JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo.
PLoS ONE
PUBLISHED: 02-12-2010
An open chromatin architecture devoid of compact chromatin is thought to be associated with pluripotency in embryonic stem cells. Establishing this distinct epigenetic state may also be required for somatic cell reprogramming. However, there has been little direct examination of global structural domains of chromatin during the founding and loss of pluripotency that occurs in preimplantation mouse development. Here, we used electron spectroscopic imaging to examine large-scale chromatin structural changes during the transition from one-cell to early postimplantation stage embryos. In one-cell embryos chromatin was extensively dispersed with no noticeable accumulation at the nuclear envelope. Major changes were observed from one-cell to two-cell stage embryos, where chromatin became confined to discrete blocks of compaction and with an increased concentration at the nuclear envelope. In eight-cell embryos and pluripotent epiblast cells, chromatin was primarily distributed as an extended meshwork of uncompacted fibres and was indistinguishable from chromatin organization in embryonic stem cells. In contrast, lineage-committed trophectoderm and primitive endoderm cells, and the stem cell lines derived from these tissues, displayed higher levels of chromatin compaction, suggesting an association between developmental potential and chromatin organisation. We examined this association in vivo and found that deletion of Oct4, a factor required for pluripotency, caused the formation of large blocks of compact chromatin in putative epiblast cells. Together, these studies show that an open chromatin architecture is established in the embryonic lineages during development and is sufficient to distinguish pluripotent cells from tissue-restricted progenitor cells.
Authors: Christian M. Nefzger, Sara Alaei, Anja S. Knaupp, Melissa L. Holmes, Jose M. Polo.
Published: 09-06-2014
ABSTRACT
Mature cells can be reprogrammed to a pluripotent state. These so called induced pluripotent stem (iPS) cells are able to give rise to all cell types of the body and consequently have vast potential for regenerative medicine applications. Traditionally iPS cells are generated by viral introduction of transcription factors Oct-4, Klf-4, Sox-2, and c-Myc (OKSM) into fibroblasts. However, reprogramming is an inefficient process with only 0.1-1% of cells reverting towards a pluripotent state, making it difficult to study the reprogramming mechanism. A proven methodology that has allowed the study of the reprogramming process is to separate the rare intermediates of the reaction from the refractory bulk population. In the case of mouse embryonic fibroblasts (MEFs), we and others have previously shown that reprogramming cells undergo a distinct series of changes in the expression profile of cell surface markers which can be used for the separation of these cells. During the early stages of OKSM expression successfully reprogramming cells lose fibroblast identity marker Thy-1.2 and up-regulate pluripotency associated marker Ssea-1. The final transition of a subset of Ssea-1 positive cells towards the pluripotent state is marked by the expression of Epcam during the late stages of reprogramming. Here we provide a detailed description of the methodology used to isolate reprogramming intermediates from cultures of reprogramming MEFs. In order to increase experimental reproducibility we use a reprogrammable mouse strain that has been engineered to express a transcriptional transactivator (m2rtTA) under control of the Rosa26 locus and OKSM under control of a doxycycline responsive promoter. Cells isolated from these mice are isogenic and express OKSM homogenously upon addition of doxycycline. We describe in detail the establishment of the reprogrammable mice, the derivation of MEFs, and the subsequent isolation of intermediates during reprogramming into iPS cells via fluorescent activated cells sorting (FACS).
24 Related JoVE Articles!
Play Button
Detection of Histone Modifications in Plant Leaves
Authors: Michal Jaskiewicz, Christoph Peterhansel, Uwe Conrath.
Institutions: RWTH Aachen University, RWTH Aachen University, Leibniz University.
Chromatin structure is important for the regulation of gene expression in eukaryotes. In this process, chromatin remodeling, DNA methylation, and covalent modifications on the amino-terminal tails of histones H3 and H4 play essential roles1-2. H3 and H4 histone modifications include methylation of lysine and arginine, acetylation of lysine, and phosphorylation of serine residues1-2. These modifications are associated either with gene activation, repression, or a primed state of gene that supports more rapid and robust activation of expression after perception of appropriate signals (microbe-associated molecular patterns, light, hormones, etc.)3-7. Here, we present a method for the reliable and sensitive detection of specific chromatin modifications on selected plant genes. The technique is based on the crosslinking of (modified) histones and DNA with formaldehyde8,9, extraction and sonication of chromatin, chromatin immunoprecipitation (ChIP) with modification-specific antibodies9,10, de-crosslinking of histone-DNA complexes, and gene-specific real-time quantitative PCR. The approach has proven useful for detecting specific histone modifications associated with C4 photosynthesis in maize5,11 and systemic immunity in Arabidopsis3.
