JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice.
PUBLISHED: 02-23-2010
Astroglial cells are activated following injury and up-regulate the expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. Adult mice lacking the intermediate filament proteins GFAP and vimentin (GFAP(-/-)Vim(-/-)) show attenuated reactive gliosis, reduced glial scar formation and improved regeneration of neuronal synapses after neurotrauma. GFAP(-/-)Vim(-/-) mice exhibit larger brain infarcts after middle cerebral artery occlusion suggesting protective role of reactive gliosis after adult focal brain ischemia. However, the role of astrocyte activation and reactive gliosis in the injured developing brain is unknown.
Authors: Sebastian Schildge, Christian Bohrer, Kristina Beck, Christian Schachtrup.
Published: 01-19-2013
Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.
24 Related JoVE Articles!
Play Button
Analysis of Schwann-astrocyte Interactions Using In Vitro Assays
Authors: Fardad T. Afshari, Jessica C. Kwok, James W. Fawcett.
Institutions: University of Cambridge.
Schwann cells are one of the commonly used cells in repair strategies following spinal cord injuries. Schwann cells are capable of supporting axonal regeneration and sprouting by secreting growth factors 1,2 and providing growth promoting adhesion molecules 3 and extracellular matrix molecules 4. In addition they myelinate the demyelinated axons at the site of injury 5. However following transplantation, Schwann cells do not migrate from the site of implant and do not intermingle with the host astrocytes 6,7. This results in formation of a sharp boundary between the Schwann cells and astrocytes, creating an obstacle for growing axons trying to exit the graft back into the host tissue proximally and distally. Astrocytes in contact with Schwann cells also undergo hypertrophy and up-regulate the inhibitory molecules 8-13. In vitro assays have been used to model Schwann cell-astrocyte interactions and have been important in understanding the mechanism underlying the cellular behaviour. These in vitro assays include boundary assay, where a co-culture is made using two different cells with each cell type occupying different territories with only a small gap separating the two cell fronts. As the cells divide and migrate, the two cellular fronts get closer to each other and finally collide. This allows the behaviour of the two cellular populations to be analyzed at the boundary. Another variation of the same technique is to mix the two cellular populations in culture and over time the two cell types segregate with Schwann cells clumped together as islands in between astrocytes together creating multiple Schwann-astrocyte boundaries. The second assay used in studying the interaction of two cell types is the migration assay where cellular movement can be tracked on the surface of the other cell type monolayer 14,15. This assay is commonly known as inverted coverslip assay. Schwann cells are cultured on small glass fragments and they are inverted face down onto the surface of astrocyte monolayers and migration is assessed from the edge of coverslip. Both assays have been instrumental in studying the underlying mechanisms involved in the cellular exclusion and boundary formation. Some of the molecules identified using these techniques include N-Cadherins 15, Chondroitin Sulphate proteoglycans(CSPGs) 16,17, FGF/Heparin 18, Eph/Ephrins19. This article intends to describe boundary assay and migration assay in stepwise fashion and elucidate the possible technical problems that might occur.
Cellular Biology, Issue 47, Schwann cell, astrocyte, boundary, migration, repulsion
Play Button
Imaging Analysis of Neuron to Glia Interaction in Microfluidic Culture Platform (MCP)-based Neuronal Axon and Glia Co-culture System
Authors: Haruki Higashimori, Yongjie Yang.
Institutions: Tufts University, Tufts Sackler School of Graduate Biomedical Sciences.
