JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Microenvironment modulates osteogenic cell lineage commitment in differentiated embryonic stem cells.
PLoS ONE
PUBLISHED: 03-12-2010
Due to their self-renewal, embryonic stem cells (ESCs) are attractive cells for applications in regenerative medicine and tissue engineering. Although ESC differentiation has been used as a platform for generating bone in vitro and in vivo, the results have been unsatisfactory at best. It is possible that the traditional culture methods, which have been used, are not optimal and that other approaches must be explored.
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Published: 09-23-2014
ABSTRACT
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
25 Related JoVE Articles!
Play Button
The Specification of Telencephalic Glutamatergic Neurons from Human Pluripotent Stem Cells
Authors: Erin M. Boisvert, Kyle Denton, Ling Lei, Xue-Jun Li.
Institutions: The University of Connecticut Health Center, The University of Connecticut Health Center, The University of Connecticut Health Center.
Here, a stepwise procedure for efficiently generating telencephalic glutamatergic neurons from human pluripotent stem cells (PSCs) has been described. The differentiation process is initiated by breaking the human PSCs into clumps which round up to form aggregates when the cells are placed in a suspension culture. The aggregates are then grown in hESC medium from days 1-4 to allow for spontaneous differentiation. During this time, the cells have the capacity to become any of the three germ layers. From days 5-8, the cells are placed in a neural induction medium to push them into the neural lineage. Around day 8, the cells are allowed to attach onto 6 well plates and differentiate during which time the neuroepithelial cells form. These neuroepithelial cells can be isolated at day 17. The cells can then be kept as neurospheres until they are ready to be plated onto coverslips. Using a basic medium without any caudalizing factors, neuroepithelial cells are specified into telencephalic precursors, which can then be further differentiated into dorsal telencephalic progenitors and glutamatergic neurons efficiently. Overall, our system provides a tool to generate human glutamatergic neurons for researchers to study the development of these neurons and the diseases which affect them.
Stem Cell Biology, Issue 74, Neuroscience, Neurobiology, Developmental Biology, Cellular Biology, Molecular Biology, Stem Cells, Embryonic Stem Cells, ESCs, Pluripotent Stem Cells, Induced Pluripotent Stem Cells, iPSC, neural differentiation, forebrain, glutamatergic neuron, neural patterning, development, neurons
50321
Play Button
Efficient Derivation of Human Neuronal Progenitors and Neurons from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Authors: Xuejun H. Parsons, Yang D. Teng, James F. Parsons, Evan Y. Snyder, David B. Smotrich, Dennis A. Moore.
Institutions: San Diego Regenerative Medicine Institute, Xcelthera, Harvard Medical School, Division of SCI Research, VA Boston Healthcare System, Sanford-Burnham Medical Research Institute, La Jolla IVF.
There is a large unfulfilled need for a clinically-suitable human neuronal cell source for repair or regeneration of the damaged central nervous system (CNS) structure and circuitry in today's healthcare industry. Cell-based therapies hold great promise to restore the lost nerve tissue and function for CNS disorders. However, cell therapies based on CNS-derived neural stem cells have encountered supply restriction and difficulty to use in the clinical setting due to their limited expansion ability in culture and failing plasticity after extensive passaging1-3. Despite some beneficial outcomes, the CNS-derived human neural stem cells (hNSCs) appear to exert their therapeutic effects primarily by their non-neuronal progenies through producing trophic and neuroprotective molecules to rescue the endogenous cells1-3. Alternatively, pluripotent human embryonic stem cells (hESCs) proffer cures for a wide range of neurological disorders by supplying the diversity of human neuronal cell types in the developing CNS for regeneration1,4-7. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity7-10. In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic11-13. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules14 (please see a schematic in Fig. 1). Retinoic acid (RA) does not induce neuronal differentiation of undifferentiated hESCs maintained on feeders1, 14. And unlike mouse ESCs, treating hESC-differentiated embryoid bodies (EBs) only slightly increases the low yield of neurons1, 14, 15. However, after screening a variety of small molecules and growth factors, we found that such defined conditions rendered retinoic acid (RA) sufficient to induce the specification of neuroectoderm direct from pluripotent hESCs that further progressed to neuroblasts that generated human neuronal progenitors and neurons in the developing CNS with high efficiency (Fig. 2). We defined conditions for induction of neuroblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human neuronal cells across the spectrum of developmental stages for cell-based therapeutics.
