JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Initial fitness recovery of HIV-1 is associated with quasispecies heterogeneity and can occur without modifications in the consensus sequence.
PUBLISHED: 03-29-2010
Fitness recovery of HIV-1 "in vitro" was studied using viral clones that had their fitness decreased as a result of plaque-to-plaque passages.
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Published: 06-16-2011
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
23 Related JoVE Articles!
Play Button
Dissecting Host-virus Interaction in Lytic Replication of a Model Herpesvirus
Authors: Xiaonan Dong, Pinghui Feng.
Institutions: UT Southwestern Medical Center, UT Southwestern Medical Center.
In response to viral infection, a host develops various defensive responses, such as activating innate immune signaling pathways that lead to antiviral cytokine production1,2. In order to colonize the host, viruses are obligate to evade host antiviral responses and manipulate signaling pathways. Unraveling the host-virus interaction will shed light on the development of novel therapeutic strategies against viral infection. Murine γHV68 is closely related to human oncogenic Kaposi's sarcoma-associated herpesvirus and Epsten-Barr virus3,4. γHV68 infection in laboratory mice provides a tractable small animal model to examine the entire course of host responses and viral infection in vivo, which are not available for human herpesviruses. In this protocol, we present a panel of methods for phenotypic characterization and molecular dissection of host signaling components in γHV68 lytic replication both in vivo and ex vivo. The availability of genetically modified mouse strains permits the interrogation of the roles of host signaling pathways during γHV68 acute infection in vivo. Additionally, mouse embryonic fibroblasts (MEFs) isolated from these deficient mouse strains can be used to further dissect roles of these molecules during γHV68 lytic replication ex vivo. Using virological and molecular biology assays, we can pinpoint the molecular mechanism of host-virus interactions and identify host and viral genes essential for viral lytic replication. Finally, a bacterial artificial chromosome (BAC) system facilitates the introduction of mutations into the viral factor(s) that specifically interrupt the host-virus interaction. Recombinant γHV68 carrying these mutations can be used to recapitulate the phenotypes of γHV68 lytic replication in MEFs deficient in key host signaling components. This protocol offers an excellent strategy to interrogate host-pathogen interaction at multiple levels of intervention in vivo and ex vivo. Recently, we have discovered that γHV68 usurps an innate immune signaling pathway to promote viral lytic replication5. Specifically, γHV68 de novo infection activates the immune kinase IKKβ and activated IKKβ phosphorylates the master viral transcription factor, replication and transactivator (RTA), to promote viral transcriptional activation. In doing so, γHV68 efficiently couples its transcriptional activation to host innate immune activation, thereby facilitating viral transcription and lytic replication. This study provides an excellent example that can be applied to other viruses to interrogate host-virus interaction.
Immunology, Issue 56, herpesvirus, gamma herpesvirus 68, γHV68, signaling pathways, host-virus interaction, viral lytic replication
Play Button
Detection of Neuritic Plaques in Alzheimer's Disease Mouse Model
Authors: Philip T.T. Ly, Fang Cai, Weihong Song.
Institutions: The University of British Columbia.
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaque formation is one of the pathological hallmarks of Alzheimer's disease. The central component of neuritic plaques is a small filamentous protein called amyloid β protein (Aβ)1, which is derived from sequential proteolytic cleavage of the beta-amyloid precursor protein (APP) by β-secretase and γ-secretase. The amyloid hypothesis entails that Aγ-containing plaques as the underlying toxic mechanism in AD pathology2. The postmortem analysis of the presence of neuritic plaque confirms the diagnosis of AD. To further our understanding of Aγ neurobiology in AD pathogenesis, various mouse strains expressing AD-related mutations in the human APP genes were generated. Depending on the severity of the disease, these mice will develop neuritic plaques at different ages. These mice serve as invaluable tools for studying the pathogenesis and drug development that could affect the APP processing pathway and neuritic plaque formation. In this protocol, we employ an immunohistochemical method for specific detection of neuritic plaques in AD model mice. We will specifically discuss the preparation from extracting the half brain, paraformaldehyde fixation, cryosectioning, and two methods to detect neurotic plaques in AD transgenic mice: immunohistochemical detection using the ABC and DAB method and fluorescent detection using thiofalvin S staining method.