Proper neuron to glia interaction is critical to physiological function of the central nervous system (CNS). This bidirectional communication is sophisticatedly mediated by specific signaling pathways between neuron and glia1,2 . Identification and characterization of these signaling pathways is essential to the understanding of how neuron to glia interaction shapes CNS physiology. Previously, neuron and glia mixed cultures have been widely utilized for testing and characterizing signaling pathways between neuron and glia. What we have learned from these preparations and other in vivo tools, however, has suggested that mutual signaling between neuron and glia often occurred in specific compartments within neurons (i.e., axon, dendrite, or soma)3. This makes it important to develop a new culture system that allows separation of neuronal compartments and specifically examines the interaction between glia and neuronal axons/dendrites. In addition, the conventional mixed culture system is not capable of differentiating the soluble factors and direct membrane contact signals between neuron and glia. Furthermore, the large quantity of neurons and glial cells in the conventional co-culture system lacks the resolution necessary to observe the interaction between a single axon and a glial cell. In this study, we describe a novel axon and glia co-culture system with the use of a microfluidic culture platform (MCP). In this co-culture system, neurons and glial cells are cultured in two separate chambers that are connected through multiple central channels. In this microfluidic culture platform, only neuronal processes (especially axons) can enter the glial side through the central channels. In combination with powerful fluorescent protein labeling, this system allows direct examination of signaling pathways between axonal/dendritic and glial interactions, such as axon-mediated transcriptional regulation in glia, glia-mediated receptor trafficking in neuronal terminals, and glia-mediated axon growth. The narrow diameter of the chamber also significantly prohibits the flow of the neuron-enriched medium into the glial chamber, facilitating probing of the direct membrane-protein interaction between axons/dendrites and glial surfaces.
Neuroscience, Issue 68, Molecular Biology, Cellular Biology, Biophysics, Microfluidics, Microfluidic culture platform, Compartmented culture, Neuron to glia signaling, neurons, glia, cell culture
Play Button
Use of an Eight-arm Radial Water Maze to Assess Working and Reference Memory Following Neonatal Brain Injury
Authors: Stephanie C. Penley, Cynthia M. Gaudet, Steven W. Threlkeld.
Institutions: Rhode Island College, Rhode Island College.
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.
Behavior, Issue 82, working memory, reference memory, hypoxia-ischemia, radial arm maze, water maze
Play Button
Permanent Ligation of the Left Anterior Descending Coronary Artery in Mice: A Model of Post-myocardial Infarction Remodelling and Heart Failure
Authors: Ilayaraja Muthuramu, Marleen Lox, Frank Jacobs, Bart De Geest.
Institutions: Catholic University of Leuven.
Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.
Medicine, Issue 94, Myocardial infarction, cardiac remodelling, infarct expansion, heart failure, cardiac function, invasive hemodynamic measurements
Play Button
Bilateral Common Carotid Artery Occlusion as an Adequate Preconditioning Stimulus to Induce Early Ischemic Tolerance to Focal Cerebral Ischemia
Authors: Lukas Julius Speetzen, Matthias Endres, Alexander Kunz.
Institutions: Charité - Universitätsmedizin Berlin, Germany.
There is accumulating evidence, that ischemic preconditioning - a non-damaging ischemic challenge to the brain - confers a transient protection to a subsequent damaging ischemic insult. We have established bilateral common carotid artery occlusion as a preconditioning stimulus to induce early ischemic tolerance to transient focal cerebral ischemia in C57Bl6/J mice. In this video, we will demonstrate the methodology used for this study.
Medicine, Issue 75, Neurobiology, Anatomy, Physiology, Neuroscience, Immunology, Surgery, stroke, cerebral ischemia, ischemic preconditioning, ischemic tolerance, IT, ischemic stroke, middle cerebral artery occlusion, MCAO, bilateral common carotid artery occlusion, BCCAO, brain, ischemia, occlusion, reperfusion, mice, animal model, surgical techniques
Play Button
Photothrombotic Ischemia: A Minimally Invasive and Reproducible Photochemical Cortical Lesion Model for Mouse Stroke Studies
Authors: Vivien Labat-gest, Simone Tomasi.
Institutions: University of Turin , University of Turin , University of Turin , University of Turin .
