JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model.
PLoS ONE
PUBLISHED: 01-12-2010
Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow-derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs.
Authors: Dongsu Park, Joel A. Spencer, Charles P. Lin, David T. Scadden.
Published: 05-23-2014
ABSTRACT
Bone turns over continuously and is highly regenerative following injury. Osteogenic stem/progenitor cells have long been hypothesized to exist, but in vivo demonstration of such cells has only recently been attained. Here, in vivo imaging techniques to investigate the role of endogenous osteogenic stem/progenitor cells (OSPCs) and their progeny in bone repair are provided. Using osteo-lineage cell tracing models and intravital imaging of induced microfractures in calvarial bone, OSPCs can be directly observed during the first few days after injury, in which critical events in the early repair process occur. Injury sites can be sequentially imaged revealing that OSPCs relocate to the injury, increase in number and differentiate into bone forming osteoblasts. These methods offer a means of investigating the role of stem cell-intrinsic and extrinsic molecular regulators for bone regeneration and repair.
18 Related JoVE Articles!
Play Button
Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
Authors: Razieh Karamzadeh, Mohamadreza Baghaban Eslaminejad, Reza Aflatoonian.
Institutions: Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
Developing wisdom teeth are easy-accessible source of stem cells during the adulthood which could be obtained by routine orthodontic treatments. Human pulp-derived stem cells (hDPSCs) possess high proliferation potential with multi-lineage differentiation capacity compare to the ordinary source of adult stem cells1-8; therefore, hDPSCs could be the good candidates for autologous transplantation in tissue engineering and regenerative medicine. Along with these benefits, possessing the mesenchymal stem cells (MSC) features, such as immunolodulatory effect, make hDPSCs more valuable, even in the case of allograft transplantation6,9,10. Therefore, the primary step for using this source of stem cells is to select the best protocol for isolating hDPSCs from pulp tissue. In order to achieve this goal, it is crucial to investigate the effect of various isolation conditions on different cellular behaviors, such as their common surface markers & also their differentiation capacity. Thus, here we separate human pulp tissue from impacted third molar teeth, and then used both existing protocols based on literature, for isolating hDPSCs,11-13i.e. enzymatic dissociation of pulp tissue (DPSC-ED) or outgrowth from tissue explants (DPSC-OG). In this regards, we tried to facilitate the isolation methods by using dental diamond disk. Then, these cells characterized in terms of stromal-associated Markers (CD73, CD90, CD105 & CD44), hematopoietic/endothelial Markers (CD34, CD45 & CD11b), perivascular marker, like CD146 and also STRO-1. Afterwards, these two protocols were compared based on the differentiation potency into odontoblasts by both quantitative polymerase chain reaction (QPCR) & Alizarin Red Staining. QPCR were used for the assessment of the expression of the mineralization-related genes (alkaline phosphatase; ALP, matrix extracellular phosphoglycoprotein; MEPE & dentin sialophosphoprotein; DSPP).14
Stem Cell Biology, Issue 69, Medicine, Developmental Biology, Cellular Biology, Bioengineering, Dental pulp tissue, Human third molar, Human dental pulp stem cells, hDPSC, Odontoblasts, Outgrown stem cells, MSC, differentiation
4372
Play Button
Using Quantitative Real-time PCR to Determine Donor Cell Engraftment in a Competitive Murine Bone Marrow Transplantation Model
Authors: Ningfei An, Yubin Kang.
Institutions: Medical University of South Carolina.
