JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
BioTorrents: a file sharing service for scientific data.
PUBLISHED: 01-16-2010
The transfer of scientific data has emerged as a significant challenge, as datasets continue to grow in size and demand for open access sharing increases. Current methods for file transfer do not scale well for large files and can cause long transfer times. In this study we present BioTorrents, a website that allows open access sharing of scientific data and uses the popular BitTorrent peer-to-peer file sharing technology. BioTorrents allows files to be transferred rapidly due to the sharing of bandwidth across multiple institutions and provides more reliable file transfers due to the built-in error checking of the file sharing technology. BioTorrents contains multiple features, including keyword searching, category browsing, RSS feeds, torrent comments, and a discussion forum. BioTorrents is available at
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Published: 02-26-2014
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
23 Related JoVE Articles!
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
Play Button
Automated Sholl Analysis of Digitized Neuronal Morphology at Multiple Scales
Authors: Melinda K. Kutzing, Christopher G. Langhammer, Vincent Luo, Hersh Lakdawala, Bonnie L. Firestein.
Institutions: Rutgers University, Rutgers University.
Neuronal morphology plays a significant role in determining how neurons function and communicate1-3. Specifically, it affects the ability of neurons to receive inputs from other cells2 and contributes to the propagation of action potentials4,5. The morphology of the neurites also affects how information is processed. The diversity of dendrite morphologies facilitate local and long range signaling and allow individual neurons or groups of neurons to carry out specialized functions within the neuronal network6,7. Alterations in dendrite morphology, including fragmentation of dendrites and changes in branching patterns, have been observed in a number of disease states, including Alzheimer's disease8, schizophrenia9,10, and mental retardation11. The ability to both understand the factors that shape dendrite morphologies and to identify changes in dendrite morphologies is essential in the understanding of nervous system function and dysfunction. Neurite morphology is often analyzed by Sholl analysis and by counting the number of neurites and the number of branch tips. This analysis is generally applied to dendrites, but it can also be applied to axons. Performing this analysis by hand is both time consuming and inevitably introduces variability due to experimenter bias and inconsistency. The Bonfire program is a semi-automated approach to the analysis of dendrite and axon morphology that builds upon available open-source morphological analysis tools. Our program enables the detection of local changes in dendrite and axon branching behaviors by performing Sholl analysis on subregions of the neuritic arbor. For example, Sholl analysis is performed on both the neuron as a whole as well as on each subset of processes (primary, secondary, terminal, root, etc.) Dendrite and axon patterning is influenced by a number of intracellular and extracellular factors, many acting locally. Thus, the resulting arbor morphology is a result of specific processes acting on specific neurites, making it necessary to perform morphological analysis on a smaller scale in order to observe these local variations12. The Bonfire program requires the use of two open-source analysis tools, the NeuronJ plugin to ImageJ and NeuronStudio. Neurons are traced in ImageJ, and NeuronStudio is used to define the connectivity between neurites. Bonfire contains a number of custom scripts written in MATLAB (MathWorks) that are used to convert the data into the appropriate format for further analysis, check for user errors, and ultimately perform Sholl analysis. Finally, data are exported into Excel for statistical analysis. A flow chart of the Bonfire program is shown in Figure 1.
Neuroscience, Issue 45, Sholl Analysis, Neurite, Morphology, Computer-assisted, Tracing
Play Button
Using plusTipTracker Software to Measure Microtubule Dynamics in Xenopus laevis Growth Cones
Authors: Alina Stout, Salvatore D'Amico, Tiffany Enzenbacher, Patrick Ebbert, Laura Anne Lowery.
Institutions: Boston College.
Microtubule (MT) plus-end-tracking proteins (+TIPs) localize to the growing plus-ends of MTs and regulate MT dynamics1,2. One of the most well-known and widely-utilized +TIPs for analyzing MT dynamics is the End-Binding protein, EB1, which binds all growing MT plus-ends, and thus, is a marker for MT polymerization1. Many studies of EB1 behavior within growth cones have used time-consuming and biased computer-assisted, hand-tracking methods to analyze individual MTs1-3. Our approach is to quantify global parameters of MT dynamics using the software package, plusTipTracker4, following the acquisition of high-resolution, live images of tagged EB1 in cultured embryonic growth cones5. This software is a MATLAB-based, open-source, user-friendly package that combines automated detection, tracking, visualization, and analysis for movies of fluorescently-labeled +TIPs. Here, we present the protocol for using plusTipTracker for the analysis of fluorescently-labeled +TIP comets in cultured Xenopus laevis growth cones. However, this software can also be used to characterize MT dynamics in various cell types6-8.
