Medicine, Immunology, Infectious Diseases, Microbiology, Molecular Biology, Cellular Biology, Biochemistry, Bioengineering, Bacterial Infections and Mycoses, Mucosal immunity, oleic acid, linoleic acid, linolenic acid, cholera toxin, cholera, fatty acids, tissue culture, MTT assay, mouse, animal model
Play Button
Assessing Replication and Beta Cell Function in Adenovirally-transduced Isolated Rodent Islets
Authors: Patrick T. Fueger, Angelina M. Hernandez, Yi-Chun Chen, E. Scott Colvin.
Institutions: Indiana University School of Medicine, Indiana University School of Medicine.
Glucose homeostasis is primarily controlled by the endocrine hormones insulin and glucagon, secreted from the pancreatic beta and alpha cells, respectively. Functional beta cell mass is determined by the anatomical beta cell mass as well as the ability of the beta cells to respond to a nutrient load. A loss of functional beta cell mass is central to both major forms of diabetes 1-3. Whereas the declining functional beta cell mass results from an autoimmune attack in type 1 diabetes, in type 2 diabetes, this decrement develops from both an inability of beta cells to secrete insulin appropriately and the destruction of beta cells from a cadre of mechanisms. Thus, efforts to restore functional beta cell mass are paramount to the better treatment of and potential cures for diabetes. Efforts are underway to identify molecular pathways that can be exploited to stimulate the replication and enhance the function of beta cells. Ideally, therapeutic targets would improve both beta cell growth and function. Perhaps more important though is to identify whether a strategy that stimulates beta cell growth comes at the cost of impairing beta cell function (such as with some oncogenes) and vice versa. By systematically suppressing or overexpressing the expression of target genes in isolated rat islets, one can identify potential therapeutic targets for increasing functional beta cell mass 4-6. Adenoviral vectors can be employed to efficiently overexpress or knockdown proteins in isolated rat islets 4,7-15. Here, we present a method to manipulate gene expression utilizing adenoviral transduction and assess islet replication and beta cell function in isolated rat islets (Figure 1). This method has been used previously to identify novel targets that modulate beta cell replication or function 5,6,8,9,16,17.
Medicine, Issue 64, Physiology, beta cell, gene expression, islet, diabetes, insulin secretion, proliferation, adenovirus, rat
Play Button
Assessment of Cardiac Function and Energetics in Isolated Mouse Hearts Using 31P NMR Spectroscopy
Authors: Stephen C. Kolwicz Jr., Rong Tian.
Institutions: University of Washington School of Medicine.
Bioengineered mouse models have become powerful research tools in determining causal relationships between molecular alterations and models of cardiovascular disease. Although molecular biology is necessary in identifying key changes in the signaling pathway, it is not a surrogate for functional significance. While physiology can provide answers to the question of function, combining physiology with biochemical assessment of metabolites in the intact, beating heart allows for a complete picture of cardiac function and energetics. For years, our laboratory has utilized isolated heart perfusions combined with nuclear magnetic resonance (NMR) spectroscopy to accomplish this task. Left ventricular function is assessed by Langendorff-mode isolated heart perfusions while cardiac energetics is measured by performing 31P magnetic resonance spectroscopy of the perfused hearts. With these techniques, indices of cardiac function in combination with levels of phosphocreatine and ATP can be measured simultaneously in beating hearts. Furthermore, these parameters can be monitored while physiologic or pathologic stressors are instituted. For example, ischemia/reperfusion or high workload challenge protocols can be adopted. The use of aortic banding or other models of cardiac pathology are apt as well. Regardless of the variants within the protocol, the functional and energetic significance of molecular modifications of transgenic mouse models can be adequately described, leading to new insights into the associated enzymatic and metabolic pathways. Therefore, 31P NMR spectroscopy in the isolated perfused heart is a valuable research technique in animal models of cardiovascular disease.
