JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Zsyntax: a formal language for molecular biology with projected applications in text mining and biological prediction.
PLoS ONE
PUBLISHED: 01-27-2010
We propose a formal language that allows for transposing biological information precisely and rigorously into machine-readable information. This language, which we call Zsyntax (where Z stands for the Greek word zetaomegaeta, life), is grounded on a particular type of non-classical logic, and it can be used to write algorithms and computer programs. We present it as a first step towards a comprehensive formal language for molecular biology in which any biological process can be written and analyzed as a sort of logical "deduction". Moreover, we illustrate the potential value of this language, both in the field of text mining and in that of biological prediction.
ABSTRACT
One of the defining characteristics of autism spectrum disorder (ASD) is difficulty with language and communication.1 Children with ASD's onset of speaking is usually delayed, and many children with ASD consistently produce language less frequently and of lower lexical and grammatical complexity than their typically developing (TD) peers.6,8,12,23 However, children with ASD also exhibit a significant social deficit, and researchers and clinicians continue to debate the extent to which the deficits in social interaction account for or contribute to the deficits in language production.5,14,19,25 Standardized assessments of language in children with ASD usually do include a comprehension component; however, many such comprehension tasks assess just one aspect of language (e.g., vocabulary),5 or include a significant motor component (e.g., pointing, act-out), and/or require children to deliberately choose between a number of alternatives. These last two behaviors are known to also be challenging to children with ASD.7,12,13,16 We present a method which can assess the language comprehension of young typically developing children (9-36 months) and children with autism.2,4,9,11,22 This method, Portable Intermodal Preferential Looking (P-IPL), projects side-by-side video images from a laptop onto a portable screen. The video images are paired first with a 'baseline' (nondirecting) audio, and then presented again paired with a 'test' linguistic audio that matches only one of the video images. Children's eye movements while watching the video are filmed and later coded. Children who understand the linguistic audio will look more quickly to, and longer at, the video that matches the linguistic audio.2,4,11,18,22,26 This paradigm includes a number of components that have recently been miniaturized (projector, camcorder, digitizer) to enable portability and easy setup in children's homes. This is a crucial point for assessing young children with ASD, who are frequently uncomfortable in new (e.g., laboratory) settings. Videos can be created to assess a wide range of specific components of linguistic knowledge, such as Subject-Verb-Object word order, wh-questions, and tense/aspect suffixes on verbs; videos can also assess principles of word learning such as a noun bias, a shape bias, and syntactic bootstrapping.10,14,17,21,24 Videos include characters and speech that are visually and acoustically salient and well tolerated by children with ASD.
21 Related JoVE Articles!
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
3259
Play Button
RNA Secondary Structure Prediction Using High-throughput SHAPE
Authors: Sabrina Lusvarghi, Joanna Sztuba-Solinska, Katarzyna J. Purzycka, Jason W. Rausch, Stuart F.J. Le Grice.
Institutions: Frederick National Laboratory for Cancer Research.
Understanding the function of RNA involved in biological processes requires a thorough knowledge of RNA structure. Toward this end, the methodology dubbed "high-throughput selective 2' hydroxyl acylation analyzed by primer extension", or SHAPE, allows prediction of RNA secondary structure with single nucleotide resolution. This approach utilizes chemical probing agents that preferentially acylate single stranded or flexible regions of RNA in aqueous solution. Sites of chemical modification are detected by reverse transcription of the modified RNA, and the products of this reaction are fractionated by automated capillary electrophoresis (CE). Since reverse transcriptase pauses at those RNA nucleotides modified by the SHAPE reagents, the resulting cDNA library indirectly maps those ribonucleotides that are single stranded in the context of the folded RNA. Using ShapeFinder software, the electropherograms produced by automated CE are processed and converted into nucleotide reactivity tables that are themselves converted into pseudo-energy constraints used in the RNAStructure (v5.3) prediction algorithm. The two-dimensional RNA structures obtained by combining SHAPE probing with in silico RNA secondary structure prediction have been found to be far more accurate than structures obtained using either method alone.