Neuroscience, Issue 53, Alzheimer’s disease, neuritic plaques, Amyloid β protein, APP, transgenic mouse
Play Button
Ex Vivo Organotypic Corneal Model of Acute Epithelial Herpes Simplex Virus Type I Infection
Authors: Oleg Alekseev, Anh H. Tran, Jane Azizkhan-Clifford.
Institutions: Drexel University College of Medicine.
Herpes keratitis is one of the most severe pathologies associated with the herpes simplex virus-type 1 (HSV-1). Herpes keratitis is currently the leading cause of both cornea-derived and infection-associated blindness in the developed world. Typical presentation of herpes keratitis includes infection of the corneal epithelium and sometimes the deeper corneal stroma and endothelium, leading to such permanent corneal pathologies as scarring, thinning, and opacity 1. Corneal HSV-1 infection is traditionally studied in two types of experimental models. The in vitro model, in which cultured monolayers of corneal epithelial cells are infected in a Petri dish, offers simplicity, high level of replicability, fast experiments, and relatively low costs. On the other hand, the in vivo model, in which animals such as rabbits or mice are inoculated directly in the cornea, offers a highly sophisticated physiological system, but has higher costs, longer experiments, necessary animal care, and a greater degree of variability. In this video article, we provide a detailed demonstration of a new ex vivo model of corneal epithelial HSV-1 infection, which combines the strengths of both the in vitro and the in vivo models. The ex vivo model utilizes intact corneas organotypically maintained in culture and infected with HSV-1. The use of the ex vivo model allows for highly physiologically-based conclusions, yet it is rather inexpensive and requires time commitment comparable to that of the in vitro model.
Neuroscience, Issue 69, Virology, herpes, cornea, HSV, ex vivo, explant, corneal epithelium, organotypic, keratitis, eye, vision, ophthalmology
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Amplifying and Quantifying HIV-1 RNA in HIV Infected Individuals with Viral Loads Below the Limit of Detection by Standard Clinical Assays
Authors: Helene Mens, Mary Kearney, Ann Wiegand, Jonathan Spindler, Frank Maldarelli, John W. Mellors, John M. Coffin.
Institutions: NCI-Frederick, University of Pittsburgh, Tuffts University.
Amplifying viral genes and quantifying HIV-1 RNA in HIV-1 infected individuals with viral loads below the limit of detection by standard assays (below 50-75 copies/ml) is necessary to gain insight to viral dynamics and virus host interactions in patients who naturally control the infection and those who are on combination antiretroviral therapy (cART). Here we describe how to amplify viral genomes by single genome sequencing (the SGS protocol) 13, 19 and how to accurately quantify HIV-1 RNA in patients with low viral loads (the single-copy assay (SCA) protocol) 12, 20. The single-copy assay is a real-time PCR assay with sensitivity depending on the volume of plasma being assayed. If a single virus genome is detected in 7 ml of plasma, then the RNA copy number is reported to be 0.3 copies/ml. The assay has an internal control testing for the efficiency of RNA extraction, and controls for possible amplification from DNA or contamination. Patient samples are measured in triplicate. The single-genome sequencing assay (SGS), now widely used and considered to be non-labor intensive 3, 7, 12, 14, 15,is a limiting dilution assay, in which endpoint diluted cDNA product is spread over a 96-well plate. According to a Poisson distribution, when less than 1/3 of the wells give product, there is an 80% chance of the PCR product being resultant of amplification from a single cDNA molecule. SGS has the advantage over cloning of not being subjected to resampling and not being biased by PCR-introduced recombination 19. However, the amplification success of SCA and SGS depend on primer design. Both assays were developed for HIV-1 subtype B, but can be adapted for other subtypes and other regions of the genome by changing primers, probes, and standards.
Immunology, Issue 55, single genome sequencing, SGS, real-time PCR, single-copy assay, SCA, HIV-1, ultra-sensitive, RNA extraction
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Prediction of HIV-1 Coreceptor Usage (Tropism) by Sequence Analysis using a Genotypic Approach
Authors: Saleta Sierra, Rolf Kaiser, Nadine Lübke, Alexander Thielen, Eugen Schuelter, Eva Heger, Martin Däumer, Stefan Reuter, Stefan Esser, Gerd Fätkenheuer, Herbert Pfister, Mark Oette, Thomas Lengauer.