Neuroscience, Issue 56, stem cell, human embryonic stem cell, human, neuronal progenitor, neuron, human pluripotent cell, neuronal differentiation, small molecule induction, cell culture, cell therapy
3273
Play Button
Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Authors: Xuejun H. Parsons, Yang D. Teng, James F. Parsons, Evan Y. Snyder, David B. Smotrich, Dennis A. Moore.
Institutions: San Diego Regenerative Medicine Institute, Xcelthera, Harvard Medical School, VA Boston Healthcare System, Sanford-Burnham Medical Research Institute, La Jolla IVF.
To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering1-3. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart1-3. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery1-3. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration4,5. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity6-8 (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic9-11. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules12 (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics.
Developmental Biology, Issue 57, human embryonic stem cell, human, cardiac progenitor, cardiomyocytes, human pluripotent cell, cardiac differentiation, small molecule induction, cell culture, cell therapy
3274
Play Button
Sequential In vivo Imaging of Osteogenic Stem/Progenitor Cells During Fracture Repair
Authors: Dongsu Park, Joel A. Spencer, Charles P. Lin, David T. Scadden.
Institutions: Harvard Stem Cell Institute, Harvard Medical School.
Bone turns over continuously and is highly regenerative following injury. Osteogenic stem/progenitor cells have long been hypothesized to exist, but in vivo demonstration of such cells has only recently been attained. Here, in vivo imaging techniques to investigate the role of endogenous osteogenic stem/progenitor cells (OSPCs) and their progeny in bone repair are provided. Using osteo-lineage cell tracing models and intravital imaging of induced microfractures in calvarial bone, OSPCs can be directly observed during the first few days after injury, in which critical events in the early repair process occur. Injury sites can be sequentially imaged revealing that OSPCs relocate to the injury, increase in number and differentiate into bone forming osteoblasts. These methods offer a means of investigating the role of stem cell-intrinsic and extrinsic molecular regulators for bone regeneration and repair.
Medicine, Issue 87, Osteogenic Stem Cells, In vivo Imaging, Lineage tracking, Bone regeneration, Fracture repair, Mx1.
51289
Play Button
Enrichment and Purging of Human Embryonic Stem Cells by Detection of Cell Surface Antigens Using the Monoclonal Antibodies TG30 and GCTM-2
Authors: Juan Carlos Polanco, Bei Wang, Qi Zhou, Hun Chy, Carmel O'Brien, Andrew L. Laslett.
Institutions: CSIRO.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.
Stem Cell Biology, Issue 82, Stem cells, cell surface antigens, antibodies, FACS, purging stem cells, differentiation, pluripotency, teratoma, human embryonic stem cells (hESC)
50856
Play Button
Labeling hESCs and hMSCs with Iron Oxide Nanoparticles for Non-Invasive in vivo Tracking with MR Imaging
Authors: Tobias D. Henning, Sophie Boddington, Heike E. Daldrup-Link.
Institutions: Contrast Agent Research Group at the Center for Molecular and Functional Imaging, Department of Radiology, University of California San Francisco.
In recent years, stem cell research has led to a better understanding of developmental biology, various diseases and its potential impact on regenerative medicine. A non-invasive method to monitor the transplanted stem cells repeatedly in vivo would greatly enhance our ability to understand the mechanisms that control stem cell death and identify trophic factors and signaling pathways that improve stem cell engraftment. MR imaging has been proven to be an effective tool for the in vivo depiction of stem cells with near microscopic anatomical resolution. In order to detect stem cells with MR, the cells have to be labeled with cell specific MR contrast agents. For this purpose, iron oxide nanoparticles, such as superparamagnetic iron oxide particles (SPIO), are applied, because of their high sensitivity for cell detection and their excellent biocompatibility. SPIO particles are composed of an iron oxide core and a dextran, carboxydextran or starch coat, and function by creating local field inhomogeneities, that cause a decreased signal on T2-weighted MR images. This presentation will demonstrate techniques for labeling of stem cells with clinically applicable MR contrast agents for subsequent non-invasive in vivo tracking of the labeled cells with MR imaging.