Molecular Biology, Issue 91, plusTipTracker, microtubule plus-end-tracking proteins, EB1, growth cone, Xenopus laevis, live cell imaging analysis, microtubule dynamics
Play Button
3D Printing of Preclinical X-ray Computed Tomographic Data Sets
Authors: Evan Doney, Lauren A. Krumdick, Justin M. Diener, Connor A. Wathen, Sarah E. Chapman, Brian Stamile, Jeremiah E. Scott, Matthew J. Ravosa, Tony Van Avermaete, W. Matthew Leevy.
Institutions: University of Notre Dame , University of Notre Dame, University of Notre Dame , University of Notre Dame , MakerBot Industries LLC, University of Notre Dame , University of Notre Dame .
Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.1 However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.2 These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. 3, 4 The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.
Medicine, Issue 73, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Bioengineering, Chemistry, Biochemistry, Materials Science, Engineering, Manufactured Materials, Technology, Animal Structures, Life Sciences (General), 3D printing, X-ray Computed Tomography, CT, CT scans, data extrusion, additive printing, in vivo imaging, clinical techniques, imaging
Play Button
Assessment of Cerebral Lateralization in Children using Functional Transcranial Doppler Ultrasound (fTCD)
Authors: Dorothy V. M. Bishop, Nicholas A. Badcock, Georgina Holt.
Institutions: University of Oxford.
There are many unanswered questions about cerebral lateralization. In particular, it remains unclear which aspects of language and nonverbal ability are lateralized, whether there are any disadvantages associated with atypical patterns of cerebral lateralization, and whether cerebral lateralization develops with age. In the past, researchers interested in these questions tended to use handedness as a proxy measure for cerebral lateralization, but this is unsatisfactory because handedness is only a weak and indirect indicator of laterality of cognitive functions1. Other methods, such as fMRI, are expensive for large-scale studies, and not always feasible with children2. Here we will describe the use of functional transcranial Doppler ultrasound (fTCD) as a cost-effective, non-invasive and reliable method for assessing cerebral lateralization. The procedure involves measuring blood flow in the middle cerebral artery via an ultrasound probe placed just in front of the ear. Our work builds on work by Rune Aaslid, who co-introduced TCD in 1982, and Stefan Knecht, Michael Deppe and their colleagues at the University of Münster, who pioneered the use of simultaneous measurements of left- and right middle cerebral artery blood flow, and devised a method of correcting for heart beat activity. This made it possible to see a clear increase in left-sided blood flow during language generation, with lateralization agreeing well with that obtained using other methods3. The middle cerebral artery has a very wide vascular territory (see Figure 1) and the method does not provide useful information about localization within a hemisphere. Our experience suggests it is particularly sensitive to tasks that involve explicit or implicit speech production. The 'gold standard' task is a word generation task (e.g. think of as many words as you can that begin with the letter 'B') 4, but this is not suitable for young children and others with limited literacy skills. Compared with other brain imaging methods, fTCD is relatively unaffected by movement artefacts from speaking, and so we are able to get a reliable result from tasks that involve describing pictures aloud5,6. Accordingly, we have developed a child-friendly task that involves looking at video-clips that tell a story, and then describing what was seen.
Neuroscience, Issue 43, functional transcranial Doppler ultrasound, cerebral lateralization, language, child
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
Play Button
Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
Authors: Thomas Z. Thompson, Farres Obeidin, Alisa A. Davidoff, Cody L. Hightower, Christohper Z. Johnson, Sonya L. Rice, Rebecca-Lyn Sokolove, Brandon K. Taylor, John M. Tuck, William G. Pearson, Jr..
Institutions: Georgia Regents University, New York University, Georgia Regents University, Georgia Regents University.