Medicine, Issue 42, cardiac physiology, high energy phosphate, phosphocreatine, ATP
Play Button
Arabidopsis thaliana Polar Glycerolipid Profiling by Thin Layer Chromatography (TLC) Coupled with Gas-Liquid Chromatography (GLC)
Authors: Zhen Wang, Christoph Benning.
Institutions: Michigan State University.
Biological membranes separate cells from the environment. From a single cell to multicellular plants and animals, glycerolipids, such as phosphatidylcholine or phosphatidylethanolamine, form bilayer membranes which act as both boundaries and interfaces for chemical exchange between cells and their surroundings. Unlike animals, plant cells have a special organelle for photosynthesis, the chloroplast. The intricate membrane system of the chloroplast contains unique glycerolipids, namely glycolipids lacking phosphorus: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)4. The roles of these lipids are beyond simply structural. These glycolipids and other glycerolipids were found in the crystal structures of photosystem I and II indicating the involvement of glycerolipids in photosynthesis8,11. During phosphate starvation, DGDG is transferred to extraplastidic membranes to compensate the loss of phospholipids9,12. Much of our knowledge of the biosynthesis and function of these lipids has been derived from a combination of genetic and biochemical studies with Arabidopsis thaliana14. During these studies, a simple procedure for the analysis of polar lipids has been essential for the screening and analysis of lipid mutants and will be outlined in detail. A leaf lipid extract is first separated by thin layer chromatography (TLC) and glycerolipids are stained reversibly with iodine vapor. The individual lipids are scraped from the TLC plate and converted to fatty acyl methylesters (FAMEs), which are analyzed by gas-liquid chromatography coupled with flame ionization detection (FID-GLC) (Figure 1). This method has been proven to be a reliable tool for mutant screening. For example, the tgd1,2,3,4 endoplasmic reticulum-to-plastid lipid trafficking mutants were discovered based on the accumulation of an abnormal galactoglycerolipid: trigalactosyldiacylglycerol (TGDG) and a decrease in the relative amount of 18:3 (carbons : double bonds) fatty acyl groups in membrane lipids 3,13,18,20. This method is also applicable for determining enzymatic activities of proteins using lipids as substrate6.
Plant Biology, Issue 49, Lipid Analysis, Galactolipids, Thin-layer Chromatogrpahy, Chlorplast Lipids, Arabidopsis
Play Button
A Model of Chronic Nutrient Infusion in the Rat
Authors: Grace Fergusson, Mélanie Ethier, Bader Zarrouki, Ghislaine Fontés, Vincent Poitout.
Institutions: CRCHUM, University of Montreal.
Chronic exposure to excessive levels of nutrients is postulated to affect the function of several organs and tissues and to contribute to the development of the many complications associated with obesity and the metabolic syndrome, including type 2 diabetes. To study the mechanisms by which excessive levels of glucose and fatty acids affect the pancreatic beta-cell and the secretion of insulin, we have established a chronic nutrient infusion model in the rat. The procedure consists of catheterizing the right jugular vein and left carotid artery under general anesthesia; allowing a 7-day recuperation period; connecting the catheters to the pumps using a swivel and counterweight system that enables the animal to move freely in the cage; and infusing glucose and/or Intralipid (a soybean oil emulsion which generates a mixture of approximately 80% unsaturated/20% saturated fatty acids when infused with heparin) for 72 hr. This model offers several advantages, including the possibility to finely modulate the target levels of circulating glucose and fatty acids; the option to co-infuse pharmacological compounds; and the relatively short time frame as opposed to dietary models. It can be used to examine the mechanisms of nutrient-induced dysfunction in a variety of organs and to test the effectiveness of drugs in this context.
Biomedical Engineering, Issue 78, Medicine, Anatomy, Physiology, Basic Protocols, Surgery, Metabolic Diseases, Infusions, Intravenous, Infusion Pumps, Glucolipotoxicity, Rat, Infusion, Glucose, Intralipid, Catheter, canulation, canula, diabetes, animal model
Play Button
A Strategy for Sensitive, Large Scale Quantitative Metabolomics
Authors: Xiaojing Liu, Zheng Ser, Ahmad A. Cluntun, Samantha J. Mentch, Jason W. Locasale.