Molecular Biology, Issue 55, chromatin, chromatin immunoprecipitation, ChIP, histone modifications, PCR, plant molecular biology, plant promoter control, gene regulation
3096
Play Button
Slide Preparation Method to Preserve Three-dimensional Chromatin Architecture of Testicular Germ Cells
Authors: Satoshi H. Namekawa.
Institutions: Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine.
During testicular germ cell differentiation, the structure of nuclear chromatin dynamically changes. The following describes a method designed to preserve the three-dimensional chromatin arrangement of testicular germ cells found in mice; this method has been termed as the three-dimensional (3D) slide method. In this method, testicular tubules are directly treated with a permeabilization step that removes cytoplasmic material, followed by a fixation step that fixes nuclear materials. Tubules are then dissociated, the cell suspension is cytospun, and cells adhere to slides. This method improves sensitivity towards detection of subnuclear structures and is applicable for immunofluorescence, DNA, and RNA fluorescence in situ hybridization (FISH) and the combination of these detection methods. As an example of a possible application of the 3D slide method, a Cot-1 RNA FISH is shown to detect nascent RNAs. The 3D slide method will facilitate the detailed examination of spatial relationships between chromatin structure, DNA, and RNA during testicular germ cell differentiation.
Basic Protocol, Issue 83, Chromatin, Germ cells, Sex chromosomes, Testis, Meiotic sex chromosome inactivation, Postmeiotic sex chromatin
50819
Play Button
Chromatin Immunoprecipitation from Dorsal Root Ganglia Tissue following Axonal Injury
Authors: Elisa Floriddia, Tuan Nguyen, Simone Di Giovanni.
Institutions: University of Tuebingen , University of Tuebingen .
Axons in the central nervous system (CNS) do not regenerate while those in the peripheral nervous system (PNS) do regenerate to a limited extent after injury (Teng et al., 2006). It is recognized that transcriptional programs essential for neurite and axonal outgrowth are reactivated upon injury in the PNS (Makwana et al., 2005). However the tools available to analyze neuronal gene regulation in vivo are limited and often challenging. The dorsal root ganglia (DRG) offer an excellent injury model system because both the CNS and PNS are innervated by a bifurcated axon originating from the same soma. The ganglia represent a discrete collection of cell bodies where all transcriptional events occur, and thus provide a clearly defined region of transcriptional activity that can be easily and reproducibly removed from the animal. Injury of nerve fibers in the PNS (e.g. sciatic nerve), where axonal regeneration does occur, should reveal a set of transcriptional programs that are distinct from those responding to a similar injury in the CNS, where regeneration does not take place (e.g. spinal cord). Sites for transcription factor binding, histone and DNA modification resulting from injury to either PNS or CNS can be characterized using chromatin immunoprecipitation (ChIP). Here, we describe a ChIP protocol using fixed mouse DRG tissue following axonal injury. This powerful combination provides a means for characterizing the pro-regeneration chromatin environment necessary for promoting axonal regeneration.
Neuroscience, Issue 53, Chromatin immunoprecipitation, dorsal root ganglia, transcription factor, epigenetic, axonal regeneration
2803
Play Button
Generation of Induced Pluripotent Stem Cells by Reprogramming Human Fibroblasts with the Stemgent Human TF Lentivirus Set
Authors: Dongmei Wu, Brad Hamilton, Charles Martin, Yan Gao, Mike Ye, Shuyuan Yao.
Institutions: Stemgent.