Cell Biology, Issue 13, cell labeling, stem cell, MR imaging, cell tracking, iron oxide, contrast agents, mesenchymal stem cells
685
Play Button
The use of SC1 (Pluripotin) to Support mESC Self-renewal in the Absence of LIF
Authors: Wen Xiong, Yan Gao, Xun Cheng, Charles Martin, Dongmei Wu, Shuyuan Yao, Min-Ju Kim, Yang Liu.
Institutions: Stemgent, Stemgent.
Mouse embryonic stem (ES) cells are conventionally cultured with Leukemia Inhibitory Factor (LIF) to maintain self-renewal.1 However, LIF is expensive and activation of the LIF/JAK/STAT3 pathway is not absolutely required to maintain the self-renewal state.2 The SC1 small molecule may be an economical alternative to LIF. SC1 functions through dual inhibition of Ras-GAP and ERK1.3 Illustration of its mechanism of action makes it a useful tool to study the fundamental molecular mechanism of self-renewal. Here we demonstrate the procedure for culturing mouse ES cells in the presence of SC1 and show that they are able to maintain self-renewal in the absence of LIF. Cells cultured with SC1 showed similar morphology compared to cells maintained with LIF. Both exhibited typical mouse ES morphology after five passages. Expression of typical pluripotency markers (Oct4, Sox2, Nanog, and SSEA1) was observed after five passages in the presence of SC1. Furthermore, SC1 caused no overt toxicity on mouse ES cells.
Cellular Biology, Issue 33, SC1(Pluripotin), LIF, mESC, mouse ESC, mouse ES cells, pluripotency, self-renewal, small molecule
1550
Play Button
Generation of Myospheres From hESCs by Epigenetic Reprogramming
Authors: Sonia Albini, Pier Lorenzo Puri.
Institutions: Sanford-Burnham Institute for Medical Research, IRCCS Fondazione Santa Lucia.
Generation of a homogeneous and abundant population of skeletal muscle cells from human embryonic stem cells (hESCs) is a requirement for cell-based therapies and for a "disease in a dish" model of human neuromuscular diseases. Major hurdles, such as low abundance and heterogeneity of the population of interest, as well as a lack of protocols for the formation of three-dimensional contractile structures, have limited the applications of stem cells for neuromuscular disorders. We have designed a protocol that overcomes these limits by ectopic introduction of defined factors in hESCs - the muscle determination factor MyoD and SWI/SNF chromatin remodeling complex component BAF60C - that are able to reprogram hESCs into skeletal muscle cells. Here we describe the protocol established to generate hESC-derived myoblasts and promote their clustering into tridimensional miniaturized structures (myospheres) that functionally mimic miniaturized skeletal muscles7.
Bioengineering, Issue 88, Tissues, Cells, Embryonic Structures, Musculoskeletal System, Musculoskeletal Diseases, hESC, epinegetics, Skeletal Myogenesis, Myosphere, Chromatin, Lentivirus, Infection
51243
Play Button
Generation of Human Cardiomyocytes: A Differentiation Protocol from Feeder-free Human Induced Pluripotent Stem Cells
Authors: Elisa Di Pasquale, Belle Song, Gianluigi Condorelli.
Institutions: Humanitas Clinical and Research Center, Italy, National Research Council (CNR).
In order to investigate the events driving heart development and to determine the molecular mechanisms leading to myocardial diseases in humans, it is essential first to generate functional human cardiomyocytes (CMs). The use of these cells in drug discovery and toxicology studies would also be highly beneficial, allowing new pharmacological molecules for the treatment of cardiac disorders to be validated pre-clinically on cells of human origin. Of the possible sources of CMs, induced pluripotent stem (iPS) cells are among the most promising, as they can be derived directly from readily accessible patient tissue and possess an intrinsic capacity to give rise to all cell types of the body 1. Several methods have been proposed for differentiating iPS cells into CMs, ranging from the classical embryoid bodies (EBs) aggregation approach to chemically defined protocols 2,3. In this article we propose an EBs-based protocol and show how this method can be employed to efficiently generate functional CM-like cells from feeder-free iPS cells.