Institutions: Cornell University, Cornell University.
Metabolite profiling has been a valuable asset in the study of metabolism in health and disease. However, current platforms have different limiting factors, such as labor intensive sample preparations, low detection limits, slow scan speeds, intensive method optimization for each metabolite, and the inability to measure both positively and negatively charged ions in single experiments. Therefore, a novel metabolomics protocol could advance metabolomics studies. Amide-based hydrophilic chromatography enables polar metabolite analysis without any chemical derivatization. High resolution MS using the Q-Exactive (QE-MS) has improved ion optics, increased scan speeds (256 msec at resolution 70,000), and has the capability of carrying out positive/negative switching. Using a cold methanol extraction strategy, and coupling an amide column with QE-MS enables robust detection of 168 targeted polar metabolites and thousands of additional features simultaneously.  Data processing is carried out with commercially available software in a highly efficient way, and unknown features extracted from the mass spectra can be queried in databases.
Chemistry, Issue 87, high-resolution mass spectrometry, metabolomics, positive/negative switching, low mass calibration, Orbitrap
Play Button
Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis
Authors: Sang-Hyuck Park, Rebecca Garlock Ong, Chuansheng Mei, Mariam Sticklen.
Institutions: University of Arizona, Michigan State University, The Institute for Advanced Learning and Research, Michigan State University.
To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.
Bioengineering, Issue 89, Zea mays, cinnamoyl-CoA reductase (CCR), dsRNAi, Klason lignin measurement, cell wall carbohydrate analysis, gas chromatography (GC)
Play Button
The Logic, Experimental Steps, and Potential of Heterologous Natural Product Biosynthesis Featuring the Complex Antibiotic Erythromycin A Produced Through E. coli
Authors: Ming Jiang, Haoran Zhang, Blaine A. Pfeifer.
Institutions: State University of New York at Buffalo, Massachusetts Institute of Technology.
The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each experimental component is under continual optimization to meet the challenges and anticipate the opportunities associated with this emerging approach. Heterologous biosynthesis begins with the identification of a genetic sequence responsible for a valuable natural product. Transferring this sequence to a heterologous host is complicated by the biosynthetic pathway complexity responsible for product formation. The antibiotic erythromycin A is a good example. Twenty genes (totaling >50 kb) are required for eventual biosynthesis. In addition, three of these genes encode megasynthases, multi-domain enzymes each ~300 kDa in size. This genetic material must be designed and transferred to E. coli for reconstituted biosynthesis. The use of PCR isolation, operon construction, multi-cystronic plasmids, and electro-transformation will be described in transferring the erythromycin A genetic cluster to E. coli. Once transferred, the E. coli cell must support eventual biosynthesis. This process is also challenging given the substantial differences between E. coli and most original hosts responsible for complex natural product formation. The cell must provide necessary substrates to support biosynthesis and coordinately express the transferred genetic cluster to produce active enzymes. In the case of erythromycin A, the E. coli cell had to be engineered to provide the two precursors (propionyl-CoA and (2S)-methylmalonyl-CoA) required for biosynthesis. In addition, gene sequence modifications, plasmid copy number, chaperonin co-expression, post-translational enzymatic modification, and process temperature were also required to allow final erythromycin A formation. Finally, successful production must be assessed. For the erythromycin A case, we will present two methods. The first is liquid chromatography-mass spectrometry (LC-MS) to confirm and quantify production. The bioactivity of erythromycin A will also be confirmed through use of a bioassay in which the antibiotic activity is tested against Bacillus subtilis. The assessment assays establish erythromycin A biosynthesis from E. coli and set the stage for future engineering efforts to improve or diversify production and for the production of new complex natural compounds using this approach.
