JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Visualisation of PCNA monoubiquitination in vivo by single pass spectral imaging FRET microscopy.
PUBLISHED: 01-14-2010
Monoubiquitination of the DNA sliding clamp, PCNA, plays a central role in the control of damage bypass during replication. By combining a widely-spaced FRET donor/acceptor pair (CFP and mRFP) with spectral imaging, we have developed a simple method for the visualisation of PCNA monoubiquitination in both fixed and live cells with a single imaging pass. We validate the method with genetic controls in the avian cell line DT40 and use it to examine the intracellular dynamics of PCNA ubiquitination following subnuclear UV irradiation. This general approach is likely to be of utility for live imaging of post-translational modifications of a wide range of substrates in vivo.
Authors: Julia U. Sprenger, Ruwan K. Perera, Konrad R. Götz, Viacheslav O. Nikolaev.
Published: 08-20-2012
Förster resonance energy transfer (FRET) microscopy continues to gain increasing interest as a technique for real-time monitoring of biochemical and signaling events in live cells and tissues. Compared to classical biochemical methods, this novel technology is characterized by high temporal and spatial resolution. FRET experiments use various genetically-encoded biosensors which can be expressed and imaged over time in situ or in vivo1-2. Typical biosensors can either report protein-protein interactions by measuring FRET between a fluorophore-tagged pair of proteins or conformational changes in a single protein which harbors donor and acceptor fluorophores interconnected with a binding moiety for a molecule of interest3-4. Bimolecular biosensors for protein-protein interactions include, for example, constructs designed to monitor G-protein activation in cells5, while the unimolecular sensors measuring conformational changes are widely used to image second messengers such as calcium6, cAMP7-8, inositol phosphates9 and cGMP10-11. Here we describe how to build a customized epifluorescence FRET imaging system from single commercially available components and how to control the whole setup using the Micro-Manager freeware. This simple but powerful instrument is designed for routine or more sophisticated FRET measurements in live cells. Acquired images are processed using self-written plug-ins to visualize changes in FRET ratio in real-time during any experiments before being stored in a graphics format compatible with the build-in ImageJ freeware used for subsequent data analysis. This low-cost system is characterized by high flexibility and can be successfully used to monitor various biochemical events and signaling molecules by a plethora of available FRET biosensors in live cells and tissues. As an example, we demonstrate how to use this imaging system to perform real-time monitoring of cAMP in live 293A cells upon stimulation with a β-adrenergic receptor agonist and blocker.
20 Related JoVE Articles!
Play Button
Imaging Protein-protein Interactions in vivo
Authors: Tom Seegar, William Barton.
Institutions: Virginia Commonwealth University.
Protein-protein interactions are a hallmark of all essential cellular processes. However, many of these interactions are transient, or energetically weak, preventing their identification and analysis through traditional biochemical methods such as co-immunoprecipitation. In this regard, the genetically encodable fluorescent proteins (GFP, RFP, etc.) and their associated overlapping fluorescence spectrum have revolutionized our ability to monitor weak interactions in vivo using Förster resonance energy transfer (FRET)1-3. Here, we detail our use of a FRET-based proximity assay for monitoring receptor-receptor interactions on the endothelial cell surface.
Cellular Biology, Issue 44, Förster resonance energy transfer (FRET), confocal microscopy, angiogenesis, fluorescent proteins, protein interactions, receptors
Play Button
Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique
Authors: Rebekka A.V. Schwab, Wojciech Niedzwiedz.
Institutions: University of Oxford , University of Warsaw.
Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope.
Molecular Biology, Issue 56, Genetics, DNA fiber analysis, replication speed, fork stalling, origin firing, termination
Play Button
Quantitative FRET (Förster Resonance Energy Transfer) Analysis for SENP1 Protease Kinetics Determination
Authors: Yan Liu, Jiayu Liao.
Institutions: University of California, Riverside .
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle 1,3,6,7. The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate 8-13. However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs. Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 9,10,14,15. The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate. We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate 16. We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x107 M-1s-1 of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.