Murine bone marrow transplantation models provide an important tool in measuring hematopoietic stem cell (HSC) functions and determining genes/molecules that regulate HSCs. In these transplant model systems, the function of HSCs is determined by the ability of these cells to engraft and reconstitute lethally irradiated recipient mice. Commonly, the donor cell contribution/engraftment is measured by antibodies to donor- specific cell surface proteins using flow cytometry. However, this method heavily depends on the specificity and the ability of the cell surface marker to differentiate donor-derived cells from recipient-originated cells, which may not be available for all mouse strains. Considering the various backgrounds of genetically modified mouse strains in the market, this cell surface/ flow cytometry-based method has significant limitations especially in mouse strains that lack well-defined surface markers to separate donor cells from congenic recipient cells. Here, we reported a PCR-based technique to determine donor cell engraftment/contribution in transplant recipient mice. We transplanted male donor bone marrow HSCs to lethally irradiated congenic female mice. Peripheral blood samples were collected at different time points post transplantation. Bone marrow samples were obtained at the end of the experiments. Genomic DNA was isolated and the Y chromosome specific gene, Zfy1, was amplified using quantitative Real time PCR. The engraftment of male donor-derived cells in the female recipient mice was calculated against standard curve with known percentage of male vs. female DNAs. Bcl2 was used as a reference gene to normalize the total DNA amount. Our data suggested that this approach reliably determines donor cell engraftment and provides a useful, yet simple method in measuring hematopoietic cell reconstitution in murine bone marrow transplantation models. Our method can be routinely performed in most laboratories because no costly equipment such as flow cytometry is required.
Medicine, Issue 73, Biomedical Engineering, Stem Cell Biology, Genetics, Immunology, Anatomy, Physiology, Cellular Biology, Surgery, Y Chromosome, Hematopoietic Stem Cells, HSC, stem cells, Bone Marrow Transplantation, Real-Time Polymerase Chain Reaction, rtPCR, PCR, Chimerism, Y chromosome specific gene, graft, engraftment, isolation, transplantation, cell culture, murine model, animal model
50193
Play Button
Isolation and Enrichment of Rat Mesenchymal Stem Cells (MSCs) and Separation of Single-colony Derived MSCs
Authors: Linxia Zhang, Christina Chan.
Institutions: City of Hope Cancer Center.
MSCs are a population of adult stem cells that is a promising source for therapeutic applications. These cells can be isolated from the bone marrow and can be easily separated from the hematopoietic stem cells (HSCs) due to their plastic adherence. This protocol describes how to isolate MSCs from rat femurs and tibias. The isolated cells were further enriched against two MSCs surface markers CD54 and CD90 by magnetic cell sorting. Expression of surface markers CD54 and CD90 were then confirmed by flow cytometry analysis. HSC marker CD45 was also included to check if the sorted MSCs were depleted of HSCs. MSCs are naturally quite heterogeneous. There are subpopulations of cells that have different shapes, proliferation and differentiation abilities. These subpopulations all express the known MSCs markers and no unique marker has yet been identified for the different subpopulations. Therefore, an alternative approach to separate out the different subpopulations is using cloning cylinders to separate out single-colony derived cells. The cells derived from the single-colonies can then be cultured and evaluated separately.
Cellular Biology, Issue 37, mesenchymal stem cells, magnetic cell sorting, flow cytometry, cloning cylinder
1852
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
51963
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
50585
Play Button
In Vivo 4-Dimensional Tracking of Hematopoietic Stem and Progenitor Cells in Adult Mouse Calvarial Bone Marrow
Authors: Mark K. Scott, Olufolake Akinduro, Cristina Lo Celso.
Institutions: Imperial College London, Imperial College London.
Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood[1-2]. We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space.
Cellular Biology, Issue 91, hematopoietic stem cell, multiphoton microscopy, cell tracking, bone marrow niche, calvarium, intra-vital confocal microscopy, time-lapse imaging, multi-modal microscopy
51683
Play Button
In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy
Authors: Daniela Malide, Jean-Yves Métais, Cynthia E. Dunbar.
Institutions: NHLBI/NIH, NHLBI/NIH.
We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner.
Stem Cell Biology, Issue 90, LeGO imaging, clonal tracking, fluorescent proteins, confocal microscopy, multiphoton microscopy, hematopoiesis, lentiviral vectors, hematopoietic stem cells
51669
Play Button
Phenotypic Analysis and Isolation of Murine Hematopoietic Stem Cells and Lineage-committed Progenitors
Authors: Michela Frascoli, Michele Proietti, Fabio Grassi.