Stem Cell Biology, Issue 76, Developmental Biology, Molecular Biology, Cellular Biology, Medicine, Bioengineering, Biomedical Engineering, Genetics, Cardiology, Stem Cell Research, Cardiovascular Diseases, Human cardiomyocytes, iPS cells, induced pluripotent stem cells, stem cells, cardiac differentiation, disease modeling, embryoid bodies, cell lines, cell culture
50429
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
50585
Play Button
Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells
Authors: Nadja Zeltner, Fabien G. Lafaille, Faranak Fattahi, Lorenz Studer.
Institutions: Sloan-Kettering Institute for Cancer Research, The Rockefeller University.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Neuroscience, Issue 87, Embryonic Stem Cells (ESCs), Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Neural Crest, Peripheral Nervous System (PNS), pluripotent stem cells, neural crest cells, in vitro differentiation, disease modeling, differentiation protocol, human embryonic stem cells, human pluripotent stem cells
51609
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
51354
Play Button
Generation of Mice Derived from Induced Pluripotent Stem Cells
Authors: Michael J. Boland, Jennifer L. Hazen, Kristopher L. Nazor, Alberto R. Rodriguez, Greg Martin, Sergey Kupriyanov, Kristin K. Baldwin.
Institutions: The Scripps Research Institute , The Scripps Research Institute .
The production of induced pluripotent stem cells (iPSCs) from somatic cells provides a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. iPSCs may be generated using multiple protocols and derived from multiple cell sources. Once generated, iPSCs are tested using a variety of assays including immunostaining for pluripotency markers, generation of three germ layers in embryoid bodies and teratomas, comparisons of gene expression with embryonic stem cells (ESCs) and production of chimeric mice with or without germline contribution2. Importantly, iPSC lines that pass these tests still vary in their capacity to produce different differentiated cell types2. This has made it difficult to establish which iPSC derivation protocols, donor cell sources or selection methods are most useful for different applications. The most stringent test of whether a stem cell line has sufficient developmental potential to generate all tissues required for survival of an organism (termed full pluripotency) is tetraploid embryo complementation (TEC)3-5. Technically, TEC involves electrofusion of two-cell embryos to generate tetraploid (4n) one-cell embryos that can be cultured in vitro to the blastocyst stage6. Diploid (2n) pluripotent stem cells (e.g. ESCs or iPSCs) are then injected into the blastocoel cavity of the tetraploid blastocyst and transferred to a recipient female for gestation (see Figure 1). The tetraploid component of the complemented embryo contributes almost exclusively to the extraembryonic tissues (placenta, yolk sac), whereas the diploid cells constitute the embryo proper, resulting in a fetus derived entirely from the injected stem cell line. Recently, we reported the derivation of iPSC lines that reproducibly generate adult mice via TEC1. These iPSC lines give rise to viable pups with efficiencies of 5-13%, which is comparable to ESCs3,4,7 and higher than that reported for most other iPSC lines8-12. These reports show that direct reprogramming can produce fully pluripotent iPSCs that match ESCs in their developmental potential and efficiency of generating pups in TEC tests. At present, it is not clear what distinguishes between fully pluripotent iPSCs and less potent lines13-15. Nor is it clear which reprogramming methods will produce these lines with the highest efficiency. Here we describe one method that produces fully pluripotent iPSCs and "all- iPSC" mice, which may be helpful for investigators wishing to compare the pluripotency of iPSC lines or establish the equivalence of different reprogramming methods.
Stem Cell Biology, Issue 69, Molecular Biology, Developmental Biology, Medicine, Cellular Biology, Induced pluripotent stem cells, iPSC, stem cells, reprogramming, developmental potential, tetraploid embryo complementation, mouse
4003
Play Button
Derivation of T Cells In Vitro from Mouse Embryonic Stem Cells
Authors: Martina Kučerová-Levisohn, Jordana Lovett, Armin Lahiji, Roxanne Holmes, Juan Carlos Zúñiga-Pflücker, Benjamin D. Ortiz.
