JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Target deletion of the cytoskeleton-associated protein palladin does not impair neurite outgrowth in mice.
PLoS ONE
PUBLISHED: 04-10-2009
Palladin is an actin cytoskeleton-associated protein which is crucial for cell morphogenesis and motility. Previous studies have shown that palladin is localized to the axonal growth cone in neurons and may play an important role in axonal extension. Previously, we have generated palladin knockout mice which display cranial neural tube closure defect and embryonic lethality before embryonic day 15.5 (E15.5). To further study the role of palladin in the developing nervous system, we examined the innervation of palladin-deficient mouse embryos since the 200 kd, 140 kd, 90-92 kd and 50 kd palladin isoforms were undetectable in the mutant mouse embryo brain. Contrary to the results of previous studies, we found no inhibition of the axonal extension in palladin-deficient mouse embryos. The cortical neurons derived from palladin-deficient mice also showed no significant difference in neurite outgrowth as compared with those from wild-type mice. Moreover, no difference was found in neurite outgrowth of neural stem cell derived-neurons between palladin-deficient mice and wild-type mice. In conclusion, these results suggest that palladin is dispensable for normal neurite outgrowth in mice.
Authors: Sarah H. Shahmoradian, Mauricio R. Galiano, Chengbiao Wu, Shurui Chen, Matthew N. Rasband, William C. Mobley, Wah Chiu.
Published: 02-12-2014
ABSTRACT
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.
25 Related JoVE Articles!
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
50598
Play Button
DiI-Labeling of DRG Neurons to Study Axonal Branching in a Whole Mount Preparation of Mouse Embryonic Spinal Cord
Authors: Hannes Schmidt, Fritz G. Rathjen.
Institutions: Max Delbrück Center for Molecular Medicine.
Here we present a technique to label the trajectories of small groups of DRG neurons into the embryonic spinal cord by diffusive staining using the lipophilic tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)1. The comparison of axonal pathways of wild-type with those of mouse lines in which genes are mutated allows testing for a functional role of candidate proteins in the control of axonal branching which is an essential mechanism in the wiring of the nervous system. Axonal branching enables an individual neuron to connect with multiple targets, thereby providing the physical basis for the parallel processing of information. Ramifications at intermediate target regions of axonal growth may be distinguished from terminal arborization. Furthermore, different modes of axonal branch formation may be classified depending on whether branching results from the activities of the growth cone (splitting or delayed branching) or from the budding of collaterals from the axon shaft in a process called interstitial branching2 (Fig. 1). The central projections of neurons from the DRG offer a useful experimental system to study both types of axonal branching: when their afferent axons reach the dorsal root entry zone (DREZ) of the spinal cord between embryonic days 10 to 13 (E10 - E13) they display a stereotyped pattern of T- or Y-shaped bifurcation. The two resulting daughter axons then proceed in rostral or caudal directions, respectively, at the dorsolateral margin of the cord and only after a waiting period collaterals sprout from these stem axons to penetrate the gray matter (interstitial branching) and project to relay neurons in specific laminae of the spinal cord where they further arborize (terminal branching)3. DiI tracings have revealed growth cones at the dorsal root entry zone of the spinal cord that appeared to be in the process of splitting suggesting that bifurcation is caused by splitting of the growth cone itself4 (Fig. 2), however, other options have been discussed as well5. This video demonstrates first how to dissect the spinal cord of E12.5 mice leaving the DRG attached. Following fixation of the specimen tiny amounts of DiI are applied to DRG using glass needles pulled from capillary tubes. After an incubation step, the labeled spinal cord is mounted as an inverted open-book preparation to analyze individual axons using fluorescence microscopy.
Neuroscience, Issue 58, neurons, axonal branching, DRG, Spinal cord, DiI labeling, cGMP signaling
3667
Play Button
Study Glial Cell Heterogeneity Influence on Axon Growth Using a New Coculture Method
Authors: Han-peng Xu, Lin Gou, Hong-Wei Dong.
Institutions: Cedars Sinai Medical Center, UCLA, Fourth Military Medical University, David Geffen School of Medicine, UCLA, Fourth Military Medical Univeristy.