Institutions: Bellinzona (Switzerland), Universitá degli Studi di Milano.
The bone marrow is the principal site where HSCs and more mature blood cells lineage progenitors reside and differentiate in an adult organism. HSCs constitute a minute cell population of pluripotent cells capable of generating all blood cell lineages for a life-time1. The molecular dissection of HSCs homeostasis in the bone marrow has important implications in hematopoiesis, oncology and regenerative medicine. We describe the labeling protocol with fluorescent antibodies and the electronic gating procedure in flow cytometry to score hematopoietic progenitor subsets and HSCs distribution in individual mice (Fig. 1). In addition, we describe a method to extensively enrich hematopoietic progenitors as well as long-term (LT) and short term (ST) reconstituting HSCs from pooled bone marrow cell suspensions by magnetic enrichment of cells expressing c-Kit. The resulting cell preparation can be used to sort selected subsets for in vitro and in vivo functional studies (Fig. 2). Both trabecular osteoblasts2,3 and sinusoidal endothelium4 constitute functional niches supporting HSCs in the bone marrow. Several mechanisms in the osteoblastic niche, including a subset of N-cadherin+ osteoblasts3 and interaction of the receptor tyrosine kinase Tie2 expressed in HSCs with its ligand angiopoietin-15 concur in determining HSCs quiescence. "Hibernation" in the bone marrow is crucial to protect HSCs from replication and eventual exhaustion upon excessive cycling activity6. Exogenous stimuli acting on cells of the innate immune system such as Toll-like receptor ligands7 and interferon-α6 can also induce proliferation and differentiation of HSCs into lineage committed progenitors. Recently, a population of dormant mouse HSCs within the lin- c-Kit+ Sca-1+ CD150+ CD48- CD34- population has been described8. Sorting of cells based on CD34 expression from the hematopoietic progenitors-enriched cell suspension as described here allows the isolation of both quiescent self-renewing LT-HSCs and ST-HSCs9. A similar procedure based on depletion of lineage positive cells and sorting of LT-HSC with CD48 and Flk2 antibodies has been previously described10. In the present report we provide a protocol for the phenotypic characterization and ex vivo cell cycle analysis of hematopoietic progenitors, which can be useful for monitoring hematopoiesis in different physiological and pathological conditions. Moreover, we describe a FACS sorting procedure for HSCs, which can be used to define factors and mechanisms regulating their self-renewal, expansion and differentiation in cell biology and signal transduction assays as well as for transplantation.
Stem Cell Biology, Issue 65, Molecular Biology, Medicine, Hematopoiesis, hematopoietic stem cell, hematopoietic progenitors, bone marrow, flow cytometry
3736
Play Button
Femoral Bone Marrow Aspiration in Live Mice
Authors: Young Rock Chung, Eunhee Kim, Omar Abdel-Wahab.
Institutions: Memorial Sloan-Kettering Cancer Center.
Serial sampling of the cellular composition of bone marrow (BM) is a routine procedure critical to clinical hematology. This protocol describes a detailed step-by-step technical procedure for an analogous procedure in live mice which allows for serial characterization of cells present in the BM. This procedure facilitates studies aimed to detect the presence of exogenously administered cells within the BM of mice as would be done in xenograft studies for instance. Moreover, this procedure allows for the retrieval and characterization of cells enriched in the BM such as hematopoietic stem and progenitor cells (HSPCs) without sacrifice of mice. Given that the cellular composition of peripheral blood is not necessarily reflective of proportions and types of stem and progenitor cells present in the marrow, procedures which provide access to this compartment without requiring termination of the mice are very helpful. The use of femoral bone marrow aspiration is illustrated here for cytological analysis of marrow cells, flow cytometric characterization of the hematopoietic stem/progenitor compartment, and culture of sorted HSPCs obtained by femoral BM aspiration compared with conventional marrow harvest.
