JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Diversity of intrinsic frequency encoding patterns in rat cortical neurons--mechanisms and possible functions.
PUBLISHED: 01-27-2010
Extracellular recordings of single neurons in primary and secondary somatosensory cortices of monkeys in vivo have shown that their firing rate can increase, decrease, or remain constant in different cells, as the external stimulus frequency increases. We observed similar intrinsic firing patterns (increasing, decreasing or constant) in rat somatosensory cortex in vitro, when stimulated with oscillatory input using conductance injection (dynamic clamp). The underlying mechanism of this observation is not obvious, and presents a challenge for mathematical modelling. We propose a simple principle for describing this phenomenon using a leaky integrate-and-fire model with sinusoidal input, an intrinsic oscillation and Poisson noise. Additional enhancement of the gain of encoding could be achieved by local network connections amongst diverse intrinsic response patterns. Our work sheds light on the possible cellular and network mechanisms underlying these opposing neuronal responses, which serve to enhance signal detection.
Authors: Trecia A. Brown, Joseph S. Gati, Sarah M. Hughes, Pam L. Nixon, Ravi S. Menon, Stephen G. Lomber.
Published: 02-19-2014
Current knowledge of sensory processing in the mammalian auditory system is mainly derived from electrophysiological studies in a variety of animal models, including monkeys, ferrets, bats, rodents, and cats. In order to draw suitable parallels between human and animal models of auditory function, it is important to establish a bridge between human functional imaging studies and animal electrophysiological studies. Functional magnetic resonance imaging (fMRI) is an established, minimally invasive method of measuring broad patterns of hemodynamic activity across different regions of the cerebral cortex. This technique is widely used to probe sensory function in the human brain, is a useful tool in linking studies of auditory processing in both humans and animals and has been successfully used to investigate auditory function in monkeys and rodents. The following protocol describes an experimental procedure for investigating auditory function in anesthetized adult cats by measuring stimulus-evoked hemodynamic changes in auditory cortex using fMRI. This method facilitates comparison of the hemodynamic responses across different models of auditory function thus leading to a better understanding of species-independent features of the mammalian auditory cortex.
23 Related JoVE Articles!
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Optical Recording of Suprathreshold Neural Activity with Single-cell and Single-spike Resolution
Authors: Gayathri Nattar Ranganathan, Helmut J. Koester.
Institutions: The University of Texas at Austin.
Signaling of information in the vertebrate central nervous system is often carried by populations of neurons rather than individual neurons. Also propagation of suprathreshold spiking activity involves populations of neurons. Empirical studies addressing cortical function directly thus require recordings from populations of neurons with high resolution. Here we describe an optical method and a deconvolution algorithm to record neural activity from up to 100 neurons with single-cell and single-spike resolution. This method relies on detection of the transient increases in intracellular somatic calcium concentration associated with suprathreshold electrical spikes (action potentials) in cortical neurons. High temporal resolution of the optical recordings is achieved by a fast random-access scanning technique using acousto-optical deflectors (AODs)1. Two-photon excitation of the calcium-sensitive dye results in high spatial resolution in opaque brain tissue2. Reconstruction of spikes from the fluorescence calcium recordings is achieved by a maximum-likelihood method. Simultaneous electrophysiological and optical recordings indicate that our method reliably detects spikes (>97% spike detection efficiency), has a low rate of false positive spike detection (< 0.003 spikes/sec), and a high temporal precision (about 3 msec) 3. This optical method of spike detection can be used to record neural activity in vitro and in anesthetized animals in vivo3,4.
Neuroscience, Issue 67, functional calcium imaging, spatiotemporal patterns of activity, dithered random-access scanning
Play Button
Implementing Dynamic Clamp with Synaptic and Artificial Conductances in Mouse Retinal Ganglion Cells
Authors: Jin Y. Huang, Klaus M. Stiefel, Dario A. Protti.
Institutions: University of Sydney , University of Western Sydney, University of Sydney .
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.