In the central nervous system of all mammals, severed axons after injury are unable to regenerate to their original targets and functional recovery is very poor 1. The failure of axon regeneration is a combined result of several factors including the hostile glial cell environment, inhibitory myelin related molecules and decreased intrinsic neuron regenerative capacity 2. Astrocytes are the most predominant glial cell type in central nervous system and play important role in axon functions under physiology and pathology conditions 3. Contrast to the homologous oligodendrocytes, astrocytes are a heterogeneous cell population composed by different astrocyte subpopulations with diverse morphologies and gene expression 4. The functional significance of this heterogeneity, such as their influences on axon growth, is largely unknown. To study the glial cell, especially the function of astrocyte heterogeneity in neuron behavior, we established a new method by co-culturing high purified dorsal root ganglia neurons with glial cells obtained from the rat cortex. By this technique, we were able to directly compare neuron adhesion and axon growth on different astrocytes subpopulations under the same condition. In this report, we give the detailed protocol of this method for astrocytes isolation and culture, dorsal root ganglia neurons isolation and purification, and the co-culture of DRG neurons with astrocytes. This method could also be extended to other brain regions to study cellular or regional specific interaction between neurons and glial cells.
Neuroscience, Issue 43, Dorsal root ganglia, glial cell, heterogeneity, co-culture, regeneration, axon growth
2111
Play Button
Imaging Analysis of Neuron to Glia Interaction in Microfluidic Culture Platform (MCP)-based Neuronal Axon and Glia Co-culture System
Authors: Haruki Higashimori, Yongjie Yang.
Institutions: Tufts University, Tufts Sackler School of Graduate Biomedical Sciences.
Proper neuron to glia interaction is critical to physiological function of the central nervous system (CNS). This bidirectional communication is sophisticatedly mediated by specific signaling pathways between neuron and glia1,2 . Identification and characterization of these signaling pathways is essential to the understanding of how neuron to glia interaction shapes CNS physiology. Previously, neuron and glia mixed cultures have been widely utilized for testing and characterizing signaling pathways between neuron and glia. What we have learned from these preparations and other in vivo tools, however, has suggested that mutual signaling between neuron and glia often occurred in specific compartments within neurons (i.e., axon, dendrite, or soma)3. This makes it important to develop a new culture system that allows separation of neuronal compartments and specifically examines the interaction between glia and neuronal axons/dendrites. In addition, the conventional mixed culture system is not capable of differentiating the soluble factors and direct membrane contact signals between neuron and glia. Furthermore, the large quantity of neurons and glial cells in the conventional co-culture system lacks the resolution necessary to observe the interaction between a single axon and a glial cell. In this study, we describe a novel axon and glia co-culture system with the use of a microfluidic culture platform (MCP). In this co-culture system, neurons and glial cells are cultured in two separate chambers that are connected through multiple central channels. In this microfluidic culture platform, only neuronal processes (especially axons) can enter the glial side through the central channels. In combination with powerful fluorescent protein labeling, this system allows direct examination of signaling pathways between axonal/dendritic and glial interactions, such as axon-mediated transcriptional regulation in glia, glia-mediated receptor trafficking in neuronal terminals, and glia-mediated axon growth. The narrow diameter of the chamber also significantly prohibits the flow of the neuron-enriched medium into the glial chamber, facilitating probing of the direct membrane-protein interaction between axons/dendrites and glial surfaces.
Neuroscience, Issue 68, Molecular Biology, Cellular Biology, Biophysics, Microfluidics, Microfluidic culture platform, Compartmented culture, Neuron to glia signaling, neurons, glia, cell culture
4448
Play Button
Measurement of Tension Release During Laser Induced Axon Lesion to Evaluate Axonal Adhesion to the Substrate at Piconewton and Millisecond Resolution
Authors: Massimo Vassalli, Michele Basso, Francesco Difato.
Institutions: National Research Council of Italy, Università di Firenze, Istituto Italiano di Tecnologia.