Institutions: University of Cologne, Max Planck Institute for Informatics, Institute for Immune genetics, University of Duesseldorf, University of Essen, University of Cologne, Augustinerinnen Hospital.
Maraviroc (MVC) is the first licensed antiretroviral drug from the class of coreceptor antagonists. It binds to the host coreceptor CCR5, which is used by the majority of HIV strains in order to infect the human immune cells (Fig. 1). Other HIV isolates use a different coreceptor, the CXCR4. Which receptor is used, is determined in the virus by the Env protein (Fig. 2). Depending on the coreceptor used, the viruses are classified as R5 or X4, respectively. MVC binds to the CCR5 receptor inhibiting the entry of R5 viruses into the target cell. During the course of disease, X4 viruses may emerge and outgrow the R5 viruses. Determination of coreceptor usage (also called tropism) is therefore mandatory prior to administration of MVC, as demanded by EMA and FDA. The studies for MVC efficiency MOTIVATE, MERIT and 1029 have been performed with the Trofile assay from Monogram, San Francisco, U.S.A. This is a high quality assay based on sophisticated recombinant tests. The acceptance for this test for daily routine is rather low outside of the U.S.A., since the European physicians rather tend to work with decentralized expert laboratories, which also provide concomitant resistance testing. These laboratories have undergone several quality assurance evaluations, the last one being presented in 20111. For several years now, we have performed tropism determinations based on sequence analysis from the HIV env-V3 gene region (V3)2. This region carries enough information to perform a reliable prediction. The genotypic determination of coreceptor usage presents advantages such as: shorter turnover time (equivalent to resistance testing), lower costs, possibility to adapt the results to the patients' needs and possibility of analysing clinical samples with very low or even undetectable viral load (VL), particularly since the number of samples analysed with VL<1000 copies/μl roughly increased in the last years (Fig. 3). The main steps for tropism testing (Fig. 4) demonstrated in this video: 1. Collection of a blood sample 2. Isolation of the HIV RNA from the plasma and/or HIV proviral DNA from blood mononuclear cells 3. Amplification of the env region 4. Amplification of the V3 region 5. Sequence reaction of the V3 amplicon 6. Purification of the sequencing samples 7. Sequencing the purified samples 8. Sequence editing 9. Sequencing data interpretation and tropism prediction
Immunology, Issue 58, HIV-1, coreceptor, coreceptor antagonist, prediction of coreceptor usage, tropism, R5, X4, maraviroc, MVC
Play Button
Analysis of RNA Processing Reactions Using Cell Free Systems: 3' End Cleavage of Pre-mRNA Substrates in vitro
Authors: Joseph Jablonski, Mark Clementz, Kevin Ryan, Susana T. Valente.
Institutions: The Scripps Research Institute, City College of New York.
The 3’ end of mammalian mRNAs is not formed by abrupt termination of transcription by RNA polymerase II (RNPII). Instead, RNPII synthesizes precursor mRNA beyond the end of mature RNAs, and an active process of endonuclease activity is required at a specific site. Cleavage of the precursor RNA normally occurs 10-30 nt downstream from the consensus polyA site (AAUAAA) after the CA dinucleotides. Proteins from the cleavage complex, a multifactorial protein complex of approximately 800 kDa, accomplish this specific nuclease activity. Specific RNA sequences upstream and downstream of the polyA site control the recruitment of the cleavage complex. Immediately after cleavage, pre-mRNAs are polyadenylated by the polyA polymerase (PAP) to produce mature stable RNA messages. Processing of the 3’ end of an RNA transcript may be studied using cellular nuclear extracts with specific radiolabeled RNA substrates. In sum, a long 32P-labeled uncleaved precursor RNA is incubated with nuclear extracts in vitro, and cleavage is assessed by gel electrophoresis and autoradiography. When proper cleavage occurs, a shorter 5’ cleaved product is detected and quantified. Here, we describe the cleavage assay in detail using, as an example, the 3’ end processing of HIV-1 mRNAs.
Infectious Diseases, Issue 87, Cleavage, Polyadenylation, mRNA processing, Nuclear extracts, 3' Processing Complex
Play Button
Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery
Authors: Jiehua Zhou, Haitang Li, Jane Zhang, Swiderski Piotr, John Rossi.