Genetics, Issue 75, Molecular Biology, Biochemistry, Virology, Cancer Biology, Medicine, Genomics, Nucleic Acid Probes, RNA Probes, RNA, High-throughput SHAPE, Capillary electrophoresis, RNA structure, RNA probing, RNA folding, secondary structure, DNA, nucleic acids, electropherogram, synthesis, transcription, high throughput, sequencing
50243
Play Button
An Analytical Tool-box for Comprehensive Biochemical, Structural and Transcriptome Evaluation of Oral Biofilms Mediated by Mutans Streptococci
Authors: Marlise I. Klein, Jin Xiao, Arne Heydorn, Hyun Koo.
Institutions: University of Rochester Medical Center, Sichuan University, Glostrup Hospital, Glostrup, Denmark, University of Rochester Medical Center.
Biofilms are highly dynamic, organized and structured communities of microbial cells enmeshed in an extracellular matrix of variable density and composition 1, 2. In general, biofilms develop from initial microbial attachment on a surface followed by formation of cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which occur in a complex extracellular matrix. The majority of biofilm matrices harbor exopolysaccharides (EPS), and dental biofilms are no exception; especially those associated with caries disease, which are mostly mediated by mutans streptococci 3. The EPS are synthesized by microorganisms (S. mutans, a key contributor) by means of extracellular enzymes, such as glucosyltransferases using sucrose primarily as substrate 3. Studies of biofilms formed on tooth surfaces are particularly challenging owing to their constant exposure to environmental challenges associated with complex diet-host-microbial interactions occurring in the oral cavity. Better understanding of the dynamic changes of the structural organization and composition of the matrix, physiology and transcriptome/proteome profile of biofilm-cells in response to these complex interactions would further advance the current knowledge of how oral biofilms modulate pathogenicity. Therefore, we have developed an analytical tool-box to facilitate biofilm analysis at structural, biochemical and molecular levels by combining commonly available and novel techniques with custom-made software for data analysis. Standard analytical (colorimetric assays, RT-qPCR and microarrays) and novel fluorescence techniques (for simultaneous labeling of bacteria and EPS) were integrated with specific software for data analysis to address the complex nature of oral biofilm research. The tool-box is comprised of 4 distinct but interconnected steps (Figure 1): 1) Bioassays, 2) Raw Data Input, 3) Data Processing, and 4) Data Analysis. We used our in vitro biofilm model and specific experimental conditions to demonstrate the usefulness and flexibility of the tool-box. The biofilm model is simple, reproducible and multiple replicates of a single experiment can be done simultaneously 4, 5. Moreover, it allows temporal evaluation, inclusion of various microbial species 5 and assessment of the effects of distinct experimental conditions (e.g. treatments 6; comparison of knockout mutants vs. parental strain 5; carbohydrates availability 7). Here, we describe two specific components of the tool-box, including (i) new software for microarray data mining/organization (MDV) and fluorescence imaging analysis (DUOSTAT), and (ii) in situ EPS-labeling. We also provide an experimental case showing how the tool-box can assist with biofilms analysis, data organization, integration and interpretation.
Microbiology, Issue 47, Extracellular matrix, polysaccharides, biofilm, mutans streptococci, glucosyltransferases, confocal fluorescence, microarray
2512
Play Button
Designing Silk-silk Protein Alloy Materials for Biomedical Applications
Authors: Xiao Hu, Solomon Duki, Joseph Forys, Jeffrey Hettinger, Justin Buchicchio, Tabbetha Dobbins, Catherine Yang.
Institutions: Rowan University, Rowan University, Cooper Medical School of Rowan University, Rowan University.
Fibrous proteins display different sequences and structures that have been used for various applications in biomedical fields such as biosensors, nanomedicine, tissue regeneration, and drug delivery. Designing materials based on the molecular-scale interactions between these proteins will help generate new multifunctional protein alloy biomaterials with tunable properties. Such alloy material systems also provide advantages in comparison to traditional synthetic polymers due to the materials biodegradability, biocompatibility, and tenability in the body. This article used the protein blends of wild tussah silk (Antheraea pernyi) and domestic mulberry silk (Bombyx mori) as an example to provide useful protocols regarding these topics, including how to predict protein-protein interactions by computational methods, how to produce protein alloy solutions, how to verify alloy systems by thermal analysis, and how to fabricate variable alloy materials including optical materials with diffraction gratings, electric materials with circuits coatings, and pharmaceutical materials for drug release and delivery. These methods can provide important information for designing the next generation multifunctional biomaterials based on different protein alloys.
