JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Expression levels of a kinesin-13 microtubule depolymerase modulates the effectiveness of anti-microtubule agents.
PLoS ONE
PUBLISHED: 02-18-2010
Chemotherapeutic drugs often target the microtubule cytoskeleton as a means to disrupt cancer cell mitosis and proliferation. Anti-microtubule drugs inhibit microtubule dynamics, thereby triggering apoptosis when dividing cells activate the mitotic checkpoint. Microtubule dynamics are regulated by microtubule-associated proteins (MAPs); however, we lack a comprehensive understanding about how anti-microtubule agents functionally interact with MAPs. In this report, we test the hypothesis that the cellular levels of microtubule depolymerases, in this case kinesin-13 s, modulate the effectiveness of the microtubule disrupting drug colchicine.
Authors: Douglas S. Martin, Lu Yu, Brian L. Van Hoozen.
Published: 11-09-2012
ABSTRACT
Microtubules are cytoskeletal polymers which play a role in cell division, cell mechanics, and intracellular transport. Each of these functions requires microtubules that are stiff and straight enough to span a significant fraction of the cell diameter. As a result, the microtubule persistence length, a measure of stiffness, has been actively studied for the past two decades1. Nonetheless, open questions remain: short microtubules are 10-50 times less stiff than long microtubules2-4, and even long microtubules have measured persistence lengths which vary by an order of magnitude5-9. Here, we present a method to measure microtubule persistence length. The method is based on a kinesin-driven microtubule gliding assay10. By combining sparse fluorescent labeling of individual microtubules with single particle tracking of individual fluorophores attached to the microtubule, the gliding trajectories of single microtubules are tracked with nanometer-level precision. The persistence length of the trajectories is the same as the persistence length of the microtubule under the conditions used11. An automated tracking routine is used to create microtubule trajectories from fluorophores attached to individual microtubules, and the persistence length of this trajectory is calculated using routines written in IDL. This technique is rapidly implementable, and capable of measuring the persistence length of 100 microtubules in one day of experimentation. The method can be extended to measure persistence length under a variety of conditions, including persistence length as a function of length along microtubules. Moreover, the analysis routines used can be extended to myosin-based acting gliding assays, to measure the persistence length of actin filaments as well.
16 Related JoVE Articles!
Play Button
Use of Stopped-Flow Fluorescence and Labeled Nucleotides to Analyze the ATP Turnover Cycle of Kinesins
Authors: Jennifer T. Patel, Hannah R. Belsham, Alexandra J. Rathbone, Claire T. Friel.
Institutions: University of Nottingham.
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.
Chemistry, Issue 92, Kinesin, ATP turnover, mantATP, mantADP, stopped-flow fluorescence, microtubules, enzyme kinetics, nucleotide
52142
Play Button
Production of Xenopus tropicalis Egg Extracts to Identify Microtubule-associated RNAs
Authors: Judith A. Sharp, Mike D. Blower.
Institutions: Massachusetts General Hospital, Harvard Medical School.
Many organisms localize mRNAs to specific subcellular destinations to spatially and temporally control gene expression. Recent studies have demonstrated that the majority of the transcriptome is localized to a nonrandom position in cells and embryos. One approach to identify localized mRNAs is to biochemically purify a cellular structure of interest and to identify all associated transcripts. Using recently developed high-throughput sequencing technologies it is now straightforward to identify all RNAs associated with a subcellular structure. To facilitate transcript identification it is necessary to work with an organism with a fully sequenced genome. One attractive system for the biochemical purification of subcellular structures are egg extracts produced from the frog Xenopus laevis. However, X. laevis currently does not have a fully sequenced genome, which hampers transcript identification. In this article we describe a method to produce egg extracts from a related frog, X. tropicalis, that has a fully sequenced genome. We provide details for microtubule polymerization, purification and transcript isolation. While this article describes a specific method for identification of microtubule-associated transcripts, we believe that it will be easily applied to other subcellular structures and will provide a powerful method for identification of localized RNAs.
Molecular Biology, Issue 76, Genetics, Developmental Biology, Biochemistry, Bioengineering, Cellular Biology, RNA, Messenger, Stored, RNA Processing, Post-Transcriptional, Xenopus, microtubules, egg extract, purification, RNA localization, mRNA, Xenopus tropicalis, eggs, animal model
50434
Play Button
Using plusTipTracker Software to Measure Microtubule Dynamics in Xenopus laevis Growth Cones
Authors: Alina Stout, Salvatore D'Amico, Tiffany Enzenbacher, Patrick Ebbert, Laura Anne Lowery.
Institutions: Boston College.
Microtubule (MT) plus-end-tracking proteins (+TIPs) localize to the growing plus-ends of MTs and regulate MT dynamics1,2. One of the most well-known and widely-utilized +TIPs for analyzing MT dynamics is the End-Binding protein, EB1, which binds all growing MT plus-ends, and thus, is a marker for MT polymerization1. Many studies of EB1 behavior within growth cones have used time-consuming and biased computer-assisted, hand-tracking methods to analyze individual MTs1-3. Our approach is to quantify global parameters of MT dynamics using the software package, plusTipTracker4, following the acquisition of high-resolution, live images of tagged EB1 in cultured embryonic growth cones5. This software is a MATLAB-based, open-source, user-friendly package that combines automated detection, tracking, visualization, and analysis for movies of fluorescently-labeled +TIPs. Here, we present the protocol for using plusTipTracker for the analysis of fluorescently-labeled +TIP comets in cultured Xenopus laevis growth cones. However, this software can also be used to characterize MT dynamics in various cell types6-8.
Molecular Biology, Issue 91, plusTipTracker, microtubule plus-end-tracking proteins, EB1, growth cone, Xenopus laevis, live cell imaging analysis, microtubule dynamics
52138
Play Button
3D Orbital Tracking in a Modified Two-photon Microscope: An Application to the Tracking of Intracellular Vesicles
Authors: Andrea Anzalone, Paolo Annibale, Enrico Gratton.
Institutions: University of California, Irvine.
The objective of this video protocol is to discuss how to perform and analyze a three-dimensional fluorescent orbital particle tracking experiment using a modified two-photon microscope1. As opposed to conventional approaches (raster scan or wide field based on a stack of frames), the 3D orbital tracking allows to localize and follow with a high spatial (10 nm accuracy) and temporal resolution (50 Hz frequency response) the 3D displacement of a moving fluorescent particle on length-scales of hundreds of microns2. The method is based on a feedback algorithm that controls the hardware of a two-photon laser scanning microscope in order to perform a circular orbit around the object to be tracked: the feedback mechanism will maintain the fluorescent object in the center by controlling the displacement of the scanning beam3-5. To demonstrate the advantages of this technique, we followed a fast moving organelle, the lysosome, within a living cell6,7. Cells were plated according to standard protocols, and stained using a commercially lysosome dye. We discuss briefly the hardware configuration and in more detail the control software, to perform a 3D orbital tracking experiment inside living cells. We discuss in detail the parameters required in order to control the scanning microscope and enable the motion of the beam in a closed orbit around the particle. We conclude by demonstrating how this method can be effectively used to track the fast motion of a labeled lysosome along microtubules in 3D within a live cell. Lysosomes can move with speeds in the range of 0.4-0.5 µm/sec, typically displaying a directed motion along the microtubule network8.
Bioengineering, Issue 92, fluorescence, single particle tracking, laser scanning microscope, two-photon, vesicle transport, live-cell imaging, optics
51794
Play Button
Immunohistological Labeling of Microtubules in Sensory Neuron Dendrites, Tracheae, and Muscles in the Drosophila Larva Body Wall
Authors: Cagri Yalgin, M. Rezaul Karim, Adrian W. Moore.
Institutions: RIKEN Brain Science Institute, Saitama University.
To understand how differences in complex cell shapes are achieved, it is important to accurately follow microtubule organization. The Drosophila larval body wall contains several cell types that are models to study cell and tissue morphogenesis. For example tracheae are used to examine tube morphogenesis1, and the dendritic arborization (DA) sensory neurons of the Drosophila larva have become a primary system for the elucidation of general and neuron-class-specific mechanisms of dendritic differentiation2-5 and degeneration6. The shape of dendrite branches can vary significantly between neuron classes, and even among different branches of a single neuron7,8. Genetic studies in DA neurons suggest that differential cytoskeletal organization can underlie morphological differences in dendritic branch shape4,9-11. We provide a robust immunological labeling method to assay in vivo microtubule organization in DA sensory neuron dendrite arbor (Figures 1, 2, Movie 1). This protocol illustrates the dissection and immunostaining of first instar larva, a stage when active sensory neuron dendrite outgrowth and branching organization is occurring 12,13. In addition to staining sensory neurons, this method achieves robust labeling of microtubule organization in muscles (Movies 2, 3), trachea (Figure 3, Movie 3), and other body wall tissues. It is valuable for investigators wishing to analyze microtubule organization in situ in the body wall when investigating mechanisms that control tissue and cell shape.
Neuroscience, Issue 57, developmental biology, Drosophila larvae, immunohistochemistry, microtubule, trachea, dendritic arborization neurons
3662
Play Button
Cytological Analysis of Spermatogenesis: Live and Fixed Preparations of Drosophila Testes
Authors: Poojitha Sitaram, Sarah Grace Hainline, Laura Anne Lee.
Institutions: Vanderbilt University Medical Center.
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes3-12. Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.
Basic Protocol, Issue 83, Drosophila melanogaster, dissection, testes, spermatogenesis, meiosis, germ cells, phase-contrast microscopy, immunofluorescence
51058
Play Button
Nanopodia - Thin, Fragile Membrane Projections with Roles in Cell Movement and Intercellular Interactions
Authors: Chi-Iou Lin, Chun-Yee Lau, Dan Li, Shou-Ching Jaminet.
Institutions: Harvard Medical School.
Adherent cells in culture maintain a polarized state to support movement and intercellular interactions. Nanopodia are thin, elongated, largely F-actin-negative membrane projections in endothelial and cancer cells that can be visualized through TM4SF1 (Transmembrane-4-L-six-family-1) immunofluorescence staining. TM4SF1 clusters in 100-300 μm diameter TMED (TM4SF1 enriched microdomains) containing 3 to as many as 14 individual TM4SF1 molecules. TMED are arranged intermittently along nanopodia at a regular spacing of 1 to 3 TMED per μm and firmly anchor nanopodia to matrix. This enables nanopodia to extend more than 100 μm from the leading front or trailing rear of polarized endothelial or tumor cells, and causes membrane residues to be left behind on matrix when the cell moves away. TMED and nanopodia have been overlooked because of their extreme fragility and sensitivity to temperature. Routine washing and fixation disrupt the structure. Nanopodia are preserved by direct fixation in paraformaldehyde (PFA) at 37 °C, followed by brief exposure to 0.01% Triton X-100 before staining. Nanopodia open new vistas in cell biology: they promise to reshape our understanding of how cells sense their environment, detect and identify other cells at a distance, initiate intercellular interactions at close contact, and of the signaling mechanisms involved in movement, proliferation, and cell-cell communications. The methods that are developed for studying TM4SF1-derived nanopodia may be useful for studies of nanopodia that form in other cell types through the agency of classic tetraspanins, notably the ubiquitously expressed CD9, CD81, and CD151.
Cellular Biology, Issue 86, nanopodia, TM4SF1, endothelial cell, tumor cell, F-actin, immunofluorescence staining, tetraspanin
51320
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Isolation and Purification of Kinesin from Drosophila Embryos
Authors: Robilyn Sigua, Suvranta Tripathy, Preetha Anand, Steven P. Gross.
Institutions: University of California, Irvine.
Motor proteins move cargos along microtubules, and transport them to specific sub-cellular locations. Because altered transport is suggested to underlie a variety of neurodegenerative diseases, understanding microtubule based motor transport and its regulation will likely ultimately lead to improved therapeutic approaches. Kinesin-1 is a eukaryotic motor protein which moves in an anterograde (plus-end) direction along microtubules (MTs), powered by ATP hydrolysis. Here we report a detailed purification protocol to isolate active full length kinesin from Drosophila embryos, thus allowing the combination of Drosophila genetics with single-molecule biophysical studies. Starting with approximately 50 laying cups, with approximately 1000 females per cup, we carried out overnight collections. This provided approximately 10 ml of packed embryos. The embryos were bleach dechorionated (yielding approximately 9 grams of embryos), and then homogenized. After disruption, the homogenate was clarified using a low speed spin followed by a high speed centrifugation. The clarified supernatant was treated with GTP and taxol to polymerize MTs. Kinesin was immobilized on polymerized MTs by adding the ATP analog, 5'-adenylyl imidodiphosphate at room temperature. After kinesin binding, microtubules were sedimented via high speed centrifugation through a sucrose cushion. The microtubule pellet was then re-suspended, and this process was repeated. Finally, ATP was added to release the kinesin from the MTs. High speed centrifugation then spun down the MTs, leaving the kinesin in the supernatant. This kinesin was subjected to a centrifugal filtration using a 100 KD cut off filter for further purification, aliquoted, snap frozen in liquid nitrogen, and stored at -80 °C. SDS gel electrophoresis and western blotting was performed using the purified sample. The motor activity of purified samples before and after the final centrifugal filtration step was evaluated using an in vitro single molecule microtubule assay. The kinesin fractions before and after the centrifugal filtration showed processivity as previously reported in literature. Further experiments are underway to evaluate the interaction between kinesin and other transport related proteins.
Developmental Biology, Issue 62, Drosophila, Kinesin, clarification, polymerization, sedimentation, microtubule
3501
Play Button
Cargo Loading onto Kinesin Powered Molecular Shuttles
Authors: Yolaine Jeune-Smith, Ashutosh Agarwal, Henry Hess.
Institutions: University of Florida, Columbia University.
Cells have evolved sophisticated molecular machinery, such as kinesin motor proteins and microtubule filaments, to support active intracellular transport of cargo. While kinesins tail domain binds to a variety of cargoes, kinesins head domains utilize the chemical energy stored in ATP molecules to step along the microtubule lattice. The long, stiff microtubules serve as tracks for long-distance intracellular transport. These motors and filaments can also be employed in microfabricated synthetic environments as components of molecular shuttles 1. In a frequently used design, kinesin motors are anchored to the track surface through their tails, and functionalized microtubules serve as cargo carrying elements, which are propelled by these motors. These shuttles can be loaded with cargo by utilizing the strong and selective binding between biotin and streptavidin. The key components (biotinylated tubulin, streptavidin, and biotinylated cargo) are commercially available. Building on the classic inverted motility assay 2, the construction of molecular shuttles is detailed here. Kinesin motor proteins are adsorbed to a surface precoated with casein; microtubules are polymerized from biotinylated tubulin, adhered to the kinesin and subsequently coated with rhodamine-labeled streptavidin. The ATP concentration is maintained at subsaturating concentration to achieve a microtubule gliding velocity optimal for loading cargo 3. Finally, biotinylated fluorescein-labeled nanospheres are added as cargo. Nanospheres attach to microtubules as a result of collisions between gliding microtubules and nanospheres adhering to the surface. The protocol can be readily modified to load a variety of cargoes such as biotinylated DNA4, quantum dots 5 or a wide variety of antigens via biotinylated antibodies 4-6.
Cellular Biology, Issue 45, motility assay, microtubules, kinesin, motor protein, molecular shuttle, nanobiotechnology
2006
Play Button
Organelle Transport in Cultured Drosophila Cells: S2 Cell Line and Primary Neurons.
Authors: Wen Lu, Urko del Castillo, Vladimir I. Gelfand.
Institutions: Feinberg School of Medicine, Northwestern University, Basque Foundation for Science.