The formation of functional connections in a developing neuronal network is influenced by extrinsic cues. The neurite growth of developing neurons is subject to chemical and mechanical signals, and the mechanisms by which it senses and responds to mechanical signals are poorly understood. Elucidating the role of forces in cell maturation will enable the design of scaffolds that can promote cell adhesion and cytoskeletal coupling to the substrate, and therefore improve the capacity of different neuronal types to regenerate after injury. Here, we describe a method to apply simultaneous force spectroscopy measurements during laser induced cell lesion. We measure tension release in the partially lesioned axon by simultaneous interferometric tracking of an optically trapped probe adhered to the membrane of the axon. Our experimental protocol detects the tension release with piconewton sensitivity, and the dynamic of the tension release at millisecond time resolution. Therefore, it offers a high-resolution method to study how the mechanical coupling between cells and substrates can be modulated by pharmacological treatment and/or by distinct mechanical properties of the substrate.
Bioengineering, Issue 75, Biophysics, Neuroscience, Cellular Biology, Biomedical Engineering, Engineering (General), Life Sciences (General), Physics (General), Axon, tension release, Laser dissector, optical tweezers, force spectroscopy, neurons, neurites, cytoskeleton, adhesion, cell culture, microscopy
50477
Play Button
Preparation of Neuronal Co-cultures with Single Cell Precision
Authors: Ngoc-Duy Dinh, Ya-Yu Chiang, Heike Hardelauf, Sarah Waide, Dirk Janasek, Jonathan West.
Institutions: ISAS, University College London, University of Southampton.
Microfluidic embodiments of the Campenot chamber have attracted great interest from the neuroscience community. These interconnected co-culture platforms can be used to investigate a variety of questions, spanning developmental and functional neurobiology to infection and disease propagation. However, conventional systems require significant cellular inputs (many thousands per compartment), inadequate for studying low abundance cells, such as primary dopaminergic substantia nigra, spiral ganglia, and Drosophilia melanogaster neurons, and impractical for high throughput experimentation. The dense cultures are also highly locally entangled, with few outgrowths (<10%) interconnecting the two cultures. In this paper straightforward microfluidic and patterning protocols are described which address these challenges: (i) a microfluidic single neuron arraying method, and (ii) a water masking method for plasma patterning biomaterial coatings to register neurons and promote outgrowth between compartments. Minimalistic neuronal co-cultures were prepared with high-level (>85%) intercompartment connectivity and can be used for high throughput neurobiology experiments with single cell precision.
Neuroscience, Issue 87, microfluidic arraying, single cell, biomaterial patterning, co-culture, compartmentalization, Alzheimer and Parkinson Diseases, neurite outgrowth, high throughput screening
51389
Play Button
Simulating Pancreatic Neuroplasticity: In Vitro Dual-neuron Plasticity Assay
Authors: Ihsan Ekin Demir, Elke Tieftrunk, Karl-Herbert Schäfer, Helmut Friess, Güralp O. Ceyhan.
Institutions: Technische Universität München, University of Applied Sciences Kaiserslautern/Zweibrücken.
Neuroplasticity is an inherent feature of the enteric nervous system and gastrointestinal (GI) innervation under pathological conditions. However, the pathophysiological role of neuroplasticity in GI disorders remains unknown. Novel experimental models which allow simulation and modulation of GI neuroplasticity may enable enhanced appreciation of the contribution of neuroplasticity in particular GI diseases such as pancreatic cancer (PCa) and chronic pancreatitis (CP). Here, we present a protocol for simulation of pancreatic neuroplasticity under in vitro conditions using newborn rat dorsal root ganglia (DRG) and myenteric plexus (MP) neurons. This dual-neuron approach not only permits monitoring of both organ-intrinsic and -extrinsic neuroplasticity, but also represents a valuable tool to assess neuronal and glial morphology and electrophysiology. Moreover, it allows functional modulation of supplied microenvironmental contents for studying their impact on neuroplasticity. Once established, the present neuroplasticity assay bears the potential of being applicable to the study of neuroplasticity in any GI organ.
Medicine, Issue 86, Autonomic Nervous System Diseases, Digestive System Neoplasms, Gastrointestinal Diseases, Pancreatic Diseases, Pancreatic Neoplasms, Pancreatitis, Pancreatic neuroplasticity, dorsal root ganglia, myenteric plexus, Morphometry, neurite density, neurite branching, perikaryonal hypertrophy, neuronal plasticity
51049
Play Button
A Neuronal and Astrocyte Co-Culture Assay for High Content Analysis of Neurotoxicity
Authors: Janet L Anderl, Stella Redpath, Andrew J Ball.
Institutions: Millipore Inc.