Bioengineering, Issue 72, Biochemistry, Molecular Biology, Proteins, Quantitative FRET analysis, QFRET, enzyme kinetics analysis, SENP, SUMO, plasmid, protein expression, protein purification, protease assay, quantitative analysis
Play Button
Imaging G-protein Coupled Receptor (GPCR)-mediated Signaling Events that Control Chemotaxis of Dictyostelium Discoideum
Authors: Xuehua Xu, Tian Jin.
Institutions: National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Many eukaryotic cells can detect gradients of chemical signals in their environments and migrate accordingly 1. This guided cell migration is referred as chemotaxis, which is essential for various cells to carry out their functions such as trafficking of immune cells and patterning of neuronal cells 2, 3. A large family of G-protein coupled receptors (GPCRs) detects variable small peptides, known as chemokines, to direct cell migration in vivo 4. The final goal of chemotaxis research is to understand how a GPCR machinery senses chemokine gradients and controls signaling events leading to chemotaxis. To this end, we use imaging techniques to monitor, in real time, spatiotemporal concentrations of chemoattractants, cell movement in a gradient of chemoattractant, GPCR mediated activation of heterotrimeric G-protein, and intracellular signaling events involved in chemotaxis of eukaryotic cells 5-8. The simple eukaryotic organism, Dictyostelium discoideum, displays chemotaxic behaviors that are similar to those of leukocytes, and D. discoideum is a key model system for studying eukaryotic chemotaxis. As free-living amoebae, D. discoideum cells divide in rich medium. Upon starvation, cells enter a developmental program in which they aggregate through cAMP-mediated chemotaxis to form multicullular structures. Many components involved in chemotaxis to cAMP have been identified in D. discoideum. The binding of cAMP to a GPCR (cAR1) induces dissociation of heterotrimeric G-proteins into Gγ and Gβγ subunits 7, 9, 10. Gβγ subunits activate Ras, which in turn activates PI3K, converting PIP2 into PIP3 on the cell membrane 11-13. PIP3 serve as binding sites for proteins with pleckstrin Homology (PH) domains, thus recruiting these proteins to the membrane 14, 15. Activation of cAR1 receptors also controls the membrane associations of PTEN, which dephosphorylates PIP3 to PIP216, 17. The molecular mechanisms are evolutionarily conserved in chemokine GPCR-mediated chemotaxis of human cells such as neutrophils 18. We present following methods for studying chemotaxis of D. discoideum cells. 1. Preparation of chemotactic component cells. 2. Imaging chemotaxis of cells in a cAMP gradient. 3. Monitoring a GPCR induced activation of heterotrimeric G-protein in single live cells. 4. Imaging chemoattractant-triggered dynamic PIP3 responses in single live cells in real time. Our developed imaging methods can be applied to study chemotaxis of human leukocytes.
Molecular Biology, Issue 55, Chemotaxis, directional sensing, GPCR, PCR, G-proteins, signal transduction, Dictyostelium discoideum
Play Button
In vivo Electroporation of Morpholinos into the Adult Zebrafish Retina
Authors: Ryan Thummel, Travis J. Bailey, David R. Hyde.
Institutions: Wayne State University School of Medicine, University of Notre Dame , University of Notre Dame .
Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment 1-8. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection 2, 5, 9. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis 10. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts 11-14. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or "knockdown" protein expression for three to five days 12. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected into the vitreous of the adult zebrafish eye. Using electrode forceps, the morpholino is then electroporated into all the cell types of the dorsal and central retina. Lissamine provides the charge on the morpholino for electroporation and can be visualized to assess the presence of the morpholino in the retinal cells. Conditional knockdown in the retina can be used to examine the role of specific proteins at different times during regeneration. Additionally, this approach can be used to study the role of specific proteins in the undamaged retina, in such processes as visual transduction and visual processing in second order neurons.
Developmental Biology, Issue 58, Electroporation, morpholino, zebrafish, retina, regeneration
Play Button
Combining QD-FRET and Microfluidics to Monitor DNA Nanocomplex Self-Assembly in Real-Time
Authors: Yi-Ping Ho, Hunter H. Chen, Kam W. Leong, Tza-Huei Wang.
Institutions: Johns Hopkins University, Duke University, Johns Hopkins University.