Bioengineering, Issue 90, protein alloys, biomaterials, biomedical, silk blends, computational simulation, implantable electronic devices
50891
Play Button
Waste Water Derived Electroactive Microbial Biofilms: Growth, Maintenance, and Basic Characterization
Authors: Carla Gimkiewicz, Falk Harnisch.
Institutions: UFZ - Helmholtz-Centre for Environmental Research.
The growth of anodic electroactive microbial biofilms from waste water inocula in a fed-batch reactor is demonstrated using a three-electrode setup controlled by a potentiostat. Thereby the use of potentiostats allows an exact adjustment of the electrode potential and ensures reproducible microbial culturing conditions. During growth the current production is monitored using chronoamperometry (CA). Based on these data the maximum current density (jmax) and the coulombic efficiency (CE) are discussed as measures for characterization of the bioelectrocatalytic performance. Cyclic voltammetry (CV), a nondestructive, i.e. noninvasive, method, is used to study the extracellular electron transfer (EET) of electroactive bacteria. CV measurements are performed on anodic biofilm electrodes in the presence of the microbial substrate, i.e. turnover conditions, and in the absence of the substrate, i.e. nonturnover conditions, using different scan rates. Subsequently, data analysis is exemplified and fundamental thermodynamic parameters of the microbial EET are derived and explained: peak potential (Ep), peak current density (jp), formal potential (Ef) and peak separation (ΔEp). Additionally the limits of the method and the state-of the art data analysis are addressed. Thereby this video-article shall provide a guide for the basic experimental steps and the fundamental data analysis.
Environmental Sciences, Issue 82, Electrochemistry, Microbial fuel cell, microbial bioelectrochemical system, cyclic voltammetry, electroactive bacteria, microbial bioelectrochemistry, bioelectrocatalysis
50800
Play Button
Measurement Of Neuromagnetic Brain Function In Pre-school Children With Custom Sized MEG
Authors: Graciela Tesan, Blake W. Johnson, Melanie Reid, Rosalind Thornton, Stephen Crain.
Institutions: Macquarie University.
Magnetoencephalography is a technique that detects magnetic fields associated with cortical activity [1]. The electrophysiological activity of the brain generates electric fields - that can be recorded using electroencephalography (EEG)- and their concomitant magnetic fields - detected by MEG. MEG signals are detected by specialized sensors known as superconducting quantum interference devices (SQUIDs). Superconducting sensors require cooling with liquid helium at -270 °C. They are contained inside a vacumm-insulated helmet called a dewar, which is filled with liquid. SQUIDS are placed in fixed positions inside the helmet dewar in the helium coolant, and a subject's head is placed inside the helmet dewar for MEG measurements. The helmet dewar must be sized to satisfy opposing constraints. Clearly, it must be large enough to fit most or all of the heads in the population that will be studied. However, the helmet must also be small enough to keep most of the SQUID sensors within range of the tiny cerebral fields that they are to measure. Conventional whole-head MEG systems are designed to accommodate more than 90% of adult heads. However adult systems are not well suited for measuring brain function in pre-school chidren whose heads have a radius several cm smaller than adults. The KIT-Macquarie Brain Research Laboratory at Macquarie University uses a MEG system custom sized to fit the heads of pre-school children. This child system has 64 first-order axial gradiometers with a 50 mm baseline[2] and is contained inside a magnetically-shielded room (MSR) together with a conventional adult-sized MEG system [3,4]. There are three main advantages of the customized helmet dewar for studying children. First, the smaller radius of the sensor configuration brings the SQUID sensors into range of the neuromagnetic signals of children's heads. Second, the smaller helmet allows full insertion of a child's head into the dewar. Full insertion is prevented in adult dewar helmets because of the smaller crown to shoulder distance in children. These two factors are fundamental in recording brain activity using MEG because neuromagnetic signals attenuate rapidly with distance. Third, the customized child helmet aids in the symmetric positioning of the head and limits the freedom of movement of the child's head within the dewar. When used with a protocol that aligns the requirements of data collection with the motivational and behavioral capacities of children, these features significantly facilitate setup, positioning, and measurement of MEG signals.
Neuroscience, Issue 36, Magnetoencephalography, Pediatrics, Brain Mapping, Language, Brain Development, Cognitive Neuroscience, Language Acquisition, Linguistics
1693
Play Button
Making Sense of Listening: The IMAP Test Battery
Authors: Johanna G. Barry, Melanie A. Ferguson, David R. Moore.
Institutions: MRC Institute of Hearing Research, National Biomedical Research Unit in Hearing.
The ability to hear is only the first step towards making sense of the range of information contained in an auditory signal. Of equal importance are the abilities to extract and use the information encoded in the auditory signal. We refer to these as listening skills (or auditory processing AP). Deficits in these skills are associated with delayed language and literacy development, though the nature of the relevant deficits and their causal connection with these delays is hotly debated. When a child is referred to a health professional with normal hearing and unexplained difficulties in listening, or associated delays in language or literacy development, they should ideally be assessed with a combination of psychoacoustic (AP) tests, suitable for children and for use in a clinic, together with cognitive tests to measure attention, working memory, IQ, and language skills. Such a detailed examination needs to be relatively short and within the technical capability of any suitably qualified professional. Current tests for the presence of AP deficits tend to be poorly constructed and inadequately validated within the normal population. They have little or no reference to the presenting symptoms of the child, and typically include a linguistic component. Poor performance may thus reflect problems with language rather than with AP. To assist in the assessment of children with listening difficulties, pediatric audiologists need a single, standardized child-appropriate test battery based on the use of language-free stimuli. We present the IMAP test battery which was developed at the MRC Institute of Hearing Research to supplement tests currently used to investigate cases of suspected AP deficits. IMAP assesses a range of relevant auditory and cognitive skills and takes about one hour to complete. It has been standardized in 1500 normally-hearing children from across the UK, aged 6-11 years. Since its development, it has been successfully used in a number of large scale studies both in the UK and the USA. IMAP provides measures for separating out sensory from cognitive contributions to hearing. It further limits confounds due to procedural effects by presenting tests in a child-friendly game-format. Stimulus-generation, management of test protocols and control of test presentation is mediated by the IHR-STAR software platform. This provides a standardized methodology for a range of applications and ensures replicable procedures across testers. IHR-STAR provides a flexible, user-programmable environment that currently has additional applications for hearing screening, mapping cochlear implant electrodes, and academic research or teaching.
Neuroscience, Issue 44, Listening skills, auditory processing, auditory psychophysics, clinical assessment, child-friendly testing
2139
Play Button
Assessment of Cerebral Lateralization in Children using Functional Transcranial Doppler Ultrasound (fTCD)
Authors: Dorothy V. M. Bishop, Nicholas A. Badcock, Georgina Holt.
Institutions: University of Oxford.
There are many unanswered questions about cerebral lateralization. In particular, it remains unclear which aspects of language and nonverbal ability are lateralized, whether there are any disadvantages associated with atypical patterns of cerebral lateralization, and whether cerebral lateralization develops with age. In the past, researchers interested in these questions tended to use handedness as a proxy measure for cerebral lateralization, but this is unsatisfactory because handedness is only a weak and indirect indicator of laterality of cognitive functions1. Other methods, such as fMRI, are expensive for large-scale studies, and not always feasible with children2. Here we will describe the use of functional transcranial Doppler ultrasound (fTCD) as a cost-effective, non-invasive and reliable method for assessing cerebral lateralization. The procedure involves measuring blood flow in the middle cerebral artery via an ultrasound probe placed just in front of the ear. Our work builds on work by Rune Aaslid, who co-introduced TCD in 1982, and Stefan Knecht, Michael Deppe and their colleagues at the University of Münster, who pioneered the use of simultaneous measurements of left- and right middle cerebral artery blood flow, and devised a method of correcting for heart beat activity. This made it possible to see a clear increase in left-sided blood flow during language generation, with lateralization agreeing well with that obtained using other methods3. The middle cerebral artery has a very wide vascular territory (see Figure 1) and the method does not provide useful information about localization within a hemisphere. Our experience suggests it is particularly sensitive to tasks that involve explicit or implicit speech production. The 'gold standard' task is a word generation task (e.g. think of as many words as you can that begin with the letter 'B') 4, but this is not suitable for young children and others with limited literacy skills. Compared with other brain imaging methods, fTCD is relatively unaffected by movement artefacts from speaking, and so we are able to get a reliable result from tasks that involve describing pictures aloud5,6. Accordingly, we have developed a child-friendly task that involves looking at video-clips that tell a story, and then describing what was seen.
Neuroscience, Issue 43, functional transcranial Doppler ultrasound, cerebral lateralization, language, child
2161
Play Button
Scalable Nanohelices for Predictive Studies and Enhanced 3D Visualization
Authors: Kwyn A. Meagher, Benjamin N. Doblack, Mercedes Ramirez, Lilian P. Davila.
Institutions: University of California Merced, University of California Merced.
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications.  For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately.  To study the effect of local structure on the properties of these complex geometries one must develop realistic models.  To date, software packages are rather limited in creating atomistic helical models.  This work focuses on producing atomistic models of silica glass (SiO2) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of “bulk” silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented.  The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix.  With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions.  The second method involves a more robust code which allows flexibility in modeling nanohelical structures.  This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models.  Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created.  An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material.  In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures.  One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.
Physics, Issue 93, Helical atomistic models; open-source coding; graphical user interface; visualization software; molecular dynamics simulations; graphical processing unit accelerated simulations.
51372
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
51673
Play Button
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Authors: Karin Hauffen, Eugene Bart, Mark Brady, Daniel Kersten, Jay Hegdé.
Institutions: Georgia Health Sciences University, Georgia Health Sciences University, Georgia Health Sciences University, Palo Alto Research Center, Palo Alto Research Center, University of Minnesota .
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
Neuroscience, Issue 69, machine learning, brain, classification, category learning, cross-modal perception, 3-D prototyping, inference
3358
Play Button
Using Eye Movements to Evaluate the Cognitive Processes Involved in Text Comprehension
Authors: Gary E. Raney, Spencer J. Campbell, Joanna C. Bovee.
Institutions: University of Illinois at Chicago.
The present article describes how to use eye tracking methodologies to study the cognitive processes involved in text comprehension. Measuring eye movements during reading is one of the most precise methods for measuring moment-by-moment (online) processing demands during text comprehension. Cognitive processing demands are reflected by several aspects of eye movement behavior, such as fixation duration, number of fixations, and number of regressions (returning to prior parts of a text). Important properties of eye tracking equipment that researchers need to consider are described, including how frequently the eye position is measured (sampling rate), accuracy of determining eye position, how much head movement is allowed, and ease of use. Also described are properties of stimuli that influence eye movements that need to be controlled in studies of text comprehension, such as the position, frequency, and length of target words. Procedural recommendations related to preparing the participant, setting up and calibrating the equipment, and running a study are given. Representative results are presented to illustrate how data can be evaluated. Although the methodology is described in terms of reading comprehension, much of the information presented can be applied to any study in which participants read verbal stimuli.
Behavior, Issue 83, Eye movements, Eye tracking, Text comprehension, Reading, Cognition
50780
Play Button
Utilizing Repetitive Transcranial Magnetic Stimulation to Improve Language Function in Stroke Patients with Chronic Non-fluent Aphasia
Authors: Gabriella Garcia, Catherine Norise, Olufunsho Faseyitan, Margaret A. Naeser, Roy H. Hamilton.
Institutions: University of Pennsylvania , University of Pennsylvania , Veterans Affairs Boston Healthcare System, Boston University School of Medicine, Boston University School of Medicine.
Transcranial magnetic stimulation (TMS) has been shown to significantly improve language function in patients with non-fluent aphasia1. In this experiment, we demonstrate the administration of low-frequency repetitive TMS (rTMS) to an optimal stimulation site in the right hemisphere in patients with chronic non-fluent aphasia. A battery of standardized language measures is administered in order to assess baseline performance. Patients are subsequently randomized to either receive real rTMS or initial sham stimulation. Patients in the real stimulation undergo a site-finding phase, comprised of a series of six rTMS sessions administered over five days; stimulation is delivered to a different site in the right frontal lobe during each of these sessions. Each site-finding session consists of 600 pulses of 1 Hz rTMS, preceded and followed by a picture-naming task. By comparing the degree of transient change in naming ability elicited by stimulation of candidate sites, we are able to locate the area of optimal response for each individual patient. We then administer rTMS to this site during the treatment phase. During treatment, patients undergo a total of ten days of stimulation over the span of two weeks; each session is comprised of 20 min of 1 Hz rTMS delivered at 90% resting motor threshold. Stimulation is paired with an fMRI-naming task on the first and last days of treatment. After the treatment phase is complete, the language battery obtained at baseline is repeated two and six months following stimulation in order to identify rTMS-induced changes in performance. The fMRI-naming task is also repeated two and six months following treatment. Patients who are randomized to the sham arm of the study undergo sham site-finding, sham treatment, fMRI-naming studies, and repeat language testing two months after completing sham treatment. Sham patients then cross over into the real stimulation arm, completing real site-finding, real treatment, fMRI, and two- and six-month post-stimulation language testing.
Medicine, Issue 77, Neurobiology, Neuroscience, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Neurology, Stroke, Aphasia, Transcranial Magnetic Stimulation, TMS, language, neurorehabilitation, optimal site-finding, functional magnetic resonance imaging, fMRI, brain, stimulation, imaging, clinical techniques, clinical applications
50228
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
51047
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
50893
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
51438
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
2379
Play Button
Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
Authors: Rajesh K. Kana, Donna L. Murdaugh, Lauren E. Libero, Mark R. Pennick, Heather M. Wadsworth, Rishi Deshpande, Christi P. Hu.
Institutions: University of Alabama at Birmingham.
Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively well established, we can begin to further understand brain connectivity as a critical component of autism symptomatology. A logical next step in this direction is to examine the anatomical connections that may mediate the functional connections mentioned above. Diffusion Tensor Imaging (DTI) is a relatively novel neuroimaging technique that helps probe the diffusion of water in the brain to infer the integrity of white matter fibers. In this technique, water diffusion in the brain is examined in several directions using diffusion gradients. While functional connectivity provides information about the synchronization of brain activation across different brain areas during a task or during rest, DTI helps in understanding the underlying axonal organization which may facilitate the cross-talk among brain areas. This paper will describe these techniques as valuable tools in understanding the brain in autism and the challenges involved in this line of research.
Medicine, Issue 55, Functional magnetic resonance imaging (fMRI), MRI, Diffusion tensor imaging (DTI), Functional Connectivity, Neuroscience, Developmental disorders, Autism, Fractional Anisotropy
3178
Play Button
Facilitating the Analysis of Immunological Data with Visual Analytic Techniques
Authors: David C. Shih, Kevin C. Ho, Kyle M. Melnick, Ronald A. Rensink, Tobias R. Kollmann, Edgardo S. Fortuno III.
Institutions: University of British Columbia, University of British Columbia, University of British Columbia.
Visual analytics (VA) has emerged as a new way to analyze large dataset through interactive visual display. We demonstrated the utility and the flexibility of a VA approach in the analysis of biological datasets. Examples of these datasets in immunology include flow cytometry, Luminex data, and genotyping (e.g., single nucleotide polymorphism) data. Contrary to the traditional information visualization approach, VA restores the analysis power in the hands of analyst by allowing the analyst to engage in real-time data exploration process. We selected the VA software called Tableau after evaluating several VA tools. Two types of analysis tasks analysis within and between datasets were demonstrated in the video presentation using an approach called paired analysis. Paired analysis, as defined in VA, is an analysis approach in which a VA tool expert works side-by-side with a domain expert during the analysis. The domain expert is the one who understands the significance of the data, and asks the questions that the collected data might address. The tool expert then creates visualizations to help find patterns in the data that might answer these questions. The short lag-time between the hypothesis generation and the rapid visual display of the data is the main advantage of a VA approach.
Immunology, Issue 47, Visual analytics, flow cytometry, Luminex, Tableau, cytokine, innate immunity, single nucleotide polymorphism
2397
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.