High Content Analysis (HCA) assays combine cells and detection reagents with automated imaging and powerful image analysis algorithms, allowing measurement of multiple cellular phenotypes within a single assay. In this study, we utilized HCA to develop a novel assay for neurotoxicity. Neurotoxicity assessment represents an important part of drug safety evaluation, as well as being a significant focus of environmental protection efforts. Additionally, neurotoxicity is also a well-accepted in vitro marker of the development of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Recently, the application of HCA to neuronal screening has been reported. By labeling neuronal cells with βIII-tubulin, HCA assays can provide high-throughput, non-subjective, quantitative measurements of parameters such as neuronal number, neurite count and neurite length, all of which can indicate neurotoxic effects. However, the role of astrocytes remains unexplored in these models. Astrocytes have an integral role in the maintenance of central nervous system (CNS) homeostasis, and are associated with both neuroprotection and neurodegradation when they are activated in response to toxic substances or disease states. GFAP is an intermediate filament protein expressed predominantly in the astrocytes of the CNS. Astrocytic activation (gliosis) leads to the upregulation of GFAP, commonly accompanied by astrocyte proliferation and hypertrophy. This process of reactive gliosis has been proposed as an early marker of damage to the nervous system. The traditional method for GFAP quantitation is by immunoassay. This approach is limited by an inability to provide information on cellular localization, morphology and cell number. We determined that HCA could be used to overcome these limitations and to simultaneously measure multiple features associated with gliosis - changes in GFAP expression, astrocyte hypertrophy, and astrocyte proliferation - within a single assay. In co-culture studies, astrocytes have been shown to protect neurons against several types of toxic insult and to critically influence neuronal survival. Recent studies have suggested that the use of astrocytes in an in vitro neurotoxicity test system may prove more relevant to human CNS structure and function than neuronal cells alone. Accordingly, we have developed an HCA assay for co-culture of neurons and astrocytes, comprised of protocols and validated, target-specific detection reagents for profiling βIII-tubulin and glial fibrillary acidic protein (GFAP). This assay enables simultaneous analysis of neurotoxicity, neurite outgrowth, gliosis, neuronal and astrocytic morphology and neuronal and astrocytic development in a wide variety of cellular models, representing a novel, non-subjective, high-throughput assay for neurotoxicity assessment. The assay holds great potential for enhanced detection of neurotoxicity and improved productivity in neuroscience research and drug discovery.
Neuroscience, Issue 27, high content screening, high content analysis, neurotoxicity, toxicity, drug discovery, neurite outgrowth, astrocytes, neurons, co-culture, immunofluorescence
1173
Play Button
Organelle Transport in Cultured Drosophila Cells: S2 Cell Line and Primary Neurons.
Authors: Wen Lu, Urko del Castillo, Vladimir I. Gelfand.
Institutions: Feinberg School of Medicine, Northwestern University, Basque Foundation for Science.
Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport.
Cellular Biology, Issue 81, Drosophila melanogaster, cytoskeleton, S2 cells, primary neuron culture, microtubules, kinesin, dynein, fluorescence microscopy, live imaging
50838
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
50716
Play Button
Genetic Manipulation of the Mouse Developing Hypothalamus through In utero Electroporation
Authors: Roberta Haddad-Tóvolli, Nora-Emöke Szabó, Xunlei Zhou, Gonzalo Alvarez-Bolado.
Institutions: University of Heidelberg , Institut de recherches cliniques de Montreal.
Genetic modification of specific regions of the developing mammalian brain is a very powerful experimental approach. However, generating novel mouse mutants is often frustratingly slow. It has been shown that access to the mouse brain developing in utero with reasonable post-operatory survival is possible. Still, results with this procedure have been reported almost exclusively for the most superficial and easily accessible part of the developing brain, i.e. the cortex. The thalamus, a narrower and more medial region, has proven more difficult to target. Transfection into deeper nuclei, especially those of the hypothalamus, is perhaps the most challenging and therefore very few results have been reported. Here we demonstrate a procedure to target the entire hypothalamic neuroepithelium or part of it (hypothalamic regions) for transfection through electroporation. The keys to our approach are longer narcosis times, injection in the third ventricle, and appropriate kind and positioning of the electrodes. Additionally, we show results of targeting and subsequent histological analysis of the most recessed hypothalamic nucleus, the mammillary body.