Institutions: Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery. Herein, we firstly discuss the selection and identification of 2'-F modified anti-HIV gp120 RNA aptamers. Using a conventional nitrocellulose filter SELEX method, several new aptamers with nanomolar affinity were isolated from a 50 random nt RNA library. In order to successfully obtain bound species with higher affinity, the selection stringency is carefully controlled by adjusting the conditions. The selected aptamers can specifically bind and be rapidly internalized into cells expressing the HIV-1 envelope protein. Additionally, the aptamers alone can neutralize HIV-1 infectivity. Based upon the best aptamer A-1, we also create a novel dual inhibitory function anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. Further, we utilize the gp120 aptamer-siRNA chimeras for cell-type specific delivery of the siRNA into HIV-1 infected cells. This dual function chimera shows considerable potential for combining various nucleic acid therapeutic agents (aptamer and siRNA) in suppressing HIV-1 infection, making the aptamer-siRNA chimeras attractive therapeutic candidates for patients failing highly active antiretroviral therapy (HAART).
Immunology, Issue 52, SELEX (Systematic Evolution of Ligands by EXponential enrichment), RNA aptamer, HIV-1 gp120, RNAi (RNA interference), siRNA (small interfering RNA), cell-type specific delivery
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Viral Concentration Determination Through Plaque Assays: Using Traditional and Novel Overlay Systems
Authors: Alan Baer, Kylene Kehn-Hall.
Institutions: George Mason University.
Plaque assays remain one of the most accurate methods for the direct quantification of infectious virons and antiviral substances through the counting of discrete plaques (infectious units and cellular dead zones) in cell culture. Here we demonstrate how to perform a basic plaque assay, and how differing overlays and techniques can affect plaque formation and production. Typically solid or semisolid overlay substrates, such as agarose or carboxymethyl cellulose, have been used to restrict viral spread, preventing indiscriminate infection through the liquid growth medium. Immobilized overlays restrict cellular infection to the immediately surrounding monolayer, allowing the formation of discrete countable foci and subsequent plaque formation. To overcome the difficulties inherent in using traditional overlays, a novel liquid overlay utilizing microcrystalline cellulose and carboxymethyl cellulose sodium has been increasingly used as a replacement in the standard plaque assay. Liquid overlay plaque assays can be readily performed in either standard 6 or 12 well plate formats as per traditional techniques and require no special equipment. Due to its liquid state and subsequent ease of application and removal, microculture plate formats may alternatively be utilized as a rapid, accurate and high throughput alternative to larger scale viral titrations. Use of a non heated viscous liquid polymer offers the opportunity to streamline work, conserves reagents, incubator space, and increases operational safety when used in traditional or high containment labs as no reagent heating or glassware are required. Liquid overlays may also prove more sensitive than traditional overlays for certain heat labile viruses.
Virology, Issue 93, Plaque Assay, Virology, Viral Quantification, Cellular Overlays, Agarose, Avicel, Crystal Violet Staining, Serial Dilutions, Rift Valley fever virus, Venezuelan Equine Encephalitis, Influenza
Play Button
Plaque Assay for Murine Norovirus
Authors: Mariam B. Gonzalez-Hernandez, Juliana Bragazzi Cunha, Christiane E. Wobus.
Institutions: University of Michigan, Ann Arbor.