Characterizing hyolaryngeal movement is important to dysphagia research. Prior methods require multiple measurements to obtain one kinematic measurement whereas coordinate mapping of hyolaryngeal mechanics using Modified Barium Swallow (MBS) uses one set of coordinates to calculate multiple variables of interest. For demonstration purposes, ten kinematic measurements were generated from one set of coordinates to determine differences in swallowing two different bolus types. Calculations of hyoid excursion against the vertebrae and mandible are correlated to determine the importance of axes of reference. To demonstrate coordinate mapping methodology, 40 MBS studies were randomly selected from a dataset of healthy normal subjects with no known swallowing impairment. A 5 ml thin-liquid bolus and a 5 ml pudding swallows were measured from each subject. Nine coordinates, mapping the cranial base, mandible, vertebrae and elements of the hyolaryngeal complex, were recorded at the frames of minimum and maximum hyolaryngeal excursion. Coordinates were mathematically converted into ten variables of hyolaryngeal mechanics. Inter-rater reliability was evaluated by Intraclass correlation coefficients (ICC). Two-tailed t-tests were used to evaluate differences in kinematics by bolus viscosity. Hyoid excursion measurements against different axes of reference were correlated. Inter-rater reliability among six raters for the 18 coordinates ranged from ICC = 0.90 - 0.97. A slate of ten kinematic measurements was compared by subject between the six raters. One outlier was rejected, and the mean of the remaining reliability scores was ICC = 0.91, 0.84 - 0.96, 95% CI. Two-tailed t-tests with Bonferroni corrections comparing ten kinematic variables (5 ml thin-liquid vs. 5 ml pudding swallows) showed statistically significant differences in hyoid excursion, superior laryngeal movement, and pharyngeal shortening (p < 0.005). Pearson correlations of hyoid excursion measurements from two different axes of reference were: r = 0.62, r2 = 0.38, (thin-liquid); r = 0.52, r2 = 0.27, (pudding). Obtaining landmark coordinates is a reliable method to generate multiple kinematic variables from video fluoroscopic images useful in dysphagia research.
Medicine, Issue 87, videofluoroscopy, modified barium swallow studies, hyolaryngeal kinematics, deglutition, dysphagia, dysphagia research, hyolaryngeal complex
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Voltage Biasing, Cyclic Voltammetry, & Electrical Impedance Spectroscopy for Neural Interfaces
Authors: Seth J. Wilks, Tom J. Richner, Sarah K. Brodnick, Daryl R. Kipke, Justin C. Williams, Kevin J. Otto.
Institutions: Purdue University, University of Wisconsin-Madison, University of Michigan , Purdue University.
Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays.
Neuroscience, Issue 60, neuroprosthesis, electrode-tissue interface, rejuvenation, neural engineering, neuroscience, neural implant, electrode, brain-computer interface, electrochemistry
Play Button
Absolute Quantum Yield Measurement of Powder Samples
Authors: Luis A. Moreno.
Institutions: Hitachi High Technologies America.
Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. Reference and Sample measurement using direct excitation and indirect excitation. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct quantum yield calculation. Corrected quantum yield calculation. Chromaticity coordinates calculation using Report Generator program. The Hitachi F-7000 Quantum Yield Measurement System offer advantages for this application, as follows: High sensitivity (S/N ratio 800 or better RMS). Signal is the Raman band of water measured under the following conditions: Ex wavelength 350 nm, band pass Ex and Em 5 nm, response 2 sec), noise is measured at the maximum of the Raman peak. High sensitivity allows measurement of samples even with low quantum yield. Using this system we have measured quantum yields as low as 0.1 for a sample of salicylic acid and as high as 0.8 for a sample of magnesium tungstate. Highly accurate measurement with a dynamic range of 6 orders of magnitude allows for measurements of both sharp scattering peaks with high intensity, as well as broad fluorescence peaks of low intensity under the same conditions. High measuring throughput and reduced light exposure to the sample, due to a high scanning speed of up to 60,000 nm/minute and automatic shutter function. Measurement of quantum yield over a wide wavelength range from 240 to 800 nm. Accurate quantum yield measurements are the result of collecting instrument spectral response and integrating sphere correction factors before measuring the sample. Large selection of calculated parameters provided by dedicated and easy to use software. During this video we will measure sodium salicylate in powder form which is known to have a quantum yield value of 0.4 to 0.5.
Molecular Biology, Issue 63, Powders, Quantum, Yield, F-7000, Quantum Yield, phosphor, chromaticity, Photo-luminescence
Play Button
One-channel Cell-attached Patch-clamp Recording
Authors: Bruce A. Maki, Kirstie A. Cummings, Meaghan A. Paganelli, Swetha E. Murthy, Gabriela K. Popescu.