Advances in genomics continue to fuel the development of therapeutics that can target pathogenesis at the cellular and molecular level. Typically functional inside the cell, nucleic acid-based therapeutics require an efficient intracellular delivery system. One widely adopted approach is to complex DNA with a gene carrier to form nanocomplexes via electrostatic self-assembly, facilitating cellular uptake of DNA while protecting it against degradation. The challenge lies in the rational design of efficient gene carriers, since premature dissociation or overly stable binding would be detrimental to the cellular uptake and therapeutic efficacy. Nanocomplexes synthesized by bulk mixing showed a diverse range of intracellular unpacking and trafficking behavior, which was attributed to the heterogeneity in size and stability of nanocomplexes. Such heterogeneity hinders the accurate assessment of the self-assembly kinetics and adds to the difficulty in correlating their physical properties to transfection efficiencies or bioactivities. We present a novel convergence of nanophotonics (i.e. QD-FRET) and microfluidics to characterize the real-time kinetics of the nanocomplex self-assembly under laminar flow. QD-FRET provides a highly sensitive indication of the onset of molecular interactions and quantitative measure throughout the synthesis process, whereas microfluidics offers a well-controlled microenvironment to spatially analyze the process with high temporal resolution (~milliseconds). For the model system of polymeric nanocomplexes, two distinct stages in the self-assembly process were captured by this analytic platform. The kinetic aspect of the self-assembly process obtained at the microscale would be particularly valuable for microreactor-based reactions which are relevant to many micro- and nano-scale applications. Further, nanocomplexes may be customized through proper design of microfludic devices, and the resulting QD-FRET polymeric DNA nanocomplexes could be readily applied for establishing structure-function relationships.
Biomedical Engineering, Issue 30, microfluidics, gene delivery, quantum dots, fluorescence resonance energy transfer, self-assembly, nanocomplexes
Play Button
Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Authors: Jason D. Vevea, Dana M. Alessi Wolken, Theresa C. Swayne, Adam B. White, Liza A. Pon.
Institutions: Columbia University, Columbia University.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.
Bioengineering, Issue 77, Microbiology, Cellular Biology, Molecular Biology, Biochemistry, life sciences, roGFP, redox-sensitive green fluorescent protein, GO-ATeam, ATP, FRET, ROS, mitochondria, biosensors, GFP, ImageJ, microscopy, confocal microscopy, cell, imaging
Play Button
FIBS-enabled Noninvasive Metabolic Profiling
Authors: Alireza Behjousiar, Antony Constantinou, Karen M. Polizzi, Cleo Kontoravdi.
Institutions: Imperial College London, Imperial College London.
In the era of computational biology, new high throughput experimental systems are necessary in order to populate and refine models so that they can be validated for predictive purposes. Ideally such systems would be low volume, which precludes sampling and destructive analyses when time course data are to be obtained. What is needed is an in situ monitoring tool which can report the necessary information in real-time and noninvasively. An interesting option is the use of fluorescent, protein-based in vivo biological sensors as reporters of intracellular concentrations. One particular class of in vivo biosensors that has found applications in metabolite quantification is based on Förster Resonance Energy Transfer (FRET) between two fluorescent proteins connected by a ligand binding domain. FRET integrated biological sensors (FIBS) are constitutively produced within the cell line, they have fast response times and their spectral characteristics change based on the concentration of metabolite within the cell. In this paper, the method for constructing Chinese hamster ovary (CHO) cell lines that constitutively express a FIBS for glucose and glutamine and calibrating the FIBS in vivo in batch cell culture in order to enable future quantification of intracellular metabolite concentration is described. Data from fed-batch CHO cell cultures demonstrates that the FIBS was able in each case to detect the resulting change in the intracellular concentration. Using the fluorescent signal from the FIBS and the previously constructed calibration curve, the intracellular concentration was accurately determined as confirmed by an independent enzymatic assay.
Bioengineering, Issue 84, metabolite monitoring, in vivo biosensors, in situ monitoring, mammalian cell culture, bioprocess engineering, medium formulation
Play Button
Stab Wound Injury of the Zebrafish Adult Telencephalon: A Method to Investigate Vertebrate Brain Neurogenesis and Regeneration
Authors: Rebecca Schmidt, Tanja Beil, Uwe Strähle, Sepand Rastegar.