The photothrombotic stroke model aims to induce an ischemic damage within a given cortical area by means of photo-activation of a previously injected light-sensitive dye. Following illumination, the dye is activated and produces singlet oxygen that damages components of endothelial cell membranes, with subsequent platelet aggregation and thrombi formation, which eventually determines the interruption of local blood flow. This approach, initially proposed by Rosenblum and El-Sabban in 1977, was later improved by Watson in 1985 in rat brain and set the basis of the current model. Also, the increased availability of transgenic mouse lines further contributed to raise the interest on the photothrombosis model. Briefly, a photosensitive dye (Rose Bengal) is injected intraperitoneally and enters the blood stream. When illuminated by a cold light source, the dye becomes activated and induces endothelial damage with platelet activation and thrombosis, resulting in local blood flow interruption. The light source can be applied on the intact skull with no need of craniotomy, which allows targeting of any cortical area of interest in a reproducible and non-invasive way. The mouse is then sutured and allowed to wake up. The evaluation of ischemic damage can be quickly accomplished by triphenyl-tetrazolium chloride or cresyl violet staining. This technique produces infarction of small size and well-delimited boundaries, which is highly advantageous for precise cell characterization or functional studies. Furthermore, it is particularly suitable for studying cellular and molecular responses underlying brain plasticity in transgenic mice.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Neuroscience, Neurobiology, Surgery, Cerebral Cortex, Brain Ischemia, Stroke, Brain Injuries, Brain Ischemia, Thrombosis, Photothrombosis, Rose Bengal, experimental stroke, animal models, cortex, injury, protocol, method, technique, video, ischemia, animal model
Play Button
Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery
Authors: Gemma Llovera, Stefan Roth, Nikolaus Plesnila, Roland Veltkamp, Arthur Liesz.
Institutions: University Hospital Munich, Munich Cluster for Systems Neurology (SyNergy), University Heidelberg, Charing Cross Hospital.
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.
Medicine, Issue 89, stroke, brain ischemia, animal model, middle cerebral artery, electrocoagulation
Play Button
A Murine Model of Myocardial Ischemia-reperfusion Injury through Ligation of the Left Anterior Descending Artery
Authors: Zhaobin Xu, Jenna Alloush, Eric Beck, Noah Weisleder.
Institutions: The Ohio State University.
Acute or chronic myocardial infarction (MI) are cardiovascular events resulting in high morbidity and mortality. Establishing the pathological mechanisms at work during MI and developing effective therapeutic approaches requires methodology to reproducibly simulate the clinical incidence and reflect the pathophysiological changes associated with MI. Here, we describe a surgical method to induce MI in mouse models that can be used for short-term ischemia-reperfusion (I/R) injury as well as permanent ligation. The major advantage of this method is to facilitate location of the left anterior descending artery (LAD) to allow for accurate ligation of this artery to induce ischemia in the left ventricle of the mouse heart. Accurate positioning of the ligature on the LAD increases reproducibility of infarct size and thus produces more reliable results. Greater precision in placement of the ligature will improve the standard surgical approaches to simulate MI in mice, thus reducing the number of experimental animals necessary for statistically relevant studies and improving our understanding of the mechanisms producing cardiac dysfunction following MI. This mouse model of MI is also useful for the preclinical testing of treatments targeting myocardial damage following MI.
Medicine, Issue 86, Myocardial Ischemia/Reperfusion, permanent ligation, left anterior descending artery, myocardial infarction, LAD, ligation, Cardiac troponin I
Play Button
Strategies for Study of Neuroprotection from Cold-preconditioning
Authors: Heidi M. Mitchell, David M. White, Richard P. Kraig.
Institutions: The University of Chicago Medical Center.
Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning.
Neuroscience, Issue 43, innate immunity, hormesis, microglia, hippocampus, slice culture, immunohistochemistry, neural-immune, gene expression, real-time PCR
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
Play Button
Mouse Models of Periventricular Leukomalacia
Authors: Yan Shen, Jennifer M. Plane, Wenbin Deng.
Institutions: University of California, Davis.