Institutions: University at Buffalo, SUNY, University at Buffalo, SUNY, The Scripps Research Institute, University at Buffalo, SUNY.
Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease.
Neuroscience, Issue 88, biophysics, ion channels, single-channel recording, NMDA receptors, gating, electrophysiology, patch-clamp, kinetic analysis
Play Button
Acquiring Fluorescence Time-lapse Movies of Budding Yeast and Analyzing Single-cell Dynamics using GRAFTS
Authors: Christopher J. Zopf, Narendra Maheshri.
Institutions: Massachusetts Institute of Technology.
Fluorescence time-lapse microscopy has become a powerful tool in the study of many biological processes at the single-cell level. In particular, movies depicting the temporal dependence of gene expression provide insight into the dynamics of its regulation; however, there are many technical challenges to obtaining and analyzing fluorescence movies of single cells. We describe here a simple protocol using a commercially available microfluidic culture device to generate such data, and a MATLAB-based, graphical user interface (GUI) -based software package to quantify the fluorescence images. The software segments and tracks cells, enables the user to visually curate errors in the data, and automatically assigns lineage and division times. The GUI further analyzes the time series to produce whole cell traces as well as their first and second time derivatives. While the software was designed for S. cerevisiae, its modularity and versatility should allow it to serve as a platform for studying other cell types with few modifications.
Microbiology, Issue 77, Cellular Biology, Molecular Biology, Genetics, Biophysics, Saccharomyces cerevisiae, Microscopy, Fluorescence, Cell Biology, microscopy/fluorescence and time-lapse, budding yeast, gene expression dynamics, segmentation, lineage tracking, image tracking, software, yeast, cells, imaging
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
A Practical Guide to Phylogenetics for Nonexperts
Authors: Damien O'Halloran.
Institutions: The George Washington University.
Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.
Basic Protocol, Issue 84, phylogenetics, multiple sequence alignments, phylogenetic tree, BLAST executables, basic local alignment search tool, Bayesian models
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
Play Button
Measuring Blood Pressure in Mice using Volume Pressure Recording, a Tail-cuff Method
Authors: Alan Daugherty, Debra Rateri, Lu Hong, Anju Balakrishnan.
Institutions: University of Kentucky.
The CODA 8-Channel High Throughput Non-Invasive Blood Pressure system measures the blood pressure in up to 8 mice or rats simultaneously. The CODA tail-cuff system uses Volume Pressure Recording (VPR) to measure the blood pressure by determining the tail blood volume. A specially designed differential pressure transducer and an occlusion tail-cuff measure the total blood volume in the tail without the need to obtain the individual pulse signal. Special attention is afforded to the length of the occlusion cuff in order to derive the most accurate blood pressure readings. VPR can easily obtain readings on dark-skinned rodents, such as C57BL6 mice and is MRI compatible. The CODA system provides you with measurements of six (6) different blood pressure parameters; systolic and diastolic blood pressure, heart rate, mean blood pressure, tail blood flow, and tail blood volume. Measurements can be made on either awake or anesthetized mice or rats. The CODA system includes a controller, laptop computer, software, cuffs, animal holders, infrared warming pads, and an infrared thermometer. There are seven different holder sizes for mice as small as 8 grams to rats as large as 900 grams.
Medicine, Issue 27, blood pressure, systolic, diastolic, tail-cuff, mouse, rat
Play Button
Facilitating the Analysis of Immunological Data with Visual Analytic Techniques
Authors: David C. Shih, Kevin C. Ho, Kyle M. Melnick, Ronald A. Rensink, Tobias R. Kollmann, Edgardo S. Fortuno III.
Institutions: University of British Columbia, University of British Columbia, University of British Columbia.