Neuroscience, Issue 75, Neurobiology, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Neurons, Retinal Neurons, Retinal Ganglion Cells, Eye, Retina, Neurosciences, retina, ganglion cells, synaptic conductance, artificial conductance, tetrodotoxin (TTX), patch clamp, dynamic clamp, conductance clamp, electrophysiology, mouse, animal model
Play Button
Investigations on Alterations of Hippocampal Circuit Function Following Mild Traumatic Brain Injury
Authors: Colin J. Smith, Brian N. Johnson, Jaclynn A. Elkind, Jill M. See, Guoxiang Xiong, Akiva S. Cohen.
Institutions: Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania.
Traumatic Brain Injury (TBI) afflicts more than 1.7 million people in the United States each year and even mild TBI can lead to persistent neurological impairments 1. Two pervasive and disabling symptoms experienced by TBI survivors, memory deficits and a reduction in seizure threshold, are thought to be mediated by TBI-induced hippocampal dysfunction 2,3. In order to demonstrate how altered hippocampal circuit function adversely affects behavior after TBI in mice, we employ lateral fluid percussion injury, a commonly used animal model of TBI that recreates many features of human TBI including neuronal cell loss, gliosis, and ionic perturbation 4-6. Here we demonstrate a combinatorial method for investigating TBI-induced hippocampal dysfunction. Our approach incorporates multiple ex vivo physiological techniques together with animal behavior and biochemical analysis, in order to analyze post-TBI changes in the hippocampus. We begin with the experimental injury paradigm along with behavioral analysis to assess cognitive disability following TBI. Next, we feature three distinct ex vivo recording techniques: extracellular field potential recording, visualized whole-cell patch-clamping, and voltage sensitive dye recording. Finally, we demonstrate a method for regionally dissecting subregions of the hippocampus that can be useful for detailed analysis of neurochemical and metabolic alterations post-TBI. These methods have been used to examine the alterations in hippocampal circuitry following TBI and to probe the opposing changes in network circuit function that occur in the dentate gyrus and CA1 subregions of the hippocampus (see Figure 1). The ability to analyze the post-TBI changes in each subregion is essential to understanding the underlying mechanisms contributing to TBI-induced behavioral and cognitive deficits. The multi-faceted system outlined here allows investigators to push past characterization of phenomenology induced by a disease state (in this case TBI) and determine the mechanisms responsible for the observed pathology associated with TBI.
Neuroscience, Issue 69, Medicine, Anatomy, Physiology, hippocampus, traumatic brain injury, electrophysiology, patch clamp, voltage sensitive dye, extracellular recording, high-performance liquid chromatography, gas chromatography-mass spectrometry
Play Button
Imaging Odor-Evoked Activities in the Mouse Olfactory Bulb using Optical Reflectance and Autofluorescence Signals
Authors: Romain Chery, Barbara L'Heureux, Mounir Bendahmane, Rémi Renaud, Claire Martin, Frédéric Pain, Hirac Gurden.
Institutions: UMR8165 Université Paris Sud 11, Paris Diderot 7 – CNRS.
In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain. Here, we present two techniques based on changes of endogenous optical properties of the brain tissue during activation. First the intrinsic optical signals (IOS) are produced by a local alteration in red light reflectance due to: (i) absorption by changes in blood oxygenation level and blood volume (ii) photon scattering. The use of in vivo IOS to record spatial maps started in the mid 1980's with the observation of optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex1. IOS imaging of the surface of the rodent main olfactory bulb (OB) in response to odorants was later demonstrated by Larry Katz's group2. The second approach relies on flavoprotein autofluorescence signals (FAS) due to changes in the redox state of these mitochondrial metabolic intermediates. More precisely, the technique is based on the green fluorescence due to oxidized state of flavoproteins when the tissue is excited with blue light. Although such signals were probably among the first fluorescent molecules recorded for the study of brain activity by the pioneer studies of Britton Chances and colleagues3, it was not until recently that they have been used for mapping of brain activation in vivo. FAS imaging was first applied to the somatosensory cortex in rodents in response to hindpaw stimulation by Katsuei Shibuki's group4. The olfactory system is of central importance for the survival of the vast majority of living species because it allows efficient detection and identification of chemical substances in the environment (food, predators). The OB is the first relay of olfactory information processing in the brain. It receives afferent projections from the olfactory primary sensory neurons that detect volatile odorant molecules. Each sensory neuron expresses only one type of odorant receptor and neurons carrying the same type of receptor send their nerve processes to the same well-defined microregions of ˜100μm3 constituted of discrete neuropil, the olfactory glomerulus (Fig. 1). In the last decade, IOS imaging has fostered the functional exploration of the OB5, 6, 7 which has become one of the most studied sensory structures. The mapping of OB activity with FAS imaging has not been performed yet. Here, we show the successive steps of an efficient protocol for IOS and FAS imaging to map odor-evoked activities in the mouse OB.