Biomedical Engineering, Issue 71, Chemical Engineering, Bioengineering, Molecular Biology, Cellular Biology, Microbiology, Basic Protocols, Biochemistry, Biotechnology, Heterologous biosynthesis, natural products, antibiotics, erythromycin A, metabolic engineering, E. coli
Play Button
An In Vitro System to Study Tumor Dormancy and the Switch to Metastatic Growth
Authors: Dalit Barkan, Jeffrey E. Green.
Institutions: University of Haifa, National Cancer Institute.
Recurrence of breast cancer often follows a long latent period in which there are no signs of cancer, and metastases may not become clinically apparent until many years after removal of the primary tumor and adjuvant therapy. A likely explanation of this phenomenon is that tumor cells have seeded metastatic sites, are resistant to conventional therapies, and remain dormant for long periods of time 1-4. The existence of dormant cancer cells at secondary sites has been described previously as quiescent solitary cells that neither proliferate nor undergo apoptosis 5-7. Moreover, these solitary cells has been shown to disseminate from the primary tumor at an early stage of disease progression 8-10 and reside growth-arrested in the patients' bone marrow, blood and lymph nodes 1,4,11. Therefore, understanding mechanisms that regulate dormancy or the switch to a proliferative state is critical for discovering novel targets and interventions to prevent disease recurrence. However, unraveling the mechanisms regulating the switch from tumor dormancy to metastatic growth has been hampered by the lack of available model systems. in vivo and ex vivo model systems to study metastatic progression of tumor cells have been described previously 1,12-14. However these model systems have not provided in real time and in a high throughput manner mechanistic insights into what triggers the emergence of solitary dormant tumor cells to proliferate as metastatic disease. We have recently developed a 3D in vitro system to model the in vivo growth characteristics of cells that exhibit either dormant (D2.OR, MCF7, K7M2-AS.46) or proliferative (D2A1, MDA-MB-231, K7M2) metastatic behavior in vivo . We demonstrated that tumor cells that exhibit dormancy in vivo at a metastatic site remain quiescent when cultured in a 3-dimension (3D) basement membrane extract (BME), whereas cells highly metastatic in vivo readily proliferate in 3D culture after variable, but relatively short periods of quiescence. Importantly by utilizing the 3D in vitro model system we demonstrated for the first time that the ECM composition plays an important role in regulating whether dormant tumor cells will switch to a proliferative state and have confirmed this in in vivo studies15-17. Hence, the model system described in this report provides an in vitro method to model tumor dormancy and study the transition to proliferative growth induced by the microenvironment.
Medicine, Issue 54, Tumor dormancy, cancer recurrence, metastasis, reconstituted basement membrane extract (BME), 3D culture, breast cancer
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
Play Button
Direct Detection of the Acetate-forming Activity of the Enzyme Acetate Kinase
Authors: Matthew L. Fowler, Cheryl J. Ingram-Smith, Kerry S. Smith.
Institutions: Clemson University.
Acetate kinase, a member of the acetate and sugar kinase-Hsp70-actin (ASKHA) enzyme superfamily1-5, is responsible for the reversible phosphorylation of acetate to acetyl phosphate utilizing ATP as a substrate. Acetate kinases are ubiquitous in the Bacteria, found in one genus of Archaea, and are also present in microbes of the Eukarya6. The most well characterized acetate kinase is that from the methane-producing archaeon Methanosarcina thermophila7-14. An acetate kinase which can only utilize PPi but not ATP in the acetyl phosphate-forming direction has been isolated from Entamoeba histolytica, the causative agent of amoebic dysentery, and has thus far only been found in this genus15,16. In the direction of acetyl phosphate formation, acetate kinase activity is typically measured using the hydroxamate assay, first described by Lipmann17-20, a coupled assay in which conversion of ATP to ADP is coupled to oxidation of NADH to NAD+ by the enzymes pyruvate kinase and lactate dehydrogenase21,22, or an assay measuring release of inorganic phosphate after reaction of the acetyl phosphate product with hydroxylamine23. Activity in the opposite, acetate-forming direction is measured by coupling ATP formation from ADP to the reduction of NADP+ to NADPH by the enzymes hexokinase and glucose 6-phosphate dehydrogenase24. Here we describe a method for the detection of acetate kinase activity in the direction of acetate formation that does not require coupling enzymes, but is instead based on direct determination of acetyl phosphate consumption. After the enzymatic reaction, remaining acetyl phosphate is converted to a ferric hydroxamate complex that can be measured spectrophotometrically, as for the hydroxamate assay. Thus, unlike the standard coupled assay for this direction that is dependent on the production of ATP from ADP, this direct assay can be used for acetate kinases that produce ATP or PPi.