We describe a protocol for establishing mouse models of periventricular leukomalacia (PVL). PVL is the predominant form of brain injury in premature infants and the most common antecedent of cerebral palsy. PVL is characterized by periventricular white matter damage with prominent oligodendroglial injury. Hypoxia/ischemia with or without systemic infection/inflammation are the primary causes of PVL. We use P6 mice to create models of neonatal brain injury by the induction of hypoxia/ischemia with or without systemic infection/inflammation with unilateral carotid ligation followed by exposure to hypoxia with or without injection of the endotoxin lipopolysaccharide (LPS). Immunohistochemistry of myelin basic protein (MBP) or O1 and electron microscopic examination show prominent myelin loss in cerebral white matter with additional damage to the hippocampus and thalamus. Establishment of mouse models of PVL will greatly facilitate the study of disease pathogenesis using available transgenic mouse strains, conduction of drug trials in a relatively high throughput manner to identify candidate therapeutic agents, and testing of stem cell transplantation using immunodeficiency mouse strains.
JoVE Neuroscience, Issue 39, brain, mouse, white matter injury, oligodendrocyte, periventricular leukomalacia
Play Button
Permanent Cerebral Vessel Occlusion via Double Ligature and Transection
Authors: Melissa F. Davis, Christopher Lay, Ron D. Frostig.
Institutions: University of California, Irvine, University of California, Irvine, University of California, Irvine, University of California, Irvine.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA. Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Neurobiology, Neuroscience, Behavior, Surgery, Therapeutics, Surgical Procedures, Operative, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Animal models, Stroke, ischemia, imaging, middle cerebral artery, vessel occlusion, rodent model, surgical techniques, animal model
Play Button
A Neuronal and Astrocyte Co-Culture Assay for High Content Analysis of Neurotoxicity
Authors: Janet L Anderl, Stella Redpath, Andrew J Ball.
Institutions: Millipore Inc.
High Content Analysis (HCA) assays combine cells and detection reagents with automated imaging and powerful image analysis algorithms, allowing measurement of multiple cellular phenotypes within a single assay. In this study, we utilized HCA to develop a novel assay for neurotoxicity. Neurotoxicity assessment represents an important part of drug safety evaluation, as well as being a significant focus of environmental protection efforts. Additionally, neurotoxicity is also a well-accepted in vitro marker of the development of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Recently, the application of HCA to neuronal screening has been reported. By labeling neuronal cells with βIII-tubulin, HCA assays can provide high-throughput, non-subjective, quantitative measurements of parameters such as neuronal number, neurite count and neurite length, all of which can indicate neurotoxic effects. However, the role of astrocytes remains unexplored in these models. Astrocytes have an integral role in the maintenance of central nervous system (CNS) homeostasis, and are associated with both neuroprotection and neurodegradation when they are activated in response to toxic substances or disease states. GFAP is an intermediate filament protein expressed predominantly in the astrocytes of the CNS. Astrocytic activation (gliosis) leads to the upregulation of GFAP, commonly accompanied by astrocyte proliferation and hypertrophy. This process of reactive gliosis has been proposed as an early marker of damage to the nervous system. The traditional method for GFAP quantitation is by immunoassay. This approach is limited by an inability to provide information on cellular localization, morphology and cell number. We determined that HCA could be used to overcome these limitations and to simultaneously measure multiple features associated with gliosis - changes in GFAP expression, astrocyte hypertrophy, and astrocyte proliferation - within a single assay. In co-culture studies, astrocytes have been shown to protect neurons against several types of toxic insult and to critically influence neuronal survival. Recent studies have suggested that the use of astrocytes in an in vitro neurotoxicity test system may prove more relevant to human CNS structure and function than neuronal cells alone. Accordingly, we have developed an HCA assay for co-culture of neurons and astrocytes, comprised of protocols and validated, target-specific detection reagents for profiling βIII-tubulin and glial fibrillary acidic protein (GFAP). This assay enables simultaneous analysis of neurotoxicity, neurite outgrowth, gliosis, neuronal and astrocytic morphology and neuronal and astrocytic development in a wide variety of cellular models, representing a novel, non-subjective, high-throughput assay for neurotoxicity assessment. The assay holds great potential for enhanced detection of neurotoxicity and improved productivity in neuroscience research and drug discovery.
Neuroscience, Issue 27, high content screening, high content analysis, neurotoxicity, toxicity, drug discovery, neurite outgrowth, astrocytes, neurons, co-culture, immunofluorescence
Play Button
Stab Wound Injury of the Zebrafish Adult Telencephalon: A Method to Investigate Vertebrate Brain Neurogenesis and Regeneration
Authors: Rebecca Schmidt, Tanja Beil, Uwe Strähle, Sepand Rastegar.