In 2006, Yamanaka and colleagues first demonstrated that retrovirus-mediated delivery and expression of Oct4, Sox2, c-Myc and Klf4 is capable of inducing the pluripotent state in mouse fibroblasts.1 The same group also reported the successful reprogramming of human somatic cells into induced pluripotent stem (iPS) cells using human versions of the same transcription factors delivered by retroviral vectors.2 Additionally, James Thomson et al. reported that the lentivirus-mediated co-expression of another set of factors (Oct4, Sox2, Nanog and Lin28) was capable of reprogramming human somatic cells into iPS cells.3 iPS cells are similar to ES cells in morphology, proliferation and the ability to differentiate into all tissue types of the body. Human iPS cells have a distinct advantage over ES cells as they exhibit key properties of ES cells without the ethical dilemma of embryo destruction. The generation of patient-specific iPS cells circumvents an important roadblock to personalized regenerative medicine therapies by eliminating the potential for immune rejection of non-autologous transplanted cells. Here we demonstrate the protocol for reprogramming human fibroblast cells using the Stemgent Human TF Lentivirus Set. We also show that cells reprogrammed with this set begin to show iPS morphology four days post-transduction. Using the Stemolecule Y27632, we selected for iPS cells and observed correct morphology after three sequential rounds of colony picking and passaging. We also demonstrate that after reprogramming cells displayed the pluripotency marker AP, surface markers TRA-1-81, TRA-1-60, SSEA-4, and SSEA-3, and nuclear markers Oct4, Sox2 and Nanog.
Developmental Biology, Issue 34, iPS, reprogramming, lentivirus, stem cell, induced pluripotent cell, pluripotency, fibroblast, embryonic stem cells, ES cells, iPS cells
1553
Play Button
Affinity Purification of Influenza Virus Ribonucleoprotein Complexes from the Chromatin of Infected Cells
Authors: Geoffrey P. Chase, Martin Schwemmle.
Institutions: Universitätsklinikum Freiburg.
Like all negative-strand RNA viruses, the genome of influenza viruses is packaged in the form of viral ribonucleoprotein complexes (vRNP), in which the single-stranded genome is encapsidated by the nucleoprotein (NP), and associated with the trimeric polymerase complex consisting of the PA, PB1, and PB2 subunits. However, in contrast to most RNA viruses, influenza viruses perform viral RNA synthesis in the nuclei of infected cells. Interestingly, viral mRNA synthesis uses cellular pre-mRNAs as primers, and it has been proposed that this process takes place on chromatin1. Interactions between the viral polymerase and the host RNA polymerase II, as well as between NP and host nucleosomes have also been characterized1,2. Recently, the generation of recombinant influenza viruses encoding a One-Strep-Tag genetically fused to the C-terminus of the PB2 subunit of the viral polymerase (rWSN-PB2-Strep3) has been described. These recombinant viruses allow the purification of PB2-containing complexes, including vRNPs, from infected cells. To obtain purified vRNPs, cell cultures are infected, and vRNPs are affinity purified from lysates derived from these cells. However, the lysis procedures used to date have been based on one-step detergent lysis, which, despite the presence of a general nuclease, often extract chromatin-bound material only inefficiently. Our preliminary work suggested that a large portion of nuclear vRNPs were not extracted during traditional cell lysis, and therefore could not be affinity purified. To increase this extraction efficiency, and to separate chromatin-bound from non-chromatin-bound nuclear vRNPs, we adapted a step-wise subcellular extraction protocol to influenza virus-infected cells. Briefly, this procedure first separates the nuclei from the cell and then extracts soluble nuclear proteins (here termed the "nucleoplasmic" fraction). The remaining insoluble nuclear material is then digested with Benzonase, an unspecific DNA/RNA nuclease, followed by two salt extraction steps: first using 150 mM NaCl (termed "ch150"), then 500 mM NaCl ("ch500") (Fig. 1). These salt extraction steps were chosen based on our observation that 500 mM NaCl was sufficient to solubilize over 85% of nuclear vRNPs yet still allow binding of tagged vRNPs to the affinity matrix. After subcellular fractionation of infected cells, it is possible to affinity purify PB2-tagged vRNPs from each individual fraction and analyze their protein and RNA components using Western Blot and primer extension, respectively. Recently, we utilized this method to discover that vRNP export complexes form during late points after infection on the chromatin fraction extracted with 500 mM NaCl (ch500)3.
Virology, Issue 64, Immunology, Molecular Biology, Influenza A virus, affinity purification, subcellular fractionation, chromatin, vRNP complexes, polymerase
4028
Play Button
Chromatin Immunoprecipitation from Human Embryonic Stem Cells
Authors: Stephane Bertani, Alice Kan, Frank Sauer.