Neuroscience, Issue 77, Neurobiology, Genetics, Cellular Biology, Molecular Biology, Biomedical Engineering, Developmental Biology, Anatomy, Physiology, Embryo, Mammalian, Brain, Diencephalon, Hypothalamus, Genetic Techniques, Transfection, anesthesia, development, electrodes, electroporation, in utero, mammillary body, mouse, animal model
50412
Play Button
Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways
Authors: Stacy L. Fairbanks, Rebekah Vest, Saurabh Verma, Richard J. Traystman, Paco S. Herson.
Institutions: University of Colorado School of Medicine, Oregon Health & Science University, University of Colorado School of Medicine.
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Neuroscience, Issue 82, male, female, sex, neuronal culture, ischemia, cell death, neuroprotection
50758
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
2051
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
52115
Play Button
Dissection and Culture of Chick Statoacoustic Ganglion and Spinal Cord Explants in Collagen Gels for Neurite Outgrowth Assays
Authors: Kristen N. Fantetti, Donna M. Fekete.
Institutions: Purdue University.
The sensory organs of the chicken inner ear are innervated by the peripheral processes of statoacoustic ganglion (SAG) neurons. Sensory organ innervation depends on a combination of axon guidance cues1 and survival factors2 located along the trajectory of growing axons and/or within their sensory organ targets. For example, functional interference with a classic axon guidance signaling pathway, semaphorin-neuropilin, generated misrouting of otic axons3. Also, several growth factors expressed in the sensory targets of the inner ear, including Neurotrophin-3 (NT-3) and Brain Derived Neurotrophic Factor (BDNF), have been manipulated in transgenic animals, again leading to misrouting of SAG axons4. These same molecules promote both survival and neurite outgrowth of chick SAG neurons in vitro5,6. Here, we describe and demonstrate the in vitro method we are currently using to test the responsiveness of chick SAG neurites to soluble proteins, including known morphogens such as the Wnts, as well as growth factors that are important for promoting SAG neurite outgrowth and neuron survival. Using this model system, we hope to draw conclusions about the effects that secreted ligands can exert on SAG neuron survival and neurite outgrowth. SAG explants are dissected on embryonic day 4 (E4) and cultured in three-dimensional collagen gels under serum-free conditions for 24 hours. First, neurite responsiveness is tested by culturing explants with protein-supplemented medium. Then, to ask whether point sources of secreted ligands can have directional effects on neurite outgrowth, explants are co-cultured with protein-coated beads and assayed for the ability of the bead to locally promote or inhibit outgrowth. We also include a demonstration of the dissection (modified protocol7) and culture of E6 spinal cord explants. We routinely use spinal cord explants to confirm bioactivity of the proteins and protein-soaked beads, and to verify species cross-reactivity with chick tissue, under the same culture conditions as SAG explants. These in vitro assays are convenient for quickly screening for molecules that exert trophic (survival) or tropic (directional) effects on SAG neurons, especially before performing studies in vivo. Moreover, this method permits the testing of individual molecules under serum-free conditions, with high neuron survival8.
Neuroscience, Issue 58, chicken, dissection, morphogen, NT-3, neurite outgrowth, spinal cord, statoacoustic ganglion, Wnt5a
3600
Play Button
In utero Electroporation followed by Primary Neuronal Culture for Studying Gene Function in Subset of Cortical Neurons
Authors: Heather Rice, Seiyam Suth, William Cavanaugh, Jilin Bai, Tracy L. Young-Pearse.
Institutions: Brigham and Woman's Hospital and Harvard Medical School, University of Connecticut.