Murine norovirus (MNV) is the only member of the Norovirus genus that efficiently grows in tissue culture 1, 2. Cell lysis and cytopathic effect (CPE) are observed during MNV-1 infection of murine dendritic cells or macrophages 1. This property of MNV-1 can be used to quantify the number of infectious particles in a given sample by performing a plaque assay 1. The plaque assay relies on the ability of MNV-1 to lyse cells and to form holes in a confluent cell monolayer, which are called plaques 3. Multiple techniques can be used to detect viral infections in tissue culture, harvested tissue, clinical, and environmental samples, but not all measure the number of infectious particles (e.g. qRT-PCR). One way to quantify infectious viral particles is to perform a plaque assay 3, which will be described in detail below. A variation on the MNV plaque assay is the fluorescent focus assay, where MNV antigen is immunostained in cell monolayers 4. This assay can be faster, since viral antigen expression precedes plaque formation. It is also useful for titrating viruses unable to form plaques. However, the fluorescent focus assay requires additional resources beyond those of the plaque assay, such as antibodies and a microscope to count focus-forming units. Infectious MNV can also be quantified by determining the 50% Tissue Culture Infective Dose (TCID50) 3. This assay measures the amount of virus required to produce CPE in 50% of inoculated tissue culture cells by endpoint titration 5. However, its limit of detection is higher compared to a plaque assay 4. In this article, we describe a plaque assay protocol that can be used to effectively determine the number of infectious MNV particles present in biological or environmental samples 1, 4, 6. This method is based on the preparation of 10-fold serial dilutions of MNV-containing samples, which are used to inoculate a monolayer of permissive cells (RAW 264.7 murine macrophage cells). Virus is allowed to attach to the cell monolayer for a given period of time and then aspirated before covering cells with a mixture of agarose and cell culture media. The agar enables the spread of viral progeny to neighboring cells while limiting spread to distantly located cells. Consequently, infected cells are lysed and form holes in the monolayer known as plaques. Upon sufficient spread of virus, plaques become visible following staining of cells with dyes, like neutral red, methylene blue, or crystal violet. At low dilutions, each plaque originates from one infectious viral particle and its progeny, which spread to neighboring cells. Thus, counting the number of plaques allows one to calculate plaque-forming units (PFU) present in the undiluted sample 3.
Virology, Issue 66, Immunology, Infection, Medicine, Microbiology, Molecular Biology, plaque assay, norovirus, murine norovirus, MNV, murine macrophages, RAW 264.7 cells
Play Button
Using Reverse Genetics to Manipulate the NSs Gene of the Rift Valley Fever Virus MP-12 Strain to Improve Vaccine Safety and Efficacy
Authors: Birte Kalveram, Olga Lihoradova, Sabarish V. Indran, Tetsuro Ikegami.
Institutions: University of Texas Medical Branch.
Rift Valley fever virus (RVFV), which causes hemorrhagic fever, neurological disorders or blindness in humans, and a high rate abortion and fetal malformation in ruminants1, has been classified as a HHS/USDA overlap select agent and a risk group 3 pathogen. It belongs to the genus Phlebovirus in the family Bunyaviridae and is one of the most virulent members of this family. Several reverse genetics systems for the RVFV MP-12 vaccine strain2,3 as well as wild-type RVFV strains 4-6, including ZH548 and ZH501, have been developed since 2006. The MP-12 strain (which is a risk group 2 pathogen and a non-select agent) is highly attenuated by several mutations in its M- and L-segments, but still carries virulent S-segment RNA3, which encodes a functional virulence factor, NSs. The rMP12-C13type (C13type) carrying 69% in-frame deletion of NSs ORF lacks all the known NSs functions, while it replicates as efficient as does MP-12 in VeroE6 cells lacking type-I IFN. NSs induces a shut-off of host transcription including interferon (IFN)-beta mRNA7,8 and promotes degradation of double-stranded RNA-dependent protein kinase (PKR) at the post-translational level.9,10 IFN-beta is transcriptionally upregulated by interferon regulatory factor 3 (IRF-3), NF-kB and activator protein-1 (AP-1), and the binding of IFN-beta to IFN-alpha/beta receptor (IFNAR) stimulates the transcription of IFN-alpha genes or other interferon stimulated genes (ISGs)11, which induces host antiviral activities, whereas host transcription suppression including IFN-beta gene by NSs prevents the gene upregulations of those ISGs in response to viral replication although IRF-3, NF-kB and activator protein-1 (AP-1) can be activated by RVFV7. . Thus, NSs is an excellent target to further attenuate MP-12, and to enhance host innate immune responses by abolishing the IFN-beta suppression function. Here, we describe a protocol for generating a recombinant MP-12 encoding mutated NSs, and provide an example of a screening method to identify NSs mutants lacking the function to suppress IFN-beta mRNA synthesis. In addition to its essential role in innate immunity, type-I IFN is important for the maturation of dendritic cells and the induction of an adaptive immune response12-14. Thus, NSs mutants inducing type-I IFN are further attenuated, but at the same time are more efficient at stimulating host immune responses than wild-type MP-12, which makes them ideal candidates for vaccination approaches.