Neuroscience, Issue 56, wide-field optical imaging, flavoproteins, hemodynamics, olfactory bulb, sensory activity, mice
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Juxtasomal Biocytin Labeling to Study the Structure-function Relationship of Individual Cortical Neurons
Authors: Rajeevan T. Narayanan, Hemanth Mohan, Robin Broersen, Roel de Haan, Anton W. Pieneman, Christiaan P.J. de Kock.
Institutions: VU University Amsterdam.
The cerebral cortex is characterized by multiple layers and many distinct cell-types that together as a network are responsible for many higher cognitive functions including decision making, sensory-guided behavior or memory. To understand how such intricate neuronal networks perform such tasks, a crucial step is to determine the function (or electrical activity) of individual cell types within the network, preferentially when the animal is performing a relevant cognitive task. Additionally, it is equally important to determine the anatomical structure of the network and the morphological architecture of the individual neurons to allow reverse engineering the cortical network. Technical breakthroughs available today allow recording cellular activity in awake, behaving animals with the valuable option of post hoc identifying the recorded neurons. Here, we demonstrate the juxtasomal biocytin labeling technique, which involves recording action potential spiking in the extracellular (or loose-patch) configuration using conventional patch pipettes. The juxtasomal recording configuration is relatively stable and applicable across behavioral conditions, including anesthetized, sedated, awake head-fixed, and even in the freely moving animal. Thus, this method allows linking cell-type specific action potential spiking during animal behavior to reconstruction of the individual neurons and ultimately, the entire cortical microcircuit. In this video manuscript, we show how individual neurons in the juxtasomal configuration can be labeled with biocytin in the urethane-anaesthetized rat for post hoc identification and morphological reconstruction.
Bioengineering, Issue 84, biocytin, juxtasomal, morphology, physiology, action potential, structure-function, histology, reconstruction, neurons, electrophysiological recordings
Play Button
Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration
Authors: Anna Holubowska, Chaitali Mukherjee, Mayur Vadhvani, Judith Stegmüller.
Institutions: Max Planck Institute of Experimental Medicine, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).
Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration.
Neuroscience, Issue 85, axons, dendrites, neuronal migration, cerebellum, cultured neurons, transfection, in vivo electroporation
Play Button
Targeted Labeling of Neurons in a Specific Functional Micro-domain of the Neocortex by Combining Intrinsic Signal and Two-photon Imaging
Authors: Philip O'Herron, Zhiming Shen, Zhongyang Lu, Adrien E. Schramm, Manuel Levy, Prakash Kara.
Institutions: Medical University of South Carolina.
In the primary visual cortex of non-rodent mammals, neurons are clustered according to their preference for stimulus features such as orientation1-4, direction5-7, ocular dominance8,9 and binocular disparity9. Orientation selectivity is the most widely studied feature and a continuous map with a quasi-periodic layout for preferred orientation is present across the entire primary visual cortex10,11. Integrating the synaptic, cellular and network contributions that lead to stimulus selective responses in these functional maps requires the hybridization of imaging techniques that span sub-micron to millimeter spatial scales. With conventional intrinsic signal optical imaging, the overall layout of functional maps across the entire surface of the visual cortex can be determined12. The development of in vivo two-photon microscopy using calcium sensitive dyes enables one to determine the synaptic input arriving at individual dendritic spines13 or record activity simultaneously from hundreds of individual neuronal cell bodies6,14. Consequently, combining intrinsic signal imaging with the sub-micron spatial resolution of two-photon microscopy offers the possibility of determining exactly which dendritic segments and cells contribute to the micro-domain of any functional map in the neocortex. Here we demonstrate a high-yield method for rapidly obtaining a cortical orientation map and targeting a specific micro-domain in this functional map for labeling neurons with fluorescent dyes in a non-rodent mammal. With the same microscope used for two-photon imaging, we first generate an orientation map using intrinsic signal optical imaging. Then we show how to target a micro-domain of interest using a micropipette loaded with dye to either label a population of neuronal cell bodies or label a single neuron such that dendrites, spines and axons are visible in vivo. Our refinements over previous methods facilitate an examination of neuronal structure-function relationships with sub-cellular resolution in the framework of neocortical functional architectures.