In vitro study of primary neuronal cultures allows for quantitative analyses of neurite outgrowth. In order to study how genetic alterations affect neuronal process outgrowth, shRNA or cDNA constructs can be introduced into primary neurons via chemical transfection or viral transduction. However, with primary cortical cells, a heterogeneous pool of cell types (glutamatergic neurons from different layers, inhibitory neurons, glial cells) are transfected using these methods. The use of in utero electroporation to introduce DNA constructs in the embryonic rodent cortex allows for certain subsets of cells to be targeted: while electroporation of early embryonic cortex targets deep layers of the cortex, electroporation at late embryonic timepoints targets more superficial layers. Further, differential placement of electrodes across the heads of individual embryos results in the targeting of dorsal-medial versus ventral-lateral regions of the cortex. Following electroporation, transfected cells can be dissected out, dissociated, and plated in vitro for quantitative analysis of neurite outgrowth. Here, we provide a step-by-step method to quantitatively measure neuronal process outgrowth in subsets of cortical cells. The basic protocol for in utero electroporation has been described in detail in two other JoVE articles from the Kriegstein lab 1, 2. We will provide an overview of our protocol for in utero electroporation, focusing on the most important details, followed by a description of our protocol that applies in utero electroporation to the study of gene function in neuronal process outgrowth.
Neuroscience, Issue 44, In utero electroporation, cortical neurons, neurite outgrowth, migration, neuroscience, development, brain
2103
Play Button
Mouse Embryonic Development in a Serum-free Whole Embryo Culture System
Authors: Vijay K. Kalaskar, James D. Lauderdale.
Institutions: University of Georgia, University of Georgia.
Mid-gestation stage mouse embryos were cultured utilizing a serum-free culture medium prepared from commercially available stem cell media supplements in an oxygenated rolling bottle culture system. Mouse embryos at E10.5 were carefully isolated from the uterus with intact yolk sac and in a process involving precise surgical maneuver the embryos were gently exteriorized from the yolk sac while maintaining the vascular continuity of the embryo with the yolk sac. Compared to embryos prepared with intact yolk sac or with the yolk sac removed, these embryos exhibited superior survival rate and developmental progression when cultured under similar conditions. We show that these mouse embryos, when cultured in a defined medium in an atmosphere of 95% O2 / 5% CO2 in a rolling bottle culture apparatus at 37 °​C for 16-40 hr, exhibit morphological growth and development comparable to the embryos developing in utero. We believe this method will be useful for investigators needing to utilize whole embryo culture to study signaling interactions important in embryonic organogenesis.
Developmental Biology, Issue 85, mouse embryo, mid-gestation, serum-free, defined media, roller culture, organogenesis, development
50803
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Isolation and Culture of Dissociated Sensory Neurons From Chick Embryos
Authors: Sarah Powell, Amrit Vinod, Michele L. Lemons.
Institutions: Assumption College.
Neurons are multifaceted cells that carry information essential for a variety of functions including sensation, motor movement, learning, and memory. Studying neurons in vivo can be challenging due to their complexity, their varied and dynamic environments, and technical limitations. For these reasons, studying neurons in vitro can prove beneficial to unravel the complex mysteries of neurons. The well-defined nature of cell culture models provides detailed control over environmental conditions and variables. Here we describe how to isolate, dissociate, and culture primary neurons from chick embryos. This technique is rapid, inexpensive, and generates robustly growing sensory neurons. The procedure consistently produces cultures that are highly enriched for neurons and has very few non-neuronal cells (less than 5%). Primary neurons do not adhere well to untreated glass or tissue culture plastic, therefore detailed procedures to create two distinct, well-defined laminin-containing substrata for neuronal plating are described. Cultured neurons are highly amenable to multiple cellular and molecular techniques, including co-immunoprecipitation, live cell imagining, RNAi, and immunocytochemistry. Procedures for double immunocytochemistry on these cultured neurons have been optimized and described here.
Neuroscience, Issue 91, dorsal root gangia, DRG, chicken, in vitro, avian, laminin-1, embryonic, primary
51991
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Culture of Mouse Neural Stem Cell Precursors
Authors: D. Spencer Currle, Jia Sheng Hu, Aaron Kolski-Andreaco, Edwin S. Monuki.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI), University of California, Irvine (UCI).
Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the specialization of the cells into particular cell types. This video demonstrates a technique used to disaggregate cells from the embryonic day 12.5 mouse dorsal forebrain. The dissection procedure includes harvesting E12.5 mouse embryos from the uterus, removing the "skin" with fine dissecting forceps and finally isolating pieces of cerebral cortex. Following the dissection, the tissue is digested and mechanically dissociated. The resuspended dissociated cells are then cultured in "stem cell" media that favors growth of neural stem cells.