Visual analytics (VA) has emerged as a new way to analyze large dataset through interactive visual display. We demonstrated the utility and the flexibility of a VA approach in the analysis of biological datasets. Examples of these datasets in immunology include flow cytometry, Luminex data, and genotyping (e.g., single nucleotide polymorphism) data. Contrary to the traditional information visualization approach, VA restores the analysis power in the hands of analyst by allowing the analyst to engage in real-time data exploration process. We selected the VA software called Tableau after evaluating several VA tools. Two types of analysis tasks analysis within and between datasets were demonstrated in the video presentation using an approach called paired analysis. Paired analysis, as defined in VA, is an analysis approach in which a VA tool expert works side-by-side with a domain expert during the analysis. The domain expert is the one who understands the significance of the data, and asks the questions that the collected data might address. The tool expert then creates visualizations to help find patterns in the data that might answer these questions. The short lag-time between the hypothesis generation and the rapid visual display of the data is the main advantage of a VA approach.
Immunology, Issue 47, Visual analytics, flow cytometry, Luminex, Tableau, cytokine, innate immunity, single nucleotide polymorphism
Play Button
Concentration Determination of Nucleic Acids and Proteins Using the Micro-volume Bio-spec Nano Spectrophotometer
Authors: Suja Sukumaran.
Institutions: Scientific Instruments.
Nucleic Acid quantitation procedures have advanced significantly in the last three decades. More and more, molecular biologists require consistent small-volume analysis of nucleic acid samples for their experiments. The BioSpec-nano provides a potential solution to the problems of inaccurate, non-reproducible results, inherent in current DNA quantitation methods, via specialized optics and a sensitive PDA detector. The BioSpec-nano also has automated functionality such that mounting, measurement, and cleaning are done by the instrument, thereby eliminating tedious, repetitive, and inconsistent placement of the fiber optic element and manual cleaning. In this study, data is presented on the quantification of DNA and protein, as well as on measurement reproducibility and accuracy. Automated sample contact and rapid scanning allows measurement in three seconds, resulting in excellent throughput. Data analysis is carried out using the built-in features of the software. The formula used for calculating DNA concentration is: Sample Concentration = DF · (OD260-OD320)· NACF (1) Where DF = sample dilution factor and NACF = nucleic acid concentration factor. The Nucleic Acid concentration factor is set in accordance with the analyte selected1. Protein concentration results can be expressed as μg/ mL or as moles/L by entering e280 and molecular weight values respectively. When residue values for Tyr, Trp and Cysteine (S-S bond) are entered in the e280Calc tab, the extinction coefficient values are calculated as e280 = 5500 x (Trp residues) + 1490 x (Tyr residues) + 125 x (cysteine S-S bond). The e280 value is used by the software for concentration calculation. In addition to concentration determination of nucleic acids and protein, the BioSpec-nano can be used as an ultra micro-volume spectrophotometer for many other analytes or as a standard spectrophotometer using 5 mm pathlength cells.
Molecular Biology, Issue 48, Nucleic acid quantitation, protein quantitation, micro-volume analysis, label quantitation
Play Button
Analyzing and Building Nucleic Acid Structures with 3DNA
Authors: Andrew V. Colasanti, Xiang-Jun Lu, Wilma K. Olson.
Institutions: Rutgers - The State University of New Jersey, Columbia University .
The 3DNA software package is a popular and versatile bioinformatics tool with capabilities to analyze, construct, and visualize three-dimensional nucleic acid structures. This article presents detailed protocols for a subset of new and popular features available in 3DNA, applicable to both individual structures and ensembles of related structures. Protocol 1 lists the set of instructions needed to download and install the software. This is followed, in Protocol 2, by the analysis of a nucleic acid structure, including the assignment of base pairs and the determination of rigid-body parameters that describe the structure and, in Protocol 3, by a description of the reconstruction of an atomic model of a structure from its rigid-body parameters. The most recent version of 3DNA, version 2.1, has new features for the analysis and manipulation of ensembles of structures, such as those deduced from nuclear magnetic resonance (NMR) measurements and molecular dynamic (MD) simulations; these features are presented in Protocols 4 and 5. In addition to the 3DNA stand-alone software package, the w3DNA web server, located at, provides a user-friendly interface to selected features of the software. Protocol 6 demonstrates a novel feature of the site for building models of long DNA molecules decorated with bound proteins at user-specified locations.
Genetics, Issue 74, Molecular Biology, Biochemistry, Bioengineering, Biophysics, Genomics, Chemical Biology, Quantitative Biology, conformational analysis, DNA, high-resolution structures, model building, molecular dynamics, nucleic acid structure, RNA, visualization, bioinformatics, three-dimensional, 3DNA, software
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.