Institutions: Karlsruhe Institute of Technology.
Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.
Neuroscience, Issue 90, zebrafish, adult neurogenesis, telencephalon regeneration, stab wound, central nervous system, adult neural stem cell
Play Button
Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice
Authors: Janet Alder, Wendy Fujioka, Jonathan Lifshitz, David P. Crockett, Smita Thakker-Varia.
Institutions: University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center.
Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed skull 18. Among the TBI models, LFP is the most established and commonly used model to evaluate mixed focal and diffuse brain injury 19. It is reproducible and is standardized to allow for the manipulation of injury parameters. LFP recapitulates injuries observed in humans, thus rendering it clinically relevant, and allows for exploration of novel therapeutics for clinical translation 20. We describe the detailed protocol to perform LFP procedure in mice. The injury inflicted is mild to moderate, with brain regions such as cortex, hippocampus and corpus callosum being most vulnerable. Hippocampal and motor learning tasks are explored following LFP.
Neuroscience, Issue 54, Lateral fluid percussion, hippocampus, traumatic brain injury, Morris Water Maze, mouse model of moderate injury
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Construction and Implantation of a Microinfusion System for Sustained Delivery of Neuroactive Agents.
Authors: Miles G. Cunningham, Ryan P. O'Connor, Sydney E. Wong.
Institutions: Harvard Medical School.
Sustained delivery of neuroactive agents is widely used in neuroscience, but poses many technical challenges. It is necessary to deliver the agent with high precision while minimizing localized trauma and inflammation. Also, the ability to customize the system to accommodate animals of different species and sizes is desirable. This video presentation demonstrates the construction of an infusion system that can be fitted to any particular research animal. The delivery microcannula diameter is approximately 10-fold smaller than most infusion cannulas presently used. This translates into enhanced accuracy and reduced trauma to the brain region under study. The delivery cannula can also be sculpted to fit the contour of the surface of the animal's skull, thereby allowing closure of the scalp incision neatly over the infusion system, precluding the need for a skull-mounted pedestal, reducing risk of infection, and ensuring a greater level of comfort to the animal. The system is assembled in an air-free environment and requires the researcher to fashion glass micropipettes with a heat source. These construction methods require special skills that are best acquired, if not in person, using video instruction. (This article is based on work first reported in J Neurosci Methods. 2008 Jan 30;167(2):213-20. Epub 2007 Aug 28.).
Neuroscience, issue 13, mini osmotic pump, chronic infusion, microcannula, fast green
Play Button
Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging
Authors: Mikhail Paveliev, Mikhail Kislin, Dmitry Molotkov, Mikhail Yuryev, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki.
Although acute brain trauma often results from head damage in different accidents and affects a substantial fraction of the population, there is no effective treatment for it yet. Limitations of currently used animal models impede understanding of the pathology mechanism. Multiphoton microscopy allows studying cells and tissues within intact animal brains longitudinally under physiological and pathological conditions. Here, we describe two models of acute brain injury studied by means of two-photon imaging of brain cell behavior under posttraumatic conditions. A selected brain region is injured with a sharp needle to produce a trauma of a controlled width and depth in the brain parenchyma. Our method uses stereotaxic prick with a syringe needle, which can be combined with simultaneous drug application. We propose that this method can be used as an advanced tool to study cellular mechanisms of pathophysiological consequences of acute trauma in mammalian brain in vivo. In this video, we combine acute brain injury with two preparations: cranial window and skull thinning. We also discuss advantages and limitations of both preparations for multisession imaging of brain regeneration after trauma.
Medicine, Issue 86, Trauma, Nervous System, animal models, Brain trauma, in vivo multiphoton microscopy, dendrite, astrocyte, microglia, second harmonic generation.
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
Play Button
Study Glial Cell Heterogeneity Influence on Axon Growth Using a New Coculture Method
Authors: Han-peng Xu, Lin Gou, Hong-Wei Dong.