Developmental Biology, Issue 2, brain, neuron, stem cells
152
Play Button
Organotypic Slice Culture of GFP-expressing Mouse Embryos for Real-time Imaging of Peripheral Nerve Outgrowth
Authors: Isabel Brachmann, Kerry L. Tucker.
Institutions: University of Heidelberg.
For many purposes, the cultivation of mouse embryos ex vivo as organotypic slices is desirable. For example, we employ a transgenic mouse line (tauGFP) in which the enhanced version of the green fluorescent protein (EGFP) is exclusively expressed in all neurons of the developing central and peripheral nervous system1, allowing the possibility to both film the innervation of the forelimb and to manipulate this process with pharmacological and genetic techniques2. The most critical parameter in the successful cultivation of such slice cultures is the method by which the slices are prepared. After extensive testing of a variety of methods, we have found that a vibratome is the best possible device to slice the embryos such that they routinely result in a culture that demonstrates viability over a period of several days, and most importantly, develops in an age-specific manner. For mid-gestation embryos, this includes the normal outgrowth of spinal nerves from the spinal cord and the dorsal root ganglia to their targets in the periphery and the proper determination of skeletal and muscle tissue. In this work, we present a method for processing whole embryos of embryonic day (E) E10 to E12 into 300 - 400 micrometer slices for cultivation in a standard tissue culture incubator, which can be studied for up to two days after slice preparation. Critical for the success of this approach is the use of a vibratome to slice each agarose-embedded embryo. This is followed by the cultivation of the slices upon Millicell culture membrane inserts placed upon a small volume of medium, resulting in an interface culture technique. One litter with an average of 7 embryos routinely produces at least 14 slices (2-3 slices of the forelimb region per embryo), which varies slightly due to the age of the embryos as well as to the thickness of the slices. About 80% of the cultured slices show nerve outgrowth, which can be measured througout the culturing period2. Representative results using the tauGFP mouse line are demonstrated.
Neuroscience, Issue 49, imaging, organotypic slice culture, GFP, spinal nerves, mouse, developmental biology, axonal pathfinding, DRG
2309
Play Button
BioMEMS: Forging New Collaborations Between Biologists and Engineers
Authors: Noo Li Jeon.
Institutions: University of California, Irvine (UCI).
This video describes the fabrication and use of a microfluidic device to culture central nervous system (CNS) neurons. This device is compatible with live-cell optical microscopy (DIC and phase contrast), as well as confocal and two photon microscopy approaches. This method uses precision-molded polymer parts to create miniature multi-compartment cell culture with fluidic isolation. The compartments are made of tiny channels with dimensions that are large enough to culture neurons in well-controlled fluidic microenvironments. Neurons can be cultured for 2-3 weeks within the device, after which they can be fixed and stained for immunocytochemistry. Axonal and somal compartments can be maintained fluidically isolated from each other by using a small hydrostatic pressure difference; this feature can be used to localize soluble insults to one compartment for up to 20 h after each medium change. Fluidic isolation enables collection of pure axonal fraction and biochemical analysis by PCR. The microfluidic device provides a highly adaptable platform for neuroscience research and may find applications in modeling CNS injury and neurodegeneration.
Neuroscience, Issue 9, Microfluidics, Bioengineering, Neuron
411
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Play Button
In Utero Intraventricular Injection and Electroporation of E15 Mouse Embryos
Authors: William Walantus, David Castaneda, Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
In-utero in-vivo injection and electroporation of the embryonic mouse neocortex provides a powerful tool for the manipulation of individual progenitors lining the walls of the lateral ventricle. This technique is now widely used to study the processes involved in corticogenesis by over-expressing or knocking down genes and observing the effects on cellular proliferation, migration, and differentiation. In comparison to traditional knockout strategies, in-utero electroporation provides a rapid means to manipulate a population of cells during a specific temporal window. In this video protocol we outline the experimental methodology for preparing mice for surgery, exposing the uterine horns through laporatomy, injecting DNA into the lateral ventricles of the developing embryo, electroporating DNA into the progenitors lining the lateral wall, and caring for animals post-surgery. Our laboratory uses this protocol for surgeries on E13-E16 mice, however, it is most commonly performed at E15, as shown in this video.
Neuroscience, Issue 6, Protocol, electroporation, Injection, Stem Cells, brain, transfection
239
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.