Neuroscience, Issue 70, Molecular Biology, Cellular Biology, Anatomy, Physiology, Two-photon imaging, non-rodent, cortical maps, functional architecture, orientation pinwheel singularity, optical imaging, calcium-sensitive dye, bulk loading, single-cell electroporation
Play Button
Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation
Authors: Taruna Ikrar, Nicholas D. Olivas, Yulin Shi, Xiangmin Xu.
Institutions: University of California, Irvine, University of California, Irvine.
Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits.
Neuroscience, Issue 56, glutamate uncaging, whole cell recording, GFP, transgenic, interneurons
Play Button
Simultaneous Long-term Recordings at Two Neuronal Processing Stages in Behaving Honeybees
Authors: Martin Fritz Brill, Maren Reuter, Wolfgang Rössler, Martin Fritz Strube-Bloss.
Institutions: University of Würzburg.
In both mammals and insects neuronal information is processed in different higher and lower order brain centers. These centers are coupled via convergent and divergent anatomical connections including feed forward and feedback wiring. Furthermore, information of the same origin is partially sent via parallel pathways to different and sometimes into the same brain areas. To understand the evolutionary benefits as well as the computational advantages of these wiring strategies and especially their temporal dependencies on each other, it is necessary to have simultaneous access to single neurons of different tracts or neuropiles in the same preparation at high temporal resolution. Here we concentrate on honeybees by demonstrating a unique extracellular long term access to record multi unit activity at two subsequent neuropiles1, the antennal lobe (AL), the first olfactory processing stage and the mushroom body (MB), a higher order integration center involved in learning and memory formation, or two parallel neuronal tracts2 connecting the AL with the MB. The latter was chosen as an example and will be described in full. In the supporting video the construction and permanent insertion of flexible multi channel wire electrodes is demonstrated. Pairwise differential amplification of the micro wire electrode channels drastically reduces the noise and verifies that the source of the signal is closely related to the position of the electrode tip. The mechanical flexibility of the used wire electrodes allows stable invasive long term recordings over many hours up to days, which is a clear advantage compared to conventional extra and intracellular in vivo recording techniques.
Neuroscience, Issue 89, honeybee brain, olfaction, extracellular long term recordings, double recordings, differential wire electrodes, single unit, multi-unit recordings
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Modeling Biological Membranes with Circuit Boards and Measuring Electrical Signals in Axons: Student Laboratory Exercises
Authors: Martha M. Robinson, Jonathan M. Martin, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
This is a demonstration of how electrical models can be used to characterize biological membranes. This exercise also introduces biophysical terminology used in electrophysiology. The same equipment is used in the membrane model as on live preparations. Some properties of an isolated nerve cord are investigated: nerve action potentials, recruitment of neurons, and responsiveness of the nerve cord to environmental factors.
Basic Protocols, Issue 47, Invertebrate, Crayfish, Modeling, Student laboratory, Nerve cord
Play Button
Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents
Authors: Mikhail Kislin, Ekaterina Mugantseva, Dmitry Molotkov, Natalia Kulesskaya, Stanislav Khirug, Ilya Kirilkin, Evgeny Pryazhnikov, Julia Kolikova, Dmytro Toptunov, Mikhail Yuryev, Rashid Giniatullin, Vootele Voikar, Claudio Rivera, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki, Neurotar LTD, University of Eastern Finland, University of Helsinki.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal’s brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Empty Value, Issue 88, awake, in vivo two-photon microscopy, blood vessels, dendrites, dendritic spines, Ca2+ imaging, intrinsic optical imaging, patch-clamp
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons
Authors: Sam A. Booker, Jie Song, Imre Vida.