Medicine, Issue 89, Bone marrow, Leukemia, Hematopoiesis, Aspiration, Mouse Model, Hematopoietic Stem Cell
51660
Play Button
Quantitative Multispectral Analysis Following Fluorescent Tissue Transplant for Visualization of Cell Origins, Types, and Interactions
Authors: Erika L. Spaeth, Christopher M. Booth, Frank C. Marini.
Institutions: MD Anderson Cancer Center, Institute for Regenerative Medicine.
With the desire to understand the contributions of multiple cellular elements to the development of a complex tissue; such as the numerous cell types that participate in regenerating tissue, tumor formation, or vasculogenesis, we devised a multi-colored cellular transplant model of tumor development in which cell populations originate from different fluorescently colored reporter gene mice and are transplanted, engrafted or injected in and around a developing tumor. These colored cells are then recruited and incorporated into the tumor stroma. In order to quantitatively assess bone marrow derived tumor stromal cells, we transplanted GFP expressing transgenic whole bone marrow into lethally irradiated RFP expressing mice as approved by IACUC. 0ovarian tumors that were orthotopically injected into the transplanted mice were excised 6-8 weeks post engraftment and analyzed for bone marrow marker of origin (GFP) as well as antibody markers to detect tumor associated stroma using multispectral imaging techniques. We then adapted a methodology we call MIMicc- Multispectral Interrogation of Multiplexed cellular compositions, using multispectral unmixing of fluoroprobes to quantitatively assess which labeled cell came from which starting populations (based on original reporter gene labels), and as our ability to unmix 4, 5, 6 or more spectra per slide increases, we've added additional immunohistochemistry associated with cell lineages or differentiation to increase precision. Utilizing software to detect co-localized multiplexed-fluorescent signals, tumor stromal populations can be traced, enumerated and characterized based on marker staining.1
Medicine, Issue 79, Immunology, Medicine, Cellular Biology, Molecular Biology, Genetics, Anatomy, Physiology, Biomedical Engineering, Immunohistochemistry (IHC), Microscopy, Fluorescence, Regeneration, Cellular Microenvironment, Tumor Microenvironment, Cell Biology, Investigative Techniques, Biological Phenomena, Mesenchymal stem cells (MSC), Tumor/Cancer associated fibroblasts (TAF/CAF), transgenic mouse model, regenerative medicine, wound healing, cancer
50385
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
50959
Play Button
A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies
Authors: Mukti R. Parikh, Andrew R. Belch, Linda M Pilarski, Julia Kirshner.
Institutions: Purdue University, University of Alberta, Cross Cancer Institute.
Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions.
Medicine, Issue 85, extracellular matrix, 3D culture, bone marrow, hematological malignancies, primary cell culture, tumor microenvironment
50947
Play Button
Identifying DNA Mutations in Purified Hematopoietic Stem/Progenitor Cells
Authors: Ziming Cheng, Ting Zhou, Azhar Merchant, Thomas J. Prihoda, Brian L. Wickes, Guogang Xu, Christi A. Walter, Vivienne I. Rebel.
Institutions: UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio.
In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases. LacI transgenic mice carry a recoverable λ phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of β-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation. The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system.
Infection, Issue 84, In vivo mutagenesis, hematopoietic stem/progenitor cells, LacI mouse model, DNA mutations, E. coli
50752
Play Button
Reaggregate Thymus Cultures
Authors: Andrea White, Eric Jenkinson, Graham Anderson.
Institutions: University of Birmingham .
Stromal cells within lymphoid tissues are organized into three-dimensional structures that provide a scaffold that is thought to control the migration and development of haemopoeitic cells. Importantly, the maintenance of this three-dimensional organization appears to be critical for normal stromal cell function, with two-dimensional monolayer cultures often being shown to be capable of supporting only individual fragments of lymphoid tissue function. In the thymus, complex networks of cortical and medullary epithelial cells act as a framework that controls the recruitment, proliferation, differentiation and survival of lymphoid progenitors as they undergo the multi-stage process of intrathymic T-cell development. Understanding the functional role of individual stromal compartments in the thymus is essential in determining how the thymus imposes self/non-self discrimination. Here we describe a technique in which we exploit the plasticity of fetal tissues to re-associate into intact three-dimensional structures in vitro, following their enzymatic disaggregation. The dissociation of fetal thymus lobes into heterogeneous cellular mixtures, followed by their separation into individual cellular components, is then combined with the in vitro re-association of these desired cell types into three-dimensional reaggregate structures at defined ratios, thereby providing an opportunity to investigate particular aspects of T-cell development under defined cellular conditions. (This article is based on work first reported Methods in Molecular Biology 2007, Vol. 380 pages 185-196).