Immunology, Issue 57, Rift Valley fever virus, reverse genetics, NSs, MP-12, vaccine development
Play Button
A Human Ex Vivo Atherosclerotic Plaque Model to Study Lesion Biology
Authors: Christian Erbel, Deniz Okuyucu, Mohammadreza Akhavanpoor, Li Zhao, Susanne Wangler, Maani Hakimi, Andreas Doesch, Thomas J. Dengler, Hugo A. Katus, Christian A. Gleissner.
Institutions: University of Heidelberg, University of Heidelberg, SLK Hospital am Plattenwald.
Atherosclerosis is a chronic inflammatory disease of the vasculature. There are various methods to study the inflammatory compound in atherosclerotic lesions. Mouse models are an important tool to investigate inflammatory processes in atherogenesis, but these models suffer from the phenotypic and functional differences between the murine and human immune system. In vitro cell experiments are used to specifically evaluate cell type-dependent changes caused by a substance of interest, but culture-dependent variations and the inability to analyze the influence of specific molecules in the context of the inflammatory compound in atherosclerotic lesions limit the impact of the results. In addition, measuring levels of a molecule of interest in human blood helps to further investigate its clinical relevance, but this represents systemic and not local inflammation. Therefore, we here describe a plaque culture model to study human atherosclerotic lesion biology ex vivo. In short, fresh plaques are obtained from patients undergoing endarterectomy or coronary artery bypass grafting and stored in RPMI medium on ice until usage. The specimens are cut into small pieces followed by random distribution into a 48-well plate, containing RPMI medium in addition to a substance of interest such as cytokines or chemokines alone or in combination for defined periods of time. After incubation, the plaque pieces can be shock frozen for mRNA isolation, embedded in Paraffin or OCT for immunohistochemistry staining or smashed and lysed for western blotting. Furthermore, cells may be isolated from the plaque for flow cytometry analysis. In addition, supernatants can be collected for protein measurement by ELISA. In conclusion, the presented ex vivo model opens the possibility to further study inflammatory lesional biology, which may result in identification of novel disease mechanisms and therapeutic targets.
Medicine, Issue 87, ex vivo model, human, tissue culture, atherosclerosis, immune response, inflammation, chronic inflammatory disease
Play Button
Reverse Genetics Mediated Recovery of Infectious Murine Norovirus
Authors: Armando Arias, Luis Ureña, Lucy Thorne, Muhammad A. Yunus, Ian Goodfellow.
Institutions: Imperial College London .
Human noroviruses are responsible for most cases of human gastroenteritis (GE) worldwide and are recurrent problem in environments where close person-to-person contact cannot be avoided 1, 2. During the last few years an increase in the incidence of outbreaks in hospitals has been reported, causing significant disruptions to their operational capacity as well as large economic losses. The identification of new antiviral approaches has been limited due to the inability of human noroviruses to complete a productive infection in cell culture 3. The recent isolation of a murine norovirus (MNV), closely related to human norovirus 4 but which can be propagated in cells 5 has opened new avenues for the investigation of these pathogens 6, 7. MNV replication results in the synthesis of new positive sense genomic and subgenomic RNA molecules, the latter of which corresponds to the last third of the viral genome (Figure 1). MNV contains four different open reading frames (ORFs), of which ORF1 occupies most of the genome and encodes seven non-structural proteins (NS1-7) released from a polyprotein precursor. ORF2 and ORF3 are contained within the subgenomic RNA region and encode the capsid proteins (VP1 and VP2, respectively) (Figure 1). Recently, we have identified that additional ORF4 overlapping ORF2 but in a different reading frame is functional and encodes for a mitochondrial localised virulence factor (VF1) 8. Replication for positive sense RNA viruses, including noroviruses, takes place in the cytoplasm resulting in the synthesis of new uncapped RNA genomes. To promote viral translation, viruses exploit different strategies aimed at recruiting the cellular protein synthesis machinery 9-11. Interestingly, norovirus translation is driven by the multifunctional viral protein-primer VPg covalently linked to the 5' end of both genomic and subgenomic RNAs 12-14. This sophisticated mechanism of translation is likely to be a major factor in the limited efficiency of viral recovery by conventional reverse genetics approaches. Here we report two different strategies based on the generation of murine norovirus-1 (referred to as MNV herewith) transcripts capped at the 5' end. One of the methods involves both in vitro synthesis and capping of viral RNA, whereas the second approach entails the transcription of MNV cDNA in cells expressing T7 RNA polymerase. The availability of these reverse genetics systems for the study of MNV and a small animal model has provided an unprecedented ability to dissect the role of viral sequences in replication and pathogenesis 15-17.