Molecular Biology, Issue 58, Acetate kinase, acetate, acetyl phosphate, pyrophosphate, PPi, ATP
Play Button
Metabolic Pathway Confirmation and Discovery Through 13C-labeling of Proteinogenic Amino Acids
Authors: Le You, Lawrence Page, Xueyang Feng, Bert Berla, Himadri B. Pakrasi, Yinjie J. Tang.
Institutions: Washington University, Washington University, Washington University.
Microbes have complex metabolic pathways that can be investigated using biochemistry and functional genomics methods. One important technique to examine cell central metabolism and discover new enzymes is 13C-assisted metabolism analysis 1. This technique is based on isotopic labeling, whereby microbes are fed with a 13C labeled substrates. By tracing the atom transition paths between metabolites in the biochemical network, we can determine functional pathways and discover new enzymes. As a complementary method to transcriptomics and proteomics, approaches for isotopomer-assisted analysis of metabolic pathways contain three major steps 2. First, we grow cells with 13C labeled substrates. In this step, the composition of the medium and the selection of labeled substrates are two key factors. To avoid measurement noises from non-labeled carbon in nutrient supplements, a minimal medium with a sole carbon source is required. Further, the choice of a labeled substrate is based on how effectively it will elucidate the pathway being analyzed. Because novel enzymes often involve different reaction stereochemistry or intermediate products, in general, singly labeled carbon substrates are more informative for detection of novel pathways than uniformly labeled ones for detection of novel pathways3, 4. Second, we analyze amino acid labeling patterns using GC-MS. Amino acids are abundant in protein and thus can be obtained from biomass hydrolysis. Amino acids can be derivatized by N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (TBDMS) before GC separation. TBDMS derivatized amino acids can be fragmented by MS and result in different arrays of fragments. Based on the mass to charge (m/z) ratio of fragmented and unfragmented amino acids, we can deduce the possible labeled patterns of the central metabolites that are precursors of the amino acids. Third, we trace 13C carbon transitions in the proposed pathways and, based on the isotopomer data, confirm whether these pathways are active 2. Measurement of amino acids provides isotopic labeling information about eight crucial precursor metabolites in the central metabolism. These metabolic key nodes can reflect the functions of associated central pathways. 13C-assisted metabolism analysis via proteinogenic amino acids can be widely used for functional characterization of poorly-characterized microbial metabolism1. In this protocol, we will use Cyanothece 51142 as the model strain to demonstrate the use of labeled carbon substrates for discovering new enzymatic functions.
Molecular Biology, Issue 59, GC-MS, novel pathway, metabolism, labeling, phototrophic microorganism
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Institutions: Delft University of Technology, Delft University of Technology.
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
Bioengineering, Issue 68, Microbiology, Biochemistry, Chemistry, Chemical Engineering, Oil remediation, alkane metabolism, alkane hydroxylase system, resting cell assay, prefoldin, Escherichia coli, synthetic biology, homologous interaction mapping, mathematical model, BioBrick, iGEM
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
Play Button
Interview: Glycolipid Antigen Presentation by CD1d and the Therapeutic Potential of NKT cell Activation
Authors: Mitchell Kronenberg.
Institutions: La Jolla Institute for Allergy and Immunology.
Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d - the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.
Immunology, Issue 10, Natural Killer T cells, NKT cells, CD1 Tetramers, antigen presentation, glycolipid antigens, CD1d, Mucosal Immunity, Translational Research
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.