Immunology, Issue 18, Springer Protocols, Thymus, 2-dGuo, Thymus Organ Cultures, Immune Tolerance, Positive and Negative Selection, Lymphoid Development
905
Play Button
Isolation and Transplantation of Hematopoietic Stem Cells (HSCs)
Authors: Cristina Lo Celso, David Scadden.
Institutions: Harvard Medical School.
Cellular Biology, Issue 2, HSC, stem cells, bone marrow
157
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Play Button
In situ Imaging of the Mouse Thymus Using 2-Photon Microscopy
Authors: Ena Ladi, Paul Herzmark, Ellen Robey.
Institutions: University of California, Berkeley.
Two-photon Microscopy (TPM) enables us to image deep into the thymus and document the events that are important for thymocyte development. To follow the migration of individuals in a crowd of thymocytes , we generate neonatal chimeras where less than one percent of the thymocytes are derived from a donor that is transgenic for a ubiquitously express fluorescent protein. To generate these partial hematopoetic chimeras, neonatal recipients are injected with bone marrow between 3-7 days of age. After 4-6 weeks, the mouse is sacrificed and the thymus is carefully dissected and bissected preserving the architecture of the tissue that will be imaged. The thymus is glued onto a coverslip in preparation for ex vivo imaging by TPM. During imaging the thymus is kept in DMEM without phenol red that is perfused with 95% oxygen and 5% carbon dioxide and warmed to 37°C. Using this approach, we can study the events required for the generation of a diverse T cell repertoire.
Immunology, Issue 11, 2-photon microscopy, neonatal chimera, adoptive transfer, thymus
652
Play Button
Isolation and Analysis of Hematopoietic Stem Cells from the Placenta
Authors: Christos Gekas, Katrin E. Rhodes, Hanna K. A. Mikkola.
Institutions: University of California, Los Angeles.
Hematopoietic stem cells (HSCs) have the ability to self-renew and generate all cell types of the blood lineages throughout the lifetime of an individual. All HSCs emerge during embryonic development, after which their pool size is maintained by self-renewing cell divisions. Identifying the anatomical origin of HSCs and the critical developmental events regulating the process of HSC development has been complicated as many anatomical sites participate during fetal hematopoiesis. Recently, we identified the placenta as a major hematopoietic organ where HSCs are generated and expanded in unique microenvironmental niches (Gekas, et al 2005, Rhodes, et al 2008). Consequently, the placenta is an important source of HSCs during their emergence and initial expansion. In this article, we show dissection techniques for the isolation of murine placenta from E10.5 and E12.5 embryos, corresponding to the developmental stages of initiation of HSCs and the peak in the size of the HSC pool in the placenta, respectively. In addition, we present an optimized protocol for enzymatic and mechanical dissociation of placental tissue into single-cell suspension for use in flow cytometry or functional assays. We have found that use of collagenase for single-cell suspension of placenta gives sufficient yields of HSCs. An important factor affecting HSC yield from the placenta is the degree of mechanical dissociation prior to, and duration of, enzymatic treatment. We also provide a protocol for the preparation of fixed-frozen placental tissue sections for the visualization of developing HSCs by immunohistochemistry in their precise cellular niches. As hematopoietic specific antigens are not preserved during preparation of paraffin embedded sections, we routinely use fixed frozen sections for localizing placental HSCs and progenitors.
Cell Biology, Issue 16, hematopoietic stem cell (HSC), placenta, fetal, dissection, collagenase, fixed-frozen sections, immunohistochemistry
742
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.