Institutions: University of California - Riverside.
The functional and structural complexity of the myriad of cells in metazoan organisms arises from a small number of stem cells. Stem cells are characterized by two fundamental properties: self-renewal and multipotency that allows a stem cell to differentiate into virtually any cell type 1. The progression stem cell to differentiated cell is characterized by loss of multipotency, structural and morphological changes and the hierarchic activity of transcription factors and signaling molecules, whose activities establish and maintain cell-type specific gene expression patterns. At the molecular level, cell differentiation involves dynamic changes of the structure and composition of chromatin and the detection of those dynamic changes can provide valuable insights into the functional features of stem cells and the cell differentiation process 2,3. Chromatin is a highly compacted DNA-protein complex that forms when cells package chromosomal DNA with proteins, mainly histones 4. Stemcellness and cell differentiation has been correlated with the presence of specific arrays of regulatory proteins such as epigenetic factors, histone variants, and transcription factors 2,3,5. Chromatin immunoprecipitation (ChIP) provides a valuable method to monitor the presence of RNA, proteins, and protein modifications in chromatin 6,7. The comparison of chromatin from different cell types can elucidate dynamic changes in protein-chromatin associations that occur during cell differentiation. Chromatin immunoprecipitation involves the purification of in vivo cross-linked chromatin. The isolated chromatin is reduced to smaller fragments by enzymatic digestion or mechanical force. Chromatin fragments are precipitated using specific antibodies to target proteins or protein and DNA modifications. The precipitated DNA or RNA is purified and used as a template for PCR or DNA microarray based assays. Prerequisites for a successful ChIP are high quality antibodies to the desired antigen and the availability of chromatin from control cells that do not express the target molecule. ChIP can correlate the presence of proteins, protein and RNA modifications, and RNA with specific target DNA, and depending on the choice of outread tool, detects the association of target molecules at specific target genes or in the context of an entire genome. The comparison of the distribution of proteins in the chromatin of differentiating cells can elucidate the dynamic changes of chromatin composition that coincide with the progression of cells along a cell lineage.
Cellular Biology, Issue 17, chromatin purification, chromatin immunoprecipitation, magnetic beads, vertebrates
780
Play Button
Enrichment and Purging of Human Embryonic Stem Cells by Detection of Cell Surface Antigens Using the Monoclonal Antibodies TG30 and GCTM-2
Authors: Juan Carlos Polanco, Bei Wang, Qi Zhou, Hun Chy, Carmel O'Brien, Andrew L. Laslett.
Institutions: CSIRO.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.
Stem Cell Biology, Issue 82, Stem cells, cell surface antigens, antibodies, FACS, purging stem cells, differentiation, pluripotency, teratoma, human embryonic stem cells (hESC)
50856
Play Button
Combined Immunofluorescence and DNA FISH on 3D-preserved Interphase Nuclei to Study Changes in 3D Nuclear Organization
Authors: Julie Chaumeil, Mariann Micsinai, Jane A. Skok.
Institutions: New York University School of Medicine, New York University Center for Health Informatics and Bioinformatics, NYU Cancer Institute, Yale University School of Medicine .
Fluorescent in situ hybridization using DNA probes on 3-dimensionally preserved nuclei followed by 3D confocal microscopy (3D DNA FISH) represents the most direct way to visualize the location of gene loci, chromosomal sub-regions or entire territories in individual cells. This type of analysis provides insight into the global architecture of the nucleus as well as the behavior of specific genomic loci and regions within the nuclear space. Immunofluorescence, on the other hand, permits the detection of nuclear proteins (modified histones, histone variants and modifiers, transcription machinery and factors, nuclear sub-compartments, etc). The major challenge in combining immunofluorescence and 3D DNA FISH is, on the one hand to preserve the epitope detected by the antibody as well as the 3D architecture of the nucleus, and on the other hand, to allow the penetration of the DNA probe to detect gene loci or chromosome territories 1-5. Here we provide a protocol that combines visualization of chromatin modifications with genomic loci in 3D preserved nuclei.