Institutions: City University of New York, University of Toronto.
The OP9/OP9-DL1 co-culture system has become a well-established method for deriving differentiated blood cell types from embryonic and hematopoietic progenitors of both mouse and human origin. It is now used to address a growing variety of complex genetic, cellular and molecular questions related to hematopoiesis, and is at the cutting edge of efforts to translate these basic findings to therapeutic applications. The procedures are straightforward and routinely yield robust results. However, achieving successful hematopoietic differentiation in vitro requires special attention to the details of reagent and cell culture maintenance. Furthermore, the protocol features technique sensitive steps that, while not difficult, take care and practice to master. Here we focus on the procedures for differentiation of T lymphocytes from mouse embryonic stem cells (mESC). We provide a detailed protocol with discussions of the critical steps and parameters that enable reproducibly robust cellular differentiation in vitro. It is in the interest of the field to consider wider adoption of this technology, as it has the potential to reduce animal use, lower the cost and shorten the timelines of both basic and translational experimentation.
Immunology, Issue 92, mouse, embryonic stem cells, in vitro differentiation, OP9 cells, Delta-like 1 (Dll-1) ligand, Notch, hematopoiesis, lymphocytes, T cells
52119
Play Button
Retroviral Infection of Murine Embryonic Stem Cell Derived Embryoid Body Cells for Analysis of Hematopoietic Differentiation
Authors: Emmanuel Bikorimana, Danica Lapid, Hyewon Choi, Richard Dahl.
Institutions: Harper Cancer Research Institute, Indiana University School of Medicine, University of Notre Dame.
Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived.
Cellular Biology, Issue 92, Embryonic stem cell, Embryoid body, Hematopoietic Progenitor Cells, Retrovirus, Gene Expression, Temporal Gene Expression
52022
Play Button
Generation of Aligned Functional Myocardial Tissue Through Microcontact Printing
Authors: Ayhan Atmanli, Ibrahim J. Domian.
Institutions: Massachusetts General Hospital and Harvard Medical School, Harvard Stem Cell Institute.
Advanced heart failure represents a major unmet clinical challenge, arising from the loss of viable and/or fully functional cardiac muscle cells. Despite optimum drug therapy, heart failure represents a leading cause of mortality and morbidity in the developed world. A major challenge in drug development is the identification of cellular assays that accurately recapitulate normal and diseased human myocardial physiology in vitro. Likewise, the major challenges in regenerative cardiac biology revolve around the identification and isolation of patient-specific cardiac progenitors in clinically relevant quantities. These cells have to then be assembled into functional tissue that resembles the native heart tissue architecture. Microcontact printing allows for the creation of precise micropatterned protein shapes that resemble structural organization of the heart, thus providing geometric cues to control cell adhesion spatially. Herein we describe our approach for the isolation of highly purified myocardial cells from pluripotent stem cells differentiating in vitro, the generation of cell growth surfaces micropatterned with extracellular matrix proteins, and the assembly of the stem cell-derived cardiac muscle cells into anisotropic myocardial tissue.
Stem Cell Biology, Issue 73, Bioengineering, Biomedical Engineering, Medicine, Molecular Biology, Cellular Biology, Anatomy, Physiology, Tissue Engineering, Cardiology, Cell Biology, Embryonic Stem Cells, ESCs, Micropatterning, Microcontact Printing, Cell Alignment, Heart Progenitors, in vitro Differentiation, Transgenic Mice, Mouse Embryonic Stem Cells, stem cells, myocardial tissue, PDMS, FACS, flow cytometry, animal model
50288
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
51519
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
119
Play Button
Patterning of Embryonic Stem Cells Using the Bio Flip Chip
Authors: Nikhil Mittal, Stephanie Flavin, Joel Voldman.
Institutions: MIT - Massachusetts Institute of Technology, MIT - Massachusetts Institute of Technology.