Institutions: Karlsruhe Institute of Technology.
Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.
Neuroscience, Issue 90, zebrafish, adult neurogenesis, telencephalon regeneration, stab wound, central nervous system, adult neural stem cell
Play Button
A Step Beyond BRET: Fluorescence by Unbound Excitation from Luminescence (FUEL)
Authors: Joseph Dragavon, Carolyn Sinow, Alexandra D. Holland, Abdessalem Rekiki, Ioanna Theodorou, Chelsea Samson, Samantha Blazquez, Kelly L. Rogers, Régis Tournebize, Spencer L. Shorte.
Institutions: Institut Pasteur, Stanford School of Medicine, Institut d'Imagerie Biomédicale, Vanderbilt School of Medicine, The Walter & Eliza Hall Institute of Medical Research, Institut Pasteur, Institut Pasteur.
Fluorescence by Unbound Excitation from Luminescence (FUEL) is a radiative excitation-emission process that produces increased signal and contrast enhancement in vitro and in vivo. FUEL shares many of the same underlying principles as Bioluminescence Resonance Energy Transfer (BRET), yet greatly differs in the acceptable working distances between the luminescent source and the fluorescent entity. While BRET is effectively limited to a maximum of 2 times the Förster radius, commonly less than 14 nm, FUEL can occur at distances up to µm or even cm in the absence of an optical absorber. Here we expand upon the foundation and applicability of FUEL by reviewing the relevant principles behind the phenomenon and demonstrate its compatibility with a wide variety of fluorophores and fluorescent nanoparticles. Further, the utility of antibody-targeted FUEL is explored. The examples shown here provide evidence that FUEL can be utilized for applications where BRET is not possible, filling the spatial void that exists between BRET and traditional whole animal imaging.
Bioengineering, Issue 87, Biochemical Phenomena, Biochemical Processes, Energy Transfer, Fluorescence Resonance Energy Transfer (FRET), FUEL, BRET, CRET, Förster, bioluminescence, In vivo
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
Glutamine Flux Imaging Using Genetically Encoded Sensors
Authors: Julien Besnard, Sakiko Okumoto.
Institutions: Virginia Tech.
Genetically encoded sensors allow real-time monitoring of biological molecules at a subcellular resolution. A tremendous variety of such sensors for biological molecules became available in the past 15 years, some of which became indispensable tools that are used routinely in many laboratories. One of the exciting applications of genetically encoded sensors is the use of these sensors in investigating cellular transport processes. Properties of transporters such as kinetics and substrate specificities can be investigated at a cellular level, providing possibilities for cell-type specific analyses of transport activities. In this article, we will demonstrate how transporter dynamics can be observed using genetically encoded glutamine sensor as an example. Experimental design, technical details of the experimental settings, and considerations for post-experimental analyses will be discussed.
Bioengineering, Issue 89, glutamine sensors, FRET, metabolites, in vivo imaging, cellular transport, genetically encoded sensors
Play Button
Studying DNA Looping by Single-Molecule FRET
Authors: Tung T. Le, Harold D. Kim.
Institutions: Georgia Institute of Technology.
Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.
Molecular Biology, Issue 88, DNA looping, J factor, Single molecule, FRET, Gel mobility shift, DNA curvature, Worm-like chain
Play Button
In vivo Quantification of G Protein Coupled Receptor Interactions using Spectrally Resolved Two-photon Microscopy
Authors: Michael Stoneman, Deo Singh, Valerica Raicu.
Institutions: University of Wisconsin - Milwaukee, University of Wisconsin - Milwaukee.