Genetics, Issue 72, Molecular Biology, Bioinformatics, Cancer Biology, Pathology, Biomedical Engineering, Immunology, Intranuclear Space, Nuclear Matrix, Fluorescence in situ Hybridization, FISH, 3D DNA FISH, DNA, immunofluorescence, immuno-FISH, 3D microscopy, Nuclear organization, interphase nuclei, chromatin modifications
50087
Play Button
Blastomere Explants to Test for Cell Fate Commitment During Embryonic Development
Authors: Paaqua A. Grant, Mona B. Herold, Sally A. Moody.
Institutions: The George Washington University, The George Washington University.
Fate maps, constructed from lineage tracing all of the cells of an embryo, reveal which tissues descend from each cell of the embryo. Although fate maps are very useful for identifying the precursors of an organ and for elucidating the developmental path by which the descendant cells populate that organ in the normal embryo, they do not illustrate the full developmental potential of a precursor cell or identify the mechanisms by which its fate is determined. To test for cell fate commitment, one compares a cell's normal repertoire of descendants in the intact embryo (the fate map) with those expressed after an experimental manipulation. Is the cell's fate fixed (committed) regardless of the surrounding cellular environment, or is it influenced by external factors provided by its neighbors? Using the comprehensive fate maps of the Xenopus embryo, we describe how to identify, isolate and culture single cleavage stage precursors, called blastomeres. This approach allows one to assess whether these early cells are committed to the fate they acquire in their normal environment in the intact embryo, require interactions with their neighboring cells, or can be influenced to express alternate fates if exposed to other types of signals.
Developmental Biology, Issue 71, Cellular Biology, Molecular Biology, Anatomy, Physiology, Biochemistry, Xenopus laevis, fate mapping, lineage tracing, cell-cell signaling, cell fate, blastomere, embryo, in situ hybridization, animal model
4458
Play Button
Mouse Genome Engineering Using Designer Nucleases
Authors: Mario Hermann, Tomas Cermak, Daniel F. Voytas, Pawel Pelczar.
Institutions: University of Zurich, University of Minnesota.
Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.
Genetics, Issue 86, Oocyte microinjection, Designer nucleases, ZFN, TALEN, Genome Engineering
50930
Play Button
Detection of Post-translational Modifications on Native Intact Nucleosomes by ELISA
Authors: Bo Dai, Farida Dahmani, Joseph A. Cichocki, Lindsey C. Swanson, Theodore P. Rasmussen.
Institutions: Stanford University , University of Connecticut, University of Connecticut.
The genome of eukaryotes exists as chromatin which contains both DNA and proteins. The fundamental unit of chromatin is the nucleosome, which contains 146 base pairs of DNA associated with two each of histones H2A, H2B, H3, and H41. The N-terminal tails of histones are rich in lysine and arginine and are modified post-transcriptionally by acetylation, methylation, and other post-translational modifications (PTMs). The PTM configuration of nucleosomes can affect the transcriptional activity of associated DNA, thus providing a mode of gene regulation that is epigenetic in nature 2,3. We developed a method called nucleosome ELISA (NU-ELISA) to quantitatively determine global PTM signatures of nucleosomes extracted from cells. NU-ELISA is more sensitive and quantitative than western blotting, and is useful to interrogate the epiproteomic state of specific cell types. This video journal article shows detailed procedures to perform NU-ELISA analysis.
Cellular Biology, Issue 50, Chromatin, Nucleosome, Epigenetics, ELISA, Histone, Modification, Methylation, Acetylation
2593
Play Button
Photobleaching Assays (FRAP & FLIP) to Measure Chromatin Protein Dynamics in Living Embryonic Stem Cells
Authors: Malka Nissim-Rafinia, Eran Meshorer.
Institutions: The Hebrew University of Jerusalem.
Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In Photobleaching (FLIP) enable the study of protein dynamics in living cells with good spatial and temporal resolution. Here we describe how to perform FRAP and FLIP assays of chromatin proteins, including H1 and HP1, in mouse embryonic stem (ES) cells. In a FRAP experiment, cells are transfected, either transiently or stably, with a protein of interest fused with the green fluorescent protein (GFP) or derivatives thereof (YFP, CFP, Cherry, etc.). In the transfected, fluorescing cells, an intense focused laser beam bleaches a relatively small region of interest (ROI). The laser wavelength is selected according to the fluorescent protein used for fusion. The laser light irreversibly bleaches the fluorescent signal of molecules in the ROI and, immediately following bleaching, the recovery of the fluorescent signal in the bleached area - mediated by the replacement of the bleached molecules with the unbleached molecules - is monitored using time lapse imaging. The generated fluorescence recovery curves provide information on the protein's mobility. If the fluorescent molecules are immobile, no fluorescence recovery will be observed. In a complementary approach, Fluorescence Loss in Photobleaching (FLIP), the laser beam bleaches the same spot repeatedly and the signal intensity is measured elsewhere in the fluorescing cell. FLIP experiments therefore measure signal decay rather than fluorescence recovery and are useful to determine protein mobility as well as protein shuttling between cellular compartments. Transient binding is a common property of chromatin-associated proteins. Although the major fraction of each chromatin protein is bound to chromatin at any given moment at steady state, the binding is transient and most chromatin proteins have a high turnover on chromatin, with a residence time in the order of seconds. These properties are crucial for generating high plasticity in genome expression1. Photobleaching experiments are therefore particularly useful to determine chromatin plasticity using GFP-fusion versions of chromatin structural proteins, especially in ES cells, where the dynamic exchange of chromatin proteins (including heterochromatin protein 1 (HP1), linker histone H1 and core histones) is higher than in differentiated cells2,3.
Developmental Biology, Issue 52, Live imaging, FRAP, FLIP, embryonic stem (ES) cells, chromatin, chromatin plasticity, protein dynamics
2696
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
51868
Play Button
An Efficient Method for Quantitative, Single-cell Analysis of Chromatin Modification and Nuclear Architecture in Whole-mount Ovules in Arabidopsis
Authors: Wenjing She, Daniel Grimanelli, Célia Baroux.
Institutions: University of Zürich, Université de Montpellier II.
In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues. Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.
Plant Biology, Issue 88, Arabidopsis thaliana, ovule, chromatin modification, nuclear architecture, immunostaining, Fluorescence in situ Hybridization, FISH, DNA staining, Heterochromatin
51530
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Efficient iPS Cell Generation from Blood Using Episomes and HDAC Inhibitors
Authors: Jesse J. Hubbard, Spencer K. Sullivan, Jason A. Mills, Brian J. Hayes, Beverly J. Torok-Storb, Aravind Ramakrishnan.
Institutions: Fred Hutchinson Cancer Research Center, The Children's Hospital of Philadelphia, The Children's Hospital of Philadelphia.
This manuscript illustrates a protocol for efficiently creating integration-free human induced pluripotent stem cells (iPSCs) from peripheral blood using episomal plasmids and histone deacetylase (HDAC) inhibitors. The advantages of this approach include: (1) the use of a minimal amount of peripheral blood as a source material; (2) nonintegrating reprogramming vectors; (3) a cost effective method for generating vector free iPSCs; (4) a single transfection; and (5) the use of small molecules to facilitate epigenetic reprogramming. Briefly, peripheral blood mononuclear cells (PBMCs) are isolated from routine phlebotomy samples and then cultured in defined growth factors to yield a highly proliferative erythrocyte progenitor cell population that is remarkably amenable to reprogramming. Nonintegrating, nontransmissible episomal plasmids expressing OCT4, SOX2, KLF4, MYCL, LIN28A, and a p53 short hairpin (sh)RNA are introduced into the derived erythroblasts via a single nucleofection. Cotransfection of an episome that expresses enhanced green fluorescent protein (eGFP) allows for easy identification of transfected cells. A separate replication-deficient plasmid expressing Epstein-Barr nuclear antigen 1 (EBNA1) is also added to the reaction mixture for increased expression of episomal proteins. Transfected cells are then plated onto a layer of irradiated mouse embryonic fibroblasts (iMEFs) for continued reprogramming. As soon as iPSC-like colonies appear at about twelve days after nucleofection, HDAC inhibitors are added to the medium to facilitate epigenetic remodeling. We have found that the inclusion of HDAC inhibitors routinely increases the generation of fully reprogrammed iPSC colonies by 2 fold. Once iPSC colonies exhibit typical human embryonic stem cell (hESC) morphology, they are gently transferred to individual iMEF-coated tissue culture plates for continued growth and expansion.
Cellular Biology, Issue 92, Induced pluripotent stem cells, iPSC, iPSC generation, human, HDAC inhibitors, histone deacetylase inhibitors, reprogramming, episomes, integration-free
52009
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
51220
Play Button
Affinity-based Isolation of Tagged Nuclei from Drosophila Tissues for Gene Expression Analysis
Authors: Jingqun Ma, Vikki Marie Weake.
Institutions: Purdue University.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Biochemistry, Issue 85, Gene Expression, nuclei isolation, Drosophila, KASH, GFP, cell-type specific
51418
Play Button
Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation
Authors: Yufen Goh, Melissa J. Fullwood, Huay Mei Poh, Su Qin Peh, Chin Thing Ong, Jingyao Zhang, Xiaoan Ruan, Yijun Ruan.
Institutions: Agency for Science, Technology and Research, Singapore, A*STAR-Duke-NUS Neuroscience Research Partnership, Singapore, National University of Singapore, Singapore.
Genomes are organized into three-dimensional structures, adopting higher-order conformations inside the micron-sized nuclear spaces 7, 2, 12. Such architectures are not random and involve interactions between gene promoters and regulatory elements 13. The binding of transcription factors to specific regulatory sequences brings about a network of transcription regulation and coordination 1, 14. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) was developed to identify these higher-order chromatin structures 5,6. Cells are fixed and interacting loci are captured by covalent DNA-protein cross-links. To minimize non-specific noise and reduce complexity, as well as to increase the specificity of the chromatin interaction analysis, chromatin immunoprecipitation (ChIP) is used against specific protein factors to enrich chromatin fragments of interest before proximity ligation. Ligation involving half-linkers subsequently forms covalent links between pairs of DNA fragments tethered together within individual chromatin complexes. The flanking MmeI restriction enzyme sites in the half-linkers allow extraction of paired end tag-linker-tag constructs (PETs) upon MmeI digestion. As the half-linkers are biotinylated, these PET constructs are purified using streptavidin-magnetic beads. The purified PETs are ligated with next-generation sequencing adaptors and a catalog of interacting fragments is generated via next-generation sequencers such as the Illumina Genome Analyzer. Mapping and bioinformatics analysis is then performed to identify ChIP-enriched binding sites and ChIP-enriched chromatin interactions 8. We have produced a video to demonstrate critical aspects of the ChIA-PET protocol, especially the preparation of ChIP as the quality of ChIP plays a major role in the outcome of a ChIA-PET library. As the protocols are very long, only the critical steps are shown in the video.
Genetics, Issue 62, ChIP, ChIA-PET, Chromatin Interactions, Genomics, Next-Generation Sequencing
3770
Play Button
Generation and Purification of Human INO80 Chromatin Remodeling Complexes and Subcomplexes
Authors: Lu Chen, Soon-Keat Ooi, Ronald C. Conaway, Joan W. Conaway.
Institutions: Stowers Institute for Medical Research, Kansas University Medical Center.
INO80 chromatin remodeling complexes regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Human INO80 complexes consist of 14 protein subunits including Ino80, a SNF2-like ATPase, which serves both as the catalytic subunit and the scaffold for assembly of the complexes. Functions of the other subunits and the mechanisms by which they contribute to the INO80 complex's chromatin remodeling activity remain poorly understood, in part due to the challenge of generating INO80 subassemblies in human cells or heterologous expression systems. This JOVE protocol describes a procedure that allows purification of human INO80 chromatin remodeling subcomplexes that are lacking a subunit or a subset of subunits. N-terminally FLAG epitope tagged Ino80 cDNA are stably introduced into human embryonic kidney (HEK) 293 cell lines using Flp-mediated recombination. In the event that a subset of subunits of the INO80 complex is to be deleted, one expresses instead mutant Ino80 proteins that lack the platform needed for assembly of those subunits. In the event an individual subunit is to be depleted, one transfects siRNAs targeting this subunit into an HEK 293 cell line stably expressing FLAG tagged Ino80 ATPase. Nuclear extracts are prepared, and FLAG immunoprecipitation is performed to enrich protein fractions containing Ino80 derivatives. The compositions of purified INO80 subcomplexes can then be analyzed using methods such as immunoblotting, silver staining, and mass spectrometry. The INO80 and INO80 subcomplexes generated according to this protocol can be further analyzed using various biochemical assays, which are described in the accompanying JOVE protocol. The methods described here can be adapted for studies of the structural and functional properties of any mammalian multi-subunit chromatin remodeling and modifying complexes.
Biochemistry, Issue 92, chromatin remodeling, INO80, SNF2 family ATPase, structure-function, enzyme purification
51720
Play Button
Assembly of Nucleosomal Arrays from Recombinant Core Histones and Nucleosome Positioning DNA
Authors: Ryan A. Rogge, Anna A. Kalashnikova, Uma M. Muthurajan, Mary E. Porter-Goff, Karolin Luger, Jeffrey C. Hansen.
Institutions: Colorado State University .
Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.
Cellular Biology, Issue 79, Chromosome Structures, Chromatin, Nucleosomes, Histones, Microscopy, Atomic Force (AFM), Biochemistry, Chromatin, Nucleosome, Nucleosomal Array, Histone, Analytical Ultracentrifugation, Sedimentation Velocity
50354
Play Button
Generation of Myospheres From hESCs by Epigenetic Reprogramming
Authors: Sonia Albini, Pier Lorenzo Puri.
Institutions: Sanford-Burnham Institute for Medical Research, IRCCS Fondazione Santa Lucia.
Generation of a homogeneous and abundant population of skeletal muscle cells from human embryonic stem cells (hESCs) is a requirement for cell-based therapies and for a "disease in a dish" model of human neuromuscular diseases. Major hurdles, such as low abundance and heterogeneity of the population of interest, as well as a lack of protocols for the formation of three-dimensional contractile structures, have limited the applications of stem cells for neuromuscular disorders. We have designed a protocol that overcomes these limits by ectopic introduction of defined factors in hESCs - the muscle determination factor MyoD and SWI/SNF chromatin remodeling complex component BAF60C - that are able to reprogram hESCs into skeletal muscle cells. Here we describe the protocol established to generate hESC-derived myoblasts and promote their clustering into tridimensional miniaturized structures (myospheres) that functionally mimic miniaturized skeletal muscles7.
Bioengineering, Issue 88, Tissues, Cells, Embryonic Structures, Musculoskeletal System, Musculoskeletal Diseases, hESC, epinegetics, Skeletal Myogenesis, Myosphere, Chromatin, Lentivirus, Infection
51243
Play Button
In Vitro Nuclear Assembly Using Fractionated Xenopus Egg Extracts
Authors: Marie Cross, Maureen Powers.
Institutions: Emory University.
Nuclear membrane assembly is an essential step in the cell division cycle; this process can be replicated in the test tube by combining Xenopus sperm chromatin, cytosol, and light membrane fractions. Complete nuclei are formed, including nuclear membranes with pore complexes, and these reconstituted nuclei are capable of normal nuclear processes.
Cellular Biology, Issue 19, Current Protocols Wiley, Xenopus Egg Extracts, Nuclear Assembly, Nuclear Membrane
908
Play Button
Neuronal Nuclei Isolation from Human Postmortem Brain Tissue
Authors: Anouch Matevossian, Schahram Akbarian.
Institutions: University of Massachusetts Medical School.
Neurons in the human brain become postmitotic largely during prenatal development, and thus maintain their nuclei throughout the full lifespan. However, little is known about changes in neuronal chromatin and nuclear organization during the course of development and aging, or in chronic neuropsychiatric disease. However, to date most chromatin and DNA based assays (other than FISH) lack single cell resolution. To this end, the considerable cellular heterogeneity of brain tissue poses a significant limitation, because typically various subpopulations of neurons are intermingled with different types of glia and other non-neuronal cells. One possible solution would be to grow cell-type specific cultures, but most CNS cells, including neurons, are ex vivo sustainable, at best, for only a few weeks and thus would provide an incomplete model for epigenetic mechanisms potentially operating across the full lifespan. Here, we provide a protocol to extract and purify nuclei from frozen (never fixed) human postmortem brain. The method involves extraction of nuclei in hypotonic lysis buffer, followed by ultracentrifugation and immunotagging with anti-NeuN antibody. Labeled neuronal nuclei are then collected separately using fluorescence-activated sorting. This method should be applicable to any brain region in a wide range of species and suitable for chromatin immunoprecipitation studies with site- and modification-specific anti-histone antibodies, and for DNA methylation and other assays.
Neuroscience, Issue 20, FACS, postmortem brain, epigenetic, human brain, nueronal nuclei, immunotagging
914
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.