Institutions: Charité Universitätmedizin.
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Neuroscience, Issue 91, electrophysiology, acute slice, whole-cell patch-clamp recording, neuronal morphology, immunocytochemistry, parvalbumin, hippocampus, inhibition, GABAergic interneurons, synaptic transmission, IPSC, GABA-B receptor
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
Play Button
One-channel Cell-attached Patch-clamp Recording
Authors: Bruce A. Maki, Kirstie A. Cummings, Meaghan A. Paganelli, Swetha E. Murthy, Gabriela K. Popescu.
Institutions: University at Buffalo, SUNY, University at Buffalo, SUNY, The Scripps Research Institute, University at Buffalo, SUNY.
Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease.
Neuroscience, Issue 88, biophysics, ion channels, single-channel recording, NMDA receptors, gating, electrophysiology, patch-clamp, kinetic analysis
Play Button
Application of a NMDA Receptor Conductance in Rat Midbrain Dopaminergic Neurons Using the Dynamic Clamp Technique
Authors: Collin J Lobb, Carlos A Paladini.
Institutions: University of Texas San Antonio - UTSA.
Neuroscientists study the function of the brain by investigating how neurons in the brain communicate. Many investigators look at changes in the electrical activity of one or more neurons in response to an experimentally-controlled input. The electrical activity of neurons can be recorded in isolated brain slices using patch clamp techniques with glass micropipettes. Traditionally, experimenters can mimic neuronal input by direct injection of current through the pipette, electrical stimulation of the other cells or remaining axonal connections in the slice, or pharmacological manipulation by receptors located on the neuronal membrane of the recorded cell. Direct current injection has the advantages of passing a predetermined current waveform with high temporal precision at the site of the recording (usually the soma). However, it does not change the resistance of the neuronal membrane as no ion channels are physically opened. Current injection usually employs rectangular pulses and thus does not model the kinetics of ion channels. Finally, current injection cannot mimic the chemical changes in the cell that occurs with the opening of ion channels. Receptors can be physically activated by electrical or pharmacological stimulation. The experimenter has good temporal precision of receptor activation with electrical stimulation of the slice. However, there is limited spatial precision of receptor activation and the exact nature of what is activated upon stimulation is unknown. This latter problem can be partially alleviated by specific pharmacological agents. Unfortunately, the time course of activation of pharmacological agents is typically slow and the spatial precision of inputs onto the recorded cell is unknown. The dynamic clamp technique allows an experimenter to change the current passed directly into the cell based on real-time feedback of the membrane potential of the cell (Robinson and Kawai 1993, Sharp et al., 1993a,b; for review, see Prinz et al. 2004). This allows an experimenter to mimic the electrical changes that occur at the site of the recording in response to activation of a receptor. Real-time changes in applied current are determined by a mathematical equation implemented in hardware. We have recently used the dynamic clamp technique to investigate the generation of bursts of action potentials by phasic activation of NMDA receptors in dopaminergic neurons of the substantia nigra pars compacta (Deister et al., 2009; Lobb et al., 2010). In this video, we demonstrate the procedures needed to apply a NMDA receptor conductance into a dopaminergic neuron.
Neuroscience, Issue 46, electrophysiology, dynamic clamp, rat, dopamine, burst, RTXI
Play Button
Cross-Modal Multivariate Pattern Analysis
Authors: Kaspar Meyer, Jonas T. Kaplan.
Institutions: University of Southern California.