The study of protein interactions in living cells is an important area of research because the information accumulated both benefits industrial applications as well as increases basic fundamental biological knowledge. Förster (Fluorescence) Resonance Energy Transfer (FRET) between a donor molecule in an electronically excited state and a nearby acceptor molecule has been frequently utilized for studies of protein-protein interactions in living cells. The proteins of interest are tagged with two different types of fluorescent probes and expressed in biological cells. The fluorescent probes are then excited, typically using laser light, and the spectral properties of the fluorescence emission emanating from the fluorescent probes is collected and analyzed. Information regarding the degree of the protein interactions is embedded in the spectral emission data. Typically, the cell must be scanned a number of times in order to accumulate enough spectral information to accurately quantify the extent of the protein interactions for each region of interest within the cell. However, the molecular composition of these regions may change during the course of the acquisition process, limiting the spatial determination of the quantitative values of the apparent FRET efficiencies to an average over entire cells. By means of a spectrally resolved two-photon microscope, we are able to obtain a full set of spectrally resolved images after only one complete excitation scan of the sample of interest. From this pixel-level spectral data, a map of FRET efficiencies throughout the cell is calculated. By applying a simple theory of FRET in oligomeric complexes to the experimentally obtained distribution of FRET efficiencies throughout the cell, a single spectrally resolved scan reveals stoichiometric and structural information about the oligomer complex under study. Here we describe the procedure of preparing biological cells (the yeast Saccharomyces cerevisiae) expressing membrane receptors (sterile 2 α-factor receptors) tagged with two different types of fluorescent probes. Furthermore, we illustrate critical factors involved in collecting fluorescence data using the spectrally resolved two-photon microscopy imaging system. The use of this protocol may be extended to study any type of protein which can be expressed in a living cell with a fluorescent marker attached to it.
Cellular Biology, Issue 47, Forster (Fluorescence) Resonance Energy Transfer (FRET), protein-protein interactions, protein complex, in vivo determinations, spectral resolution, two-photon microscopy, G protein-coupled receptor (GPCR), sterile 2 alpha-factor protein (Ste2p)
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
In vivo Neuronal Calcium Imaging in C. elegans
Authors: Samuel H. Chung, Lin Sun, Christopher V. Gabel.
Institutions: Boston University School of Medicine, Boston University Photonics Center.
The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon 1 and GCaMP 2 allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.
Developmental Biology, Issue 74, Physiology, Biophysics, Neurobiology, Cellular Biology, Molecular Biology, Anatomy, Developmental Biology, Biomedical Engineering, Medicine, Caenorhabditis elegans, C. elegans, Microscopy, Fluorescence, Neurosciences, calcium imaging, genetically encoded calcium indicators, cameleon, GCaMP, neuronal activity, time-lapse imaging, laser ablation, optical neurophysiology, neurophysiology, neurons, animal model
Play Button
Real-time Monitoring of Ligand-receptor Interactions with Fluorescence Resonance Energy Transfer
Authors: Navneet Dogra, Julia C. Reyes, Nishi Garg, Punit Kohli.
Institutions: Southern Illinois University.
FRET is a process whereby energy is non-radiatively transferred from an excited donor molecule to a ground-state acceptor molecule through long-range dipole-dipole interactions1. In the present sensing assay, we utilize an interesting property of PDA: blue-shift in the UV-Vis electronic absorption spectrum of PDA (Figure 1) after an analyte interacts with receptors attached to PDA2,3,4,7. This shift in the PDA absorption spectrum provides changes in the spectral overlap (J) between PDA (acceptor) and rhodamine (donor) that leads to changes in the FRET efficiency. Thus, the interactions between analyte (ligand) and receptors are detected through FRET between donor fluorophores and PDA. In particular, we show the sensing of a model protein molecule streptavidin. We also demonstrate the covalent-binding of bovine serum albumin (BSA) to the liposome surface with FRET mechanism. These interactions between the bilayer liposomes and protein molecules can be sensed in real-time. The proposed method is a general method for sensing small chemical and large biochemical molecules. Since fluorescence is intrinsically more sensitive than colorimetry, the detection limit of the assay can be in sub-nanomolar range or lower8. Further, PDA can act as a universal acceptor in FRET, which means that multiple sensors can be developed with PDA (acceptor) functionalized with donors and different receptors attached on the surface of PDA liposomes.
Biochemistry, Issue 66, Molecular Biology, Chemistry, Physics, Fluorescence Resonance Energy Transfer (FRET), Polydiacetylene (PDA), Biosensor, Liposome, Sensing
Play Button
Live Imaging of Drosophila Larval Neuroblasts
Authors: Dorothy A. Lerit, Karen M. Plevock, Nasser M. Rusan.
Institutions: National Institutes of Health.
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications.