Virology, Issue 64, Immunology, Genetics, Infection, RNA virus, VPg, RNA capping, T7 RNA polymerase, calicivirus, norovirus
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
A Protocol for Phage Display and Affinity Selection Using Recombinant Protein Baits
Authors: Rekha Kushwaha, Kim R. Schäfermeyer, A. Bruce Downie.
Institutions: University of Kentucky .
Using recombinant phage as a scaffold to present various protein portions encoded by a directionally cloned cDNA library to immobilized bait molecules is an efficient means to discover interactions. The technique has largely been used to discover protein-protein interactions but the bait molecule to be challenged need not be restricted to proteins. The protocol presented here has been optimized to allow a modest number of baits to be screened in replicates to maximize the identification of independent clones presenting the same protein. This permits greater confidence that interacting proteins identified are legitimate interactors of the bait molecule. Monitoring the phage titer after each affinity selection round provides information on how the affinity selection is progressing as well as on the efficacy of negative controls. One means of titering the phage, and how and what to prepare in advance to allow this process to progress as efficiently as possible, is presented. Attributes of amplicons retrieved following isolation of independent plaque are highlighted that can be used to ascertain how well the affinity selection has progressed. Trouble shooting techniques to minimize false positives or to bypass persistently recovered phage are explained. Means of reducing viral contamination flare up are discussed.
Biochemistry, Issue 84, Affinity selection, Phage display, protein-protein interaction
Play Button
Monitoring Intraspecies Competition in a Bacterial Cell Population by Cocultivation of Fluorescently Labelled Strains
Authors: Lorena Stannek, Richard Egelkamp, Katrin Gunka, Fabian M. Commichau.
Institutions: Georg-August University.
Many microorganisms such as bacteria proliferate extremely fast and the populations may reach high cell densities. Small fractions of cells in a population always have accumulated mutations that are either detrimental or beneficial for the cell. If the fitness effect of a mutation provides the subpopulation with a strong selective growth advantage, the individuals of this subpopulation may rapidly outcompete and even completely eliminate their immediate fellows. Thus, small genetic changes and selection-driven accumulation of cells that have acquired beneficial mutations may lead to a complete shift of the genotype of a cell population. Here we present a procedure to monitor the rapid clonal expansion and elimination of beneficial and detrimental mutations, respectively, in a bacterial cell population over time by cocultivation of fluorescently labeled individuals of the Gram-positive model bacterium Bacillus subtilis. The method is easy to perform and very illustrative to display intraspecies competition among the individuals in a bacterial cell population.
Cellular Biology, Issue 83, Bacillus subtilis, evolution, adaptation, selective pressure, beneficial mutation, intraspecies competition, fluorophore-labelling, Fluorescence Microscopy
Play Button
Titration of Human Coronaviruses Using an Immunoperoxidase Assay
Authors: Francine Lambert, Helene Jacomy, Gabriel Marceau, Pierre J. Talbot.
Institutions: INRS-Institut Armand-Frappier.
Determination of infectious viral titers is a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for prototype strains 229E and OC43 of human coronavirus (HCoV). Therefore, an alternative indirect immunoperoxidase assay (IPA) was developed for the detection and titration of these viruses and is described herein. Susceptible cells are inoculated with serial logarithmic dilutions of virus-containing samples in a 96-well plate format. After viral growth, viral detection by IPA yields the infectious virus titer, expressed as 'Tissue Culture Infectious Dose 50 percent' (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain infectious replicating virus. This technique provides a reliable method for the titration of HCoV-229E and HCoV-OC43 in biological samples such as cells, tissues and fluids. This article is based on work first reported in Methods in Molecular Biology (2008) volume 454, pages 93-102.
Microbiology, Issue 14, Springer Protocols, Human coronavirus, HCoV-229E, HCoV-OC43, cell and tissue sample, titration, immunoperoxidase assay, TCID50
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.