JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Role of 4-1BB receptor in the control played by CD8(+) T cells on IFN-gamma production by Mycobacterium tuberculosis antigen-specific CD4(+) T Cells.
PLoS ONE
PUBLISHED: 05-10-2010
Antigen-specific IFN-gamma producing CD4(+) T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-gamma production without affecting protective IFN-gamma is a challenge in tuberculosis research.
Authors: Insaf Salem Fourati, Anne-Julie Grenier, Élyse Jolette, Natacha Merindol, Philippe Ovetchkine, Hugo Soudeyns.
Published: 07-09-2014
ABSTRACT
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.  
21 Related JoVE Articles!
Play Button
In Vitro Assay to Evaluate the Impact of Immunoregulatory Pathways on HIV-specific CD4 T Cell Effector Function
Authors: Filippos Porichis, Meghan G. Hart, Jennifer Zupkosky, Lucie Barblu, Daniel E. Kaufmann.
Institutions: The Ragon Institute of MGH, MIT and Harvard, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM).
T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.
Immunology, Issue 80, Virus Diseases, Immune System Diseases, HIV, CD4 T cell, CD8 T cell, antigen-presenting cell, Cytokines, immunoregulatory networks, PD-1: IL-10, exhaustion, monocytes
50821
Play Button
Expansion of Human Peripheral Blood γδ T Cells using Zoledronate
Authors: Makoto Kondo, Takamichi Izumi, Nao Fujieda, Atsushi Kondo, Takeharu Morishita, Hirokazu Matsushita, Kazuhiro Kakimi.
Institutions: University of Tokyo Hospital, MEDINET Co., Ltd.
Human γδ T cells can recognize and respond to a wide variety of stress-induced antigens, thereby developing innate broad anti-tumor and anti-infective activity.1 The majority of γδ T cells in peripheral blood have the Vγ9Vδ2 T cell receptor. These cells recognize antigen in a major histocompatibility complex-independent manner and develop strong cytolytic and Th1-like effector functions.1Therefore, γδ T cells are attractive candidate effector cells for cancer immunotherapy. Vγ9Vδ2 T cells respond to phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is synthesized in bacteria via isoprenoid biosynthesis;2 and isopentenyl pyrophosphate (IPP), which is produced in eukaryotic cells through the mevalonate pathway.3 In physiological condition, the generation of IPP in nontransformed cell is not sufficient for the activation of γδ T cells. Dysregulation of mevalonate pathway in tumor cells leads to accumulation of IPP and γδ T cells activation.3 Because aminobisphosphonates (such as pamidronate or zoledronate) inhibit farnesyl pyrophosphate synthase (FPPS), the enzyme acting downstream of IPP in the mevalonate pathway, intracellular levels of IPP and sensitibity to γδ T cells recognition can be therapeutically increased by aminobisphosphonates. IPP accumulation is less efficient in nontransfomred cells than tumor cells with a pharmacologically relevant concentration of aminobisphosphonates, that allow us immunotherapy for cancer by activating γδ T cells with aminobisphosphonates. 4 Interestingly, IPP accumulates in monocytes when PBMC are treated with aminobisphosphonates, because of efficient drug uptake by these cells. 5 Monocytes that accumulate IPP become antigen-presenting cells and stimulate Vγ9Vδ2 T cells in the peripheral blood.6 Based on these mechanisms, we developed a technique for large-scale expansion of γδ T cell cultures using zoledronate and interleukin-2 (IL-2).7 Other methods for expansion of γδ T cells utilize the synthetic phosphoantigens bromohydrin pyrophosphate (BrHPP)8 or 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP).9 All of these methods allow ex vivo expansion, resulting in large numbers of γδ T cells for use in adoptive immunotherapy. However, only zoledronate is an FDA-approved commercially available reagent. Zoledronate-expanded γδ T cells display CD27-CD45RA- effector memory phenotype and thier function can be evaluated by IFN-γ production assay. 7
Immunology, Issue 55, γδ T Cell, zoledronate, PBMC, peripheral blood mononuclear cells
3182
Play Button
Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant
Authors: Ulrike Gerdemann, Juan F. Vera, Cliona M. Rooney, Ann M. Leen.
Institutions: Baylor College of Medicine.
Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients.
Immunology, Issue 51, T cells, immunotherapy, viral infections, nucleofection, plasmids, G-Rex culture device
2736
Play Button
Multicolor Flow Cytometry Analyses of Cellular Immune Response in Rhesus Macaques
Authors: Hong He, Amy N. Courtney, Eric Wieder, K. Jagannadha Sastry.
Institutions: MD Anderson Cancer Center - University of Texas, University of Miami.
The rhesus macaque model is currently the best available model for HIV-AIDS with respect to understanding the pathogenesis as well as for the development of vaccines and therapeutics1,2,3. Here, we describe a method for the detailed phenotypic and functional analyses of cellular immune responses, specifically intracellular cytokine production by CD4+ and CD8+ T cells as well as the individual memory subsets. We obtained precise quantitative and qualitative measures for the production of interferon gamma (INF-) and interleukin (IL) -2 in both CD4+ and CD8+ T cells from the rhesus macaque PBMC stimulated with PMA plus ionomycin (PMA+I). The cytokine profiles were different in the different subsets of memory cells. Furthermore, this protocol provided us the sensitivity to demonstrate even minor fractions of antigen specific CD4+ and CD8+ T cell subsets within the PBMC samples from rhesus macaques immunized with an HIV envelope peptide cocktail vaccine developed in our laboratory. The multicolor flow cytometry technique is a powerful tool to precisely identify different populations of T cells 4,5 with cytokine-producing capability6 following non-specific or antigen-specific stimulation 5,7.
JoVE Immunology, Issue 38, Immune Response, Cytokine Production, Flow Cytometry, HIV, Rhesus Macaque, T Cells, Intracellular Cytokine Staining, FACS
1743
Play Button
A Functional Whole Blood Assay to Measure Viability of Mycobacteria, using Reporter-Gene Tagged BCG or M.Tb (BCG lux/M.Tb lux)
Authors: Sandra Newton, Adrian Martineau, Beate Kampmann.
Institutions: Imperial College London , Barts & The London School of Medicine and Dentistry.
Functional assays have long played a key role in measuring of immunogenicity of a given vaccine. This is conventionally expressed as serum bactericidal titers. Studies of serum bactericidal titers in response to childhood vaccines have enabled us to develop and validate cut-off levels for protective immune responses and such cut-offs are in routine use. No such assays have been taken forward into the routine assessment of vaccines that induce primarily cell-mediated immunity in the form of effector T cell responses, such as TB vaccines. In the animal model, the performance of a given vaccine candidate is routinely evaluated in standardized bactericidal assays, and all current novel TB-vaccine candidates have been subjected to this step in their evaluation prior to phase 1 human trials. The assessment of immunogenicity and therefore likelihood of protective efficacy of novel anti-TB vaccines should ideally undergo a similar step-wise evaluation in the human models now, including measurements in bactericidal assays. Bactericidal assays in the context of tuberculosis vaccine research are already well established in the animal models, where they are applied to screen potentially promising vaccine candidates. Reduction of bacterial load in various organs functions as the main read-out of immunogenicity. However, no such assays have been incorporated into clinical trials for novel anti-TB vaccines to date. Although there is still uncertainty about the exact mechanisms that lead to killing of mycobacteria inside human macrophages, the interaction of macrophages and T cells with mycobacteria is clearly required. The assay described in this paper represents a novel generation of bactericidal assays that enables studies of such key cellular components with all other cellular and humoral factors present in whole blood without making assumptions about their relative individual contribution. The assay described by our group uses small volumes of whole blood and has already been employed in studies of adults and children in TB-endemic settings. We have shown immunogenicity of the BCG vaccine, increased growth of mycobacteria in HIV-positive patients, as well as the effect of anti-retroviral therapy and Vitamin D on mycobacterial survival in vitro. Here we summarise the methodology, and present our reproducibility data using this relatively simple, low-cost and field-friendly model. Note: Definitions/Abbreviations BCG lux = M. bovis BCG, Montreal strain, transformed with shuttle plasmid pSMT1 carrying the luxAB genes from Vibrio harveyi, under the control of the mycobacterial GroEL (hsp60) promoter. CFU = Colony Forming Unit (a measure of mycobacterial viability).
Immunology, Issue 55, M.tuberculosis, BCG, whole blood assay, lux reporter genes, immune responses, tuberculosis, host pathogen interactions
3332
Play Button
Expanding Cytotoxic T Lymphocytes from Umbilical Cord Blood that Target Cytomegalovirus, Epstein-Barr Virus, and Adenovirus
Authors: Patrick J. Hanley, Sharon Lam, Elizabeth J. Shpall, Catherine M. Bollard.
Institutions: Baylor College of Medicine , Baylor College of Medicine , University of Texas M.D. Anderson Cancer Center, Baylor College of Medicine , Baylor College of Medicine .
Virus infections after stem cell transplantation are among the most common causes of death, especially after cord blood (CB) transplantation (CBT) where the CB does not contain appreciable numbers of virus-experienced T cells which can protect the recipient from infection.1-4 We and others have shown that virus-specific CTL generated from seropositive donors and infused to the recipient are safe and protective.5-8 However, until recently, virus-specific T cells could not be generated from cord blood, likely due to the absence of virus-specific memory T cells. In an effort to better mimic the in vivo priming conditions of naïve T cells, we established a method that used CB-derived dendritic cells (DC) transduced with an adenoviral vector (Ad5f35pp65) containing the immunodominant CMV antigen pp65, hence driving T cell specificity towards CMV and adenovirus.9 At initiation, we use these matured DCs as well as CB-derived T cells in the presence of the cytokines IL-7, IL-12, and IL-15.10 At the second stimulation we used EBV-transformed B cells, or EBV-LCL, which express both latent and lytic EBV antigens. Ad5f35pp65-transduced EBV-LCL are used to stimulate the T cells in the presence of IL-15 at the second stimulation. Subsequent stimulations use Ad5f35pp65-transduced EBV-LCL and IL-2. From 50x106 CB mononuclear cells we are able to generate upwards of 150 x 106 virus-specific T cells that lyse antigen-pulsed targets and release cytokines in response to antigenic stimulation.11 These cells were manufactured in a GMP-compliant manner using only the 20% fraction of a fractionated cord blood unit and have been translated for clinical use.
Immunology, Issue 63, Cytotoxic T Lymphocytes (CTL), virus, stem cell transplantation, cord blood, naïve T cells, medicine
3627
Play Button
Directed Differentiation of Induced Pluripotent Stem Cells towards T Lymphocytes
Authors: Fengyang Lei, Rizwanul Haque, Xiaofang Xiong, Jianxun Song.
Institutions: Pennsylvania State University College of Medicine.
Adoptive cell transfer (ACT) of antigen-specific CD8+ cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies 1. CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines 2-7. However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases 8-10. However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic 11-13, HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture 14-16. Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.
Stem Cell Biology, Issue 63, Immunology, T cells, induced pluripotent stem cells, differentiation, Notch signaling, T cell receptor, adoptive cell transfer
3986
Play Button
Transplantation of Tail Skin to Study Allogeneic CD4 T Cell Responses in Mice
Authors: Mathias Schmaler, Maria A. S. Broggi, Simona W. Rossi.
Institutions: University of Basel and University Hospital Basel.
The study of T cell responses and their consequences during allo-antigen recognition requires a model that enables one to distinguish between donor and host T cells, to easily monitor the graft, and to adapt the system in order to answer different immunological questions. Medawar and colleagues established allogeneic tail-skin transplantation in mice in 1955. Since then, the skin transplantation model has been continuously modified and adapted to answer specific questions. The use of tail-skin renders this model easy to score for graft rejection, requires neither extensive preparation nor deep anesthesia, is applicable to animals of all genetic background, discourages ischemic necrosis, and permits chemical and biological intervention. In general, both CD4+ and CD8+ allogeneic T cells are responsible for the rejection of allografts since they recognize mismatched major histocompatibility antigens from different mouse strains. Several models have been described for activating allogeneic T cells in skin-transplanted mice. The identification of major histocompatibility complex (MHC) class I and II molecules in different mouse strains including C57BL/6 mice was an important step toward understanding and studying T cell-mediated alloresponses. In the tail-skin transplantation model described here, a three-point mutation (I-Abm12) in the antigen-presenting groove of the MHC-class II (I-Ab) molecule is sufficient to induce strong allogeneic CD4+ T cell activation in C57BL/6 mice. Skin grafts from I-Abm12 mice on C57BL/6 mice are rejected within 12-15 days, while syngeneic grafts are accepted for up to 100 days. The absence of T cells (CD3-/- and Rag2-/- mice) allows skin graft acceptance up to 100 days, which can be overcome by transferring 2 x 104 wild type or transgenic T cells. Adoptively transferred T cells proliferate and produce IFN-γ in I-Abm12-transplanted Rag2-/- mice.
Immunology, Issue 89, Tail-skin transplantation, I-Abm12 mismatch, CD4+ T cell, ABM, Rejection, Tolerance
51724
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
51906
Play Button
Examination of Thymic Positive and Negative Selection by Flow Cytometry
Authors: Qian Hu, Stephanie A. Nicol, Alexander Y.W. Suen, Troy A. Baldwin.
Institutions: University of Alberta.
A healthy immune system requires that T cells respond to foreign antigens while remaining tolerant to self-antigens. Random rearrangement of the T cell receptor (TCR) α and β loci generates a T cell repertoire with vast diversity in antigen specificity, both to self and foreign. Selection of the repertoire during development in the thymus is critical for generating safe and useful T cells. Defects in thymic selection contribute to the development of autoimmune and immunodeficiency disorders1-4. T cell progenitors enter the thymus as double negative (DN) thymocytes that do not express CD4 or CD8 co-receptors. Expression of the αβTCR and both co-receptors occurs at the double positive (DP) stage. Interaction of the αβTCR with self-peptide-MHC (pMHC) presented by thymic cells determines the fate of the DP thymocyte. High affinity interactions lead to negative selection and elimination of self-reactive thymocytes. Low affinity interactions result in positive selection and development of CD4 or CD8 single positive (SP) T cells capable of recognizing foreign antigens presented by self-MHC5. Positive selection can be studied in mice with a polyclonal (wildtype) TCR repertoire by observing the generation of mature T cells. However, they are not ideal for the study of negative selection, which involves deletion of small antigen-specific populations. Many model systems have been used to study negative selection but vary in their ability to recapitulate physiological events6. For example, in vitro stimulation of thymocytes lacks the thymic environment that is intimately involved in selection, while administration of exogenous antigen can lead to non-specific deletion of thymocytes7-9. Currently, the best tools for studying in vivo negative selection are mice that express a transgenic TCR specific for endogenous self-antigen. However, many classical TCR transgenic models are characterized by premature expression of the transgenic TCRα chain at the DN stage, resulting in premature negative selection. Our lab has developed the HYcd4 model, in which the transgenic HY TCRα is conditionally expressed at the DP stage, allowing negative selection to occur during the DP to SP transition as occurs in wildtype mice10. Here, we describe a flow cytometry-based protocol to examine thymic positive and negative selection in the HYcd4 mouse model. While negative selection in HYcd4 mice is highly physiological, these methods can also be applied to other TCR transgenic models. We will also present general strategies for analyzing positive selection in a polyclonal repertoire applicable to any genetically manipulated mice.
Immunology, Issue 68, Medicine, Cellular Biology, Anatomy, Physiology, Thymus, T cell, negative selection, positive selection, autoimmunity, flow cytometry
4269
Play Button
Generation of a Novel Dendritic-cell Vaccine Using Melanoma and Squamous Cancer Stem Cells
Authors: Qiao Li, Lin Lu, Huimin Tao, Carolyn Xue, Seagal Teitz-Tennenbaum, John H. Owen, Jeffrey S Moyer, Mark E.P. Prince, Alfred E. Chang, Max S. Wicha.
Institutions: University of Michigan, University of Michigan, University of Michigan.
We identified cancer stem cell (CSC)-enriched populations from murine melanoma D5 syngeneic to C57BL/6 mice and the squamous cancer SCC7 syngeneic to C3H mice using ALDEFLUOR/ALDH as a marker, and tested their immunogenicity using the cell lysate as a source of antigens to pulse dendritic cells (DCs). DCs pulsed with ALDHhigh CSC lysates induced significantly higher protective antitumor immunity than DCs pulsed with the lysates of unsorted whole tumor cell lysates in both models and in a lung metastasis setting and a s.c. tumor growth setting, respectively. This phenomenon was due to CSC vaccine-induced humoral as well as cellular anti-CSC responses. In particular, splenocytes isolated from the host subjected to CSC-DC vaccine produced significantly higher amount of IFNγ and GM-CSF than splenocytes isolated from the host subjected to unsorted tumor cell lysate pulsed-DC vaccine. These results support the efforts to develop an autologous CSC-based therapeutic vaccine for clinical use in an adjuvant setting.
Cancer Biology, Issue 83, Cancer stem cell (CSC), Dendritic cells (DC), Vaccine, Cancer immunotherapy, antitumor immunity, aldehyde dehydrogenase
50561
Play Button
Enzyme-linked Immunospot Assay (ELISPOT): Quantification of Th-1 Cellular Immune Responses Against Microbial Antigens
Authors: Isfahan R. Chambers, Tiffany R. Cone, Kyra Oswald-Richter, Wonder P. Drake.
Institutions: Vanderbilt University School of Medicine, Vanderbilt University School of Medicine.
Adaptive immunity is an important component to clearance of intracellular pathogens. The ability to detect and quantify these responses in humans is an important diagnostic tool. The enzyme-linked immunospot assay (ELISPOT) is gaining popularity for its ability to identify cellular immune responses against microbial antigens, including immunosuppressed populations such as those with HIV infection, transplantation, and steroid use. This assay has the capacity to quantify the immune responses against specific microbial antigens, as well as distinguish if these responses are Th1 or Th2 in character. ELISPOT is not limited to the site of inflammation. It is versatile in its ability to assess for immune responses within peripheral blood, as well as sites of active involvement such as bronchoalveolar lavage, cerebral spinal fluid, and ascites. Detection of immune responses against a single or multiple antigens is possible, as well as specific epitopes within microbial proteins. This assay facilitates detection of immune responses over time, as well as distinctions in antigens recognized by host T cells. Dual color ELISPOT assays are available for detection of simultaneous expression of two cytokines. Recent applications for this technique include diagnosis of extrapulmonary tuberculosis, as well as investigation of the contribution of infectious antigens to autoimmune diseases.
Immunology, Issue 45, ELISPOT, Th-1 Immune Response, interferon gamma, T cell, adaptive immunity
2221
Play Button
Use of Interferon-γ Enzyme-linked Immunospot Assay to Characterize Novel T-cell Epitopes of Human Papillomavirus
Authors: Xuelian Wang, William W. Greenfield, Hannah N. Coleman, Lindsey E. James, Mayumi Nakagawa.
Institutions: China Medical University , University of Arkansas for Medical Sciences , University of Arkansas for Medical Sciences .
A protocol has been developed to overcome the difficulties of isolating and characterizing rare T cells specific for pathogens, such as human papillomavirus (HPV), that cause localized infections. The steps involved are identifying region(s) of HPV proteins that contain T-cell epitope(s) from a subject, selecting for the peptide-specific T cells based on interferon-γ (IFN-γ) secretion, and growing and characterizing the T-cell clones (Fig. 1). Subject 1 was a patient who was recently diagnosed with a high-grade squamous intraepithelial lesion by biopsy and underwent loop electrical excision procedure for treatment on the day the T cells were collected1. A region within the human papillomavirus type 16 (HPV 16) E6 and E7 proteins which contained a T-cell epitope was identified using an IFN- g enzyme-linked immunospot (ELISPOT) assay performed with overlapping synthetic peptides (Fig. 2). The data from this assay were used not only to identify a region containing a T-cell epitope, but also to estimate the number of epitope specific T cells and to isolate them on the basis of IFN- γ secretion using commercially available magnetic beads (CD8 T-cell isolation kit, Miltenyi Biotec, Auburn CA). The selected IFN-γ secreting T cells were diluted and grown singly in the presence of an irradiated feeder cell mixture in order to support the growth of a single T-cell per well. These T-cell clones were screened using an IFN- γ ELISPOT assay in the presence of peptides covering the identified region and autologous Epstein-Barr virus transformed B-lymphoblastoid cells (LCLs, obtained how described by Walls and Crawford)2 in order to minimize the number of T-cell clone cells needed. Instead of using 1 x 105 cells per well typically used in ELISPOT assays1,3, 1,000 T-cell clone cells in the presence of 1 x 105 autologous LCLs were used, dramatically reducing the number of T-cell clone cells needed. The autologous LCLs served not only to present peptide antigens to the T-cell clone cells, but also to keep a high cell density in the wells allowing the epitope-specific T-cell clone cells to secrete IFN-γ. This assures successful performance of IFN-γ ELISPOT assay. Similarly, IFN- γ ELISPOT assays were utilized to characterize the minimal and optimal amino acid sequence of the CD8 T-cell epitope (HPV 16 E6 52-61 FAFRDLCIVY) and its HLA class I restriction element (B58). The IFN- γ ELISPOT assay was also performed using autologous LCLs infected with vaccinia virus expressing HPV 16 E6 or E7 protein. The result demonstrated that the E6 T-cell epitope was endogenously processed. The cross-recognition of homologous T-cell epitope of other high-risk HPV types was shown. This method can also be used to describe CD4 T-cell epitopes4.
Immunology, Issue 61, Interferon-γ enzyme-linked immunospot assay, T-cell, epitope, human papillomavirus
3657
Play Button
In Vitro Analysis of Myd88-mediated Cellular Immune Response to West Nile Virus Mutant Strain Infection
Authors: Guorui Xie, Melissa C. Whiteman, Jason A. Wicker, Alan D.T. Barrett, Tian Wang.
Institutions: The University of Texas Medical Branch, The University of Texas Medical Branch, The University of Texas Medical Branch.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.
Immunology, Issue 93, West Nile Virus, Dendritic cells, T cells, cytokine, proliferation, in vitro
52121
Play Button
Sublingual Immunotherapy as an Alternative to Induce Protection Against Acute Respiratory Infections
Authors: Natalia Muñoz-Wolf, Analía Rial, José M. Saavedra, José A. Chabalgoity.
Institutions: Universidad de la República, Trinity College Dublin.
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung’s immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs’ immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Medicine, Issue 90, Sublingual immunotherapy, Pneumonia, Streptococcus pneumoniae, Lungs, Flagellin, TLR5, NLRC4
52036
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
50290
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
50868
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
50829
Play Button
Intralymphatic Immunotherapy and Vaccination in Mice
Authors: Pål Johansen, Thomas M. Kündig.
Institutions: University Hospital Zurich.
Vaccines are typically injected subcutaneously or intramuscularly for stimulation of immune responses. The success of this requires efficient drainage of vaccine to lymph nodes where antigen presenting cells can interact with lymphocytes for generation of the wanted immune responses. The strength and the type of immune responses induced also depend on the density or frequency of interactions as well as the microenvironment, especially the content of cytokines. As only a minute fraction of peripherally injected vaccines reaches the lymph nodes, vaccinations of mice and humans were performed by direct injection of vaccine into inguinal lymph nodes, i.e. intralymphatic injection. In man, the procedure is guided by ultrasound. In mice, a small (5-10 mm) incision is made in the inguinal region of anesthetized animals, the lymph node is localized and immobilized with forceps, and a volume of 10-20 μl of the vaccine is injected under visual control. The incision is closed with a single stitch using surgical sutures. Mice were vaccinated with plasmid DNA, RNA, peptide, protein, particles, and bacteria as well as adjuvants, and strong improvement of immune responses against all type of vaccines was observed. The intralymphatic method of vaccination is especially appropriate in situations where conventional vaccination produces insufficient immunity or where the amount of available vaccine is limited.
Immunology, Issue 84, Vaccination, Immunization, intralymphatic immunotherapy, Lymph node injection, vaccines, adjuvants, surgery, anesthesia
51031
Play Button
Ex vivo Expansion of Tumor-reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common Gamma Chain Cytokines Formulation
Authors: Maciej Kmieciak, Amir Toor, Laura Graham, Harry D. Bear, Masoud H. Manjili.
Institutions: Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center.
It was reported that breast cancer patients have pre-existing immune responses against their tumors1,2. However, such immune responses fail to provide complete protection against the development or recurrence of breast cancer. To overcome this problem by increasing the frequency of tumor-reactive T cells, adoptive immunotherapy has been employed. A variety of protocols have been used for the expansion of tumor-specific T cells. These protocols, however, are restricted to the use of tumor antigens ex vivo for the activation of antigen-specific T cells. Very recently, common gamma chain cytokines such as IL-2, IL-7, IL-15, and IL-21 have been used alone or in combination for the enhancement of anti-tumor immune responses3. However, it is not clear what formulation would work best for the expansion of tumor-reactive T cells. Here we present a protocol for the selective activation and expansion of tumor-reactive T cells from the FVBN202 transgenic mouse model of HER-2/neu positive breast carcinoma for use in adoptive T cell therapy of breast cancer. The protocol includes activation of T cells with bryostatin-1/ionomycin (B/I) and IL-2 in the absence of tumor antigens for 16 hours. B/I activation mimics intracellular signals that result in T cell activation by increasing protein kinase C activity and intracellular calcium, respectively4. This protocol specifically activates tumor-specific T cells while killing irrelevant T cells. The B/I-activated T cells are cultured with IL-7 and IL-15 for 24 hours and then pulsed with IL-2. After 24 hours, T cells are washed, split, and cultured with IL-7 + IL-15 for additional 4 days. Tumor-specificity and anti-tumor efficacy of the ex vivo expanded T cells is determined.
Immunology, Issue 47, Adoptive T cell therapy, Breast Cancer, HER-2/neu, common gamma chain cytokines, Bryostatin 1, Ionomycin
2381
Play Button
Clinical Application of Sleeping Beauty and Artificial Antigen Presenting Cells to Genetically Modify T Cells from Peripheral and Umbilical Cord Blood
Authors: M. Helen Huls, Matthew J. Figliola, Margaret J. Dawson, Simon Olivares, Partow Kebriaei, Elizabeth J. Shpall, Richard E. Champlin, Harjeet Singh, Laurence J.N. Cooper.
Institutions: U.T. MD Anderson Cancer Center, U.T. MD Anderson Cancer Center.
The potency of clinical-grade T cells can be improved by combining gene therapy with immunotherapy to engineer a biologic product with the potential for superior (i) recognition of tumor-associated antigens (TAAs), (ii) persistence after infusion, (iii) potential for migration to tumor sites, and (iv) ability to recycle effector functions within the tumor microenvironment. Most approaches to genetic manipulation of T cells engineered for human application have used retrovirus and lentivirus for the stable expression of CAR1-3. This approach, although compliant with current good manufacturing practice (GMP), can be expensive as it relies on the manufacture and release of clinical-grade recombinant virus from a limited number of production facilities. The electro-transfer of nonviral plasmids is an appealing alternative to transduction since DNA species can be produced to clinical grade at approximately 1/10th the cost of recombinant GMP-grade virus. To improve the efficiency of integration we adapted Sleeping Beauty (SB) transposon and transposase for human application4-8. Our SB system uses two DNA plasmids that consist of a transposon coding for a gene of interest (e.g. 2nd generation CD19-specific CAR transgene, designated CD19RCD28) and a transposase (e.g. SB11) which inserts the transgene into TA dinucleotide repeats9-11. To generate clinically-sufficient numbers of genetically modified T cells we use K562-derived artificial antigen presenting cells (aAPC) (clone #4) modified to express a TAA (e.g. CD19) as well as the T cell costimulatory molecules CD86, CD137L, a membrane-bound version of interleukin (IL)-15 (peptide fused to modified IgG4 Fc region) and CD64 (Fc-γ receptor 1) for the loading of monoclonal antibodies (mAb)12. In this report, we demonstrate the procedures that can be undertaken in compliance with cGMP to generate CD19-specific CAR+ T cells suitable for human application. This was achieved by the synchronous electro-transfer of two DNA plasmids, a SB transposon (CD19RCD28) and a SB transposase (SB11) followed by retrieval of stable integrants by the every-7-day additions (stimulation cycle) of γ-irradiated aAPC (clone #4) in the presence of soluble recombinant human IL-2 and IL-2113. Typically 4 cycles (28 days of continuous culture) are undertaken to generate clinically-appealing numbers of T cells that stably express the CAR. This methodology to manufacturing clinical-grade CD19-specific T cells can be applied to T cells derived from peripheral blood (PB) or umbilical cord blood (UCB). Furthermore, this approach can be harnessed to generate T cells to diverse tumor types by pairing the specificity of the introduced CAR with expression of the TAA, recognized by the CAR, on the aAPC.
Immunology, Issue 72, Cellular Biology, Medicine, Molecular Biology, Cancer Biology, Biomedical Engineering, Hematology, Biochemistry, Genetics, T-Lymphocytes, Antigen-Presenting Cells, Leukemia, Lymphoid, Lymphoma, Antigens, CD19, Immunotherapy, Adoptive, Electroporation, Genetic Engineering, Gene Therapy, Sleeping Beauty, CD19, T cells, Chimeric Antigen Receptor, Artificial Antigen Presenting Cells, Clinical Trial, Peripheral Blood, Umbilical Cord Blood, Cryopreservation, Electroporation
50070
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.