Neuroscience, Issue 89, live imaging, Drosophila, neuroblast, stem cell, asymmetric division, centrosome, brain, cell cycle, mitosis
Play Button
Spectral Confocal Imaging of Fluorescently tagged Nicotinic Receptors in Knock-in Mice with Chronic Nicotine Administration
Authors: Anthony Renda, Raad Nashmi.
Institutions: University of Victoria .
Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain1. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain tissue1-3. Similarly, alterations in the glutamatergic GluN1 or GluA1 channels have been implicated in triggering sensitization to other addictive drugs such as cocaine, amphetamines and opiates4-6. Consequently, the ability to map and quantify distribution and expression patterns of specific ion channels is critically important to understanding the mechanisms of addiction. The study of brain region-specific effects of individual drugs was advanced by the advent of techniques such as radioactive ligands. However, the low spatial resolution of radioactive ligand binding prevents the ability to quantify ligand-gated ion channels in specific subtypes of neurons. Genetically encoded fluorescent reporters, such as green fluorescent protein (GFP) and its many color variants, have revolutionized the field of biology7.By genetically tagging a fluorescent reporter to an endogenous protein one can visualize proteins in vivo7-10. One advantage of fluorescently tagging proteins with a probe is the elimination of antibody use, which have issues of nonspecificity and accessibility to the target protein. We have used this strategy to fluorescently label nAChRs, which enabled the study of receptor assembly using Förster Resonance Energy Transfer (FRET) in transfected cultured cells11.More recently, we have used the knock-in approach to engineer mice with yellow fluorescent protein tagged α4 nAChR subunits (α4YFP), enabling precise quantification of the receptor ex vivo at submicrometer resolution in CNS neurons via spectral confocal microscopy12. The targeted fluorescent knock-in mutation is incorporated in the endogenous locus and under control of its native promoter, producing normal levels of expression and regulation of the receptor when compared to untagged receptors in wildtype mice. This knock-in approach can be extended to fluorescently tag other ion channels and offers a powerful approach of visualizing and quantifying receptors in the CNS. In this paper we describe a methodology to quantify changes in nAChR expression in specific CNS neurons after exposure to chronic nicotine. Our methods include mini-osmotic pump implantation, intracardiac perfusion fixation, imaging and analysis of fluorescently tagged nicotinic receptor subunits from α4YFP knock-in mice (Fig. 1). We have optimized the fixation technique to minimize autofluorescence from fixed brain tissue.We describe in detail our imaging methodology using a spectral confocal microscope in conjunction with a linear spectral unmixing algorithm to subtract autofluoresent signal in order to accurately obtain α4YFP fluorescence signal. Finally, we show results of chronic nicotine-induced upregulation of α4YFP receptors in the medial perforant path of the hippocampus.
Neuroscience, Issue 60, nicotine addiction, knock-in mice, spectral confocal imaging, yellow fluorescent protein, nicotinic acetylcholine receptors
Play Button
In vivo Visualization of Synaptic Vesicles Within Drosophila Larval Segmental Axons
Authors: Michelle L. Kuznicki, Shermali Gunawardena.
Institutions: SUNY-University at Buffalo.
Elucidating the mechanisms of axonal transport has shown to be very important in determining how defects in long distance transport affect different neurological diseases. Defects in this essential process can have detrimental effects on neuronal functioning and development. We have developed a dissection protocol that is designed to expose the Drosophila larval segmental nerves to view axonal transport in real time. We have adapted this protocol for live imaging from the one published by Hurd and Saxton (1996) used for immunolocalizatin of larval segmental nerves. Careful dissection and proper buffer conditions are critical for maximizing the lifespan of the dissected larvae. When properly done, dissected larvae have shown robust vesicle transport for 2-3 hours under physiological conditions. We use the UAS-GAL4 method 1 to express GFP-tagged APP or synaptotagmin vesicles within a single axon or many axons in larval segmental nerves by using different neuronal GAL4 drivers. Other fluorescently tagged markers, for example mitochrondria (MitoTracker) or lysosomes (LysoTracker), can be also applied to the larvae before viewing. GFP-vesicle movement and particle movement can be viewed simultaneously using separate wavelengths.
Neuroscience, Issue 44, Live imaging, Axonal transport, GFP-tagged vesicles
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.