Multivariate pattern analysis (MVPA) is an increasingly popular method of analyzing functional magnetic resonance imaging (fMRI) data1-4. Typically, the method is used to identify a subject's perceptual experience from neural activity in certain regions of the brain. For instance, it has been employed to predict the orientation of visual gratings a subject perceives from activity in early visual cortices5 or, analogously, the content of speech from activity in early auditory cortices6. Here, we present an extension of the classical MVPA paradigm, according to which perceptual stimuli are not predicted within, but across sensory systems. Specifically, the method we describe addresses the question of whether stimuli that evoke memory associations in modalities other than the one through which they are presented induce content-specific activity patterns in the sensory cortices of those other modalities. For instance, seeing a muted video clip of a glass vase shattering on the ground automatically triggers in most observers an auditory image of the associated sound; is the experience of this image in the "mind's ear" correlated with a specific neural activity pattern in early auditory cortices? Furthermore, is this activity pattern distinct from the pattern that could be observed if the subject were, instead, watching a video clip of a howling dog? In two previous studies7,8, we were able to predict sound- and touch-implying video clips based on neural activity in early auditory and somatosensory cortices, respectively. Our results are in line with a neuroarchitectural framework proposed by Damasio9,10, according to which the experience of mental images that are based on memories - such as hearing the shattering sound of a vase in the "mind's ear" upon seeing the corresponding video clip - is supported by the re-construction of content-specific neural activity patterns in early sensory cortices.
Neuroscience, Issue 57, perception, sensory, cross-modal, top-down, mental imagery, fMRI, MRI, neuroimaging, multivariate pattern analysis, MVPA
Play Button
Simultaneous fMRI and Electrophysiology in the Rodent Brain
Authors: Wen-ju Pan, Garth Thompson, Matthew Magnuson, Waqas Majeed, Dieter Jaeger, Shella Keilholz.
Institutions: Emory University, Georgia Institute of Technology, Emory University.
To examine the neural basis of the blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) signal, we have developed a rodent model in which functional MRI data and in vivo intracortical recording can be performed simultaneously. The combination of MRI and electrical recording is technically challenging because the electrodes used for recording distort the MRI images and the MRI acquisition induces noise in the electrical recording. To minimize the mutual interference of the two modalities, glass microelectrodes were used rather than metal and a noise removal algorithm was implemented for the electrophysiology data. In our studies, two microelectrodes were separately implanted in bilateral primary somatosensory cortices (SI) of the rat and fixed in place. One coronal slice covering the electrode tips was selected for functional MRI. Electrode shafts and fixation positions were not included in the image slice to avoid imaging artifacts. The removed scalp was replaced with toothpaste to reduce susceptibility mismatch and prevent Gibbs ringing artifacts in the images. The artifact structure induced in the electrical recordings by the rapidly-switching magnetic fields during image acquisition was characterized by averaging all cycles of scans for each run. The noise structure during imaging was then subtracted from original recordings. The denoised time courses were then used for further analysis in combination with the fMRI data. As an example, the simultaneous acquisition was used to determine the relationship between spontaneous fMRI BOLD signals and band-limited intracortical electrical activity. Simultaneous fMRI and electrophysiological recording in the rodent will provide a platform for many exciting applications in neuroscience in addition to elucidating the relationship between the fMRI BOLD signal and neuronal activity.
Neuroscience, Issue 42, fMRI, electrophysiology, rat, BOLD, brain, resting state
Play Button
Functional Mapping with Simultaneous MEG and EEG
Authors: Hesheng Liu, Naoaki Tanaka, Steven Stufflebeam, Seppo Ahlfors, Matti Hämäläinen.
Institutions: MGH - Massachusetts General Hospital.
We use magnetoencephalography (MEG) and electroencephalography (EEG) to locate and determine the temporal evolution in brain areas involved in the processing of simple sensory stimuli. We will use somatosensory stimuli to locate the hand somatosensory areas, auditory stimuli to locate the auditory cortices, visual stimuli in four quadrants of the visual field to locate the early visual areas. These type of experiments are used for functional mapping in epileptic and brain tumor patients to locate eloquent cortices. In basic neuroscience similar experimental protocols are used to study the orchestration of cortical activity. The acquisition protocol includes quality assurance procedures, subject preparation for the combined MEG/EEG study, and acquisition of evoked-response data with somatosensory, auditory, and visual stimuli. We also demonstrate analysis of the data using the equivalent current dipole model and cortically-constrained minimum-norm estimates. Anatomical MRI data are employed in the analysis for visualization and for deriving boundaries of tissue boundaries for forward modeling and cortical location and orientation constraints for the minimum-norm estimates.
JoVE neuroscience, Issue 40, neuroscience, brain, MEG, EEG, functional imaging
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.