Institutions: Cedars Sinai Medical Center, UCLA, Fourth Military Medical University, David Geffen School of Medicine, UCLA, Fourth Military Medical Univeristy.
In the central nervous system of all mammals, severed axons after injury are unable to regenerate to their original targets and functional recovery is very poor 1. The failure of axon regeneration is a combined result of several factors including the hostile glial cell environment, inhibitory myelin related molecules and decreased intrinsic neuron regenerative capacity 2. Astrocytes are the most predominant glial cell type in central nervous system and play important role in axon functions under physiology and pathology conditions 3. Contrast to the homologous oligodendrocytes, astrocytes are a heterogeneous cell population composed by different astrocyte subpopulations with diverse morphologies and gene expression 4. The functional significance of this heterogeneity, such as their influences on axon growth, is largely unknown. To study the glial cell, especially the function of astrocyte heterogeneity in neuron behavior, we established a new method by co-culturing high purified dorsal root ganglia neurons with glial cells obtained from the rat cortex. By this technique, we were able to directly compare neuron adhesion and axon growth on different astrocytes subpopulations under the same condition. In this report, we give the detailed protocol of this method for astrocytes isolation and culture, dorsal root ganglia neurons isolation and purification, and the co-culture of DRG neurons with astrocytes. This method could also be extended to other brain regions to study cellular or regional specific interaction between neurons and glial cells.
Neuroscience, Issue 43, Dorsal root ganglia, glial cell, heterogeneity, co-culture, regeneration, axon growth
Play Button
Mouse Model of Middle Cerebral Artery Occlusion
Authors: Terrance Chiang, Robert O. Messing, Wen-Hai Chou.
Institutions: Ernest Gallo Clinic and Research Center, University of California, San Francisco, Kent State University.
Stroke is the most common fatal neurological disease in the United States 1. The majority of strokes (88%) result from blockage of blood vessels in the brain (ischemic stroke) 2. Since most ischemic strokes (~80%) occur in the territory of middle cerebral artery (MCA) 3, many animal stroke models that have been developed have focused on this artery. The intraluminal monofilament model of middle cerebral artery occlusion (MCAO) involves the insertion of a surgical filament into the external carotid artery and threading it forward into the internal carotid artery (ICA) until the tip occludes the origin of the MCA, resulting in a cessation of blood flow and subsequent brain infarction in the MCA territory 4. The technique can be used to model permanent or transient occlusion 5. If the suture is removed after a certain interval (30 min, 1 h, or 2 h), reperfusion is achieved (transient MCAO); if the filament is left in place (24 h) the procedure is suitable as a model of permanent MCAO. This technique does not require craniectomy, a neurosurgical procedure to remove a portion of skull, which may affect intracranial pressure and temperature 6. It has become the most frequently used method to mimic permanent and transient focal cerebral ischemia in rats and mice 7,8. To evaluate the extent of cerebral infarction, we stain brain slices with 2,3,5-triphenyltetrazolium chloride (TTC) to identify ischemic brain tissue 9. In this video, we demonstrate the MCAO method and the determination of infarct size by TTC staining.
Medicine, Issue 48, Neurology, Stroke, mice, ischemia
Play Button
Axoplasm Isolation from Rat Sciatic Nerve
Authors: Ida Rishal, Meir Rozenbaum, Mike Fainzilber.
Institutions: Weizmann Institute of Science.
Isolation of pure axonal cytoplasm (axoplasm) from peripheral nerve is crucial for biochemical studies of many biological processes. In this article, we demonstrate and describe a protocol for axoplasm isolation from adult rat sciatic nerve based on the following steps: (1) dissection of nerve fascicles and separation of connective tissue; (2) incubation of short segments of nerve fascicles in hypotonic medium to release myelin and lyse non-axonal structures; and (3) extraction of the remaining axon-enriched material. Proteomic and biochemical characterization of this preparation has confirmed a high degree of enrichment for axonal components.
Neuroscience, Issue 43, Axoplasm, nerve, isolation, method, rat
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.