Cell-cell interactions consisting of diffusible signaling and cell-cell contact (juxtacrine signaling) are important in numerous biological processes such as tumor growth, stem cell differentiation, and stem cell self-renewal. A number of methods currently exist to modulate cell signaling in vitro. One method of modulating the total amount of diffusible signaling is to vary the cell seeding density during culture. Due to the random nature of cell seeding, this results in considerable variation in the actual cell-cell spacing and amount of cell-cell contact, and cannot prescribe the local environment. A more specific approach for modulating cell signaling is to use molecular inhibitors or genetic approaches to knock down specific signaling proteins, but both of these methods are best suited to manipulating small numbers of molecules. Here, we demonstrate a new approach to modulating cell-cell signaling that modulates the local environment of a cluster of cells by placing different numbers of cells at desired locations on a substrate. This method provides a complementary way to control the local diffusible and juxtacrine signaling between cells. Our method makes use of the Bio Flip Chip (BFC), a microfabricated silicone chip containing hundreds-to-thousands of microwells, each sized to hold either a single cell or small numbers of cells. We load the chip with cells simply by pipetting them onto the array of wells and washing unloaded cells off the array. The chip is then flipped onto a substrate, whereby the cells fall out of the wells and onto the substrate, maintaining their patterning. After the cells have attached, the chip can be removed (or left on). This approach to cell patterning is unique in that it: 1) doesn't alter the chemistry of the substrate, thus allowing cells to proliferate and migrate; 2) allows patterning onto any substrate, including tissue-culture polystyrene, glass, matrigel, and even feeder cell layers; and 3) is compatible with traditional microcontact printing, allowing the creation of extracellular matrix islands with cells placed inside those islands. In this video, we demonstrate the patterning of mouse embryonic stem cells onto tissue-culture polystyrene using the BFC.
Cellular Biology,Issue 8, tissue engineering, stem cells, patterning, bioengineering, signaling, diffusible, autocrine, juxtacrine
318
Play Button
Derivation of Hematopoietic Stem Cells from Murine Embryonic Stem Cells
Authors: Shannon McKinney-Freeman, George Daley.
Institutions: Harvard Medical School.
A stem cell is defined as a cell with the capacity to both self-renew and generate multiple differentiated progeny. Embryonic stem cells (ESC) are derived from the blastocyst of the early embryo and are pluripotent in differentiative ability. Their vast differentiative potential has made them the focus of much research centered on deducing how to coax them to generate clinically useful cell types. The successful derivation of hematopoietic stem cells (HSC) from mouse ESC has recently been accomplished and can be visualized in this video protocol. HSC, arguably the most clinically exploited cell population, are used to treat a myriad of hematopoietic malignancies and disorders. However, many patients that might benefit from HSC therapy lack access to suitable donors. ESC could provide an alternative source of HSC for these patients. The following protocol establishes a baseline from which ESC-HSC can be studied and inform efforts to isolate HSC from human ESC. In this protocol, ESC are differentiated as embryoid bodies (EBs) for 6 days in commercially available serum pre-screened for optimal hematopoietic differentiation. EBs are then dissociated and infected with retroviral HoxB4. Infected EB-derived cells are plated on OP9 stroma, a bone marrow stromal cell line derived from the calvaria of M-CSF-/- mice, and co-cultured in the presence of hematopoiesis promoting cytokines for ten days. During this co-culture, the infected cells expand greatly, resulting in the generation a heterogeneous pool of 100s of millions of cells. These cells can then be used to rescue and reconstitute lethally irradiated mice.
Cellular Biology, Issue 2, ES cells, stem cells, HSC, transplantation, HoxB4
162
Play Button
Differentiation of Embryonic Stem Cells into Oligodendrocyte Precursors
Authors: Peng Jiang, Vimal Selvaraj, Wenbin Deng.
Institutions: School of Medicine, University of California, Davis.
Oligodendrocytes are the myelinating cells of the central nervous system. For regenerative cell therapy in demyelinating diseases, there is significant interest in deriving a pure population of lineage-committed oligodendrocyte precursor cells (OPCs) for transplantation. OPCs are characterized by the activity of the transcription factor Olig2 and surface expression of a proteoglycan NG2. Using the GFP-Olig2 (G-Olig2) mouse embryonic stem cell (mESC) reporter line, we optimized conditions for the differentiation of mESCs into GFP+Olig2+NG2+ OPCs. In our protocol, we first describe the generation of embryoid bodies (EBs) from mESCs. Second, we describe treatment of mESC-derived EBs with small molecules: (1) retinoic acid (RA) and (2) a sonic hedgehog (Shh) agonist purmorphamine (Pur) under defined culture conditions to direct EB differentiation into the oligodendroglial lineage. By this approach, OPCs can be obtained with high efficiency (>80%) in a time period of 30 days. Cells derived from mESCs in this protocol are phenotypically similar to OPCs derived from primary tissue culture. The mESC-derived OPCs do not show the spiking property described for a subpopulation of brain OPCs in situ. To study this electrophysiological property, we describe the generation of spiking mESC-derived OPCs by ectopically expressing NaV1.2 subunit. The spiking and nonspiking cells obtained from this protocol will help advance functional studies on the two subpopulations of OPCs.
Neurobiology, Issue 39, pluripotent stem cell, oligodendrocyte precursor cells, differentiation, myelin, neuroscience, brain
1960
Play Button
Experimental Approaches to Tissue Engineering
Authors: Ali Khademhosseini.
Institutions: Brigham and Women's Hospital.
Issue 7, Cell Biology, tissue engineering, microfluidics, stem cells
272
Play Button
Rapid Fibroblast Removal from High Density Human Embryonic Stem Cell Cultures
Authors: William S. Turner, Kara E. McCloskey.
Institutions: University of California, Merced.
Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation1. This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity4. Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types5-8). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.
Cellular Biology, Issue 68, Human Embryonic Stem Cells, Cell Culture, Cell Isolation, Oct, Cell Purification, MEF Removal, SSEA-4
3951
Play Button
Embryonic Stem Cell-Derived Endothelial Cells for Treatment of Hindlimb Ischemia
Authors: Ngan F. Huang, Hiroshi Niiyama, Abhijit De, Sanjiv S. Gambhir, John P. Cooke.
Institutions: Stanford University , Stanford University .
Peripheral arterial disease (PAD) results from narrowing of the peripheral arteries that supply oxygenated blood and nutrients to the legs and feet, This pathology causes symptoms such as intermittent claudication (pain with walking), painful ischemic ulcerations, or even limb-threatening gangrene. It is generally believed that the vascular endothelium, a monolayer of endothelial cells that invests the luminal surface of all blood and lymphatic vessels, plays a dominant role in vascular homeostasis and vascular regeneration. As a result, stem cell-based regeneration of the endothelium may be a promising approach for treating PAD.In this video, we demonstrate the transplantation of embryonic stem cell (ESC)-derived endothelial cells for treatment of unilateral hindimb ischemia as a model of PAD, followed by non-invasive tracking of cell homing and survival by bioluminescence imaging. The specific materials and procedures for cell delivery and imaging will be described. This protocol follows another publication in describing the induction of hindlimb ischemia by Niiyama et al.1
Medicine, Issue 23, hindlimb ischemia, peripheral arterial disease, embryonic stem cell, cell transplantation, bioluminescence imaging, non-invasive tracking, mouse model
1034
Play Button
BioMEMS and Cellular Biology: Perspectives and Applications
Authors: Albert Folch.
Institutions: University of Washington.
The ability to culture cells has revolutionized hypothesis testing in basic cell and molecular biology research. It has become a standard methodology in drug screening, toxicology, and clinical assays, and is increasingly used in regenerative medicine. However, the traditional cell culture methodology essentially consisting of the immersion of a large population of cells in a homogeneous fluid medium and on a homogeneous flat substrate has become increasingly limiting both from a fundamental and practical perspective. Microfabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, and the medium composition, as well as the neighboring cell type in the surrounding cellular microenvironment. Additionally, microtechnology is conceptually well-suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. In this interview, Albert Folch explains these limitations, how they can be overcome with soft lithography and microfluidics, and describes some relevant examples of research in his lab and future directions.
Biomedical Engineering, Issue 8, BioMEMS, Soft Lithography, Microfluidics, Agrin, Axon Guidance, Olfaction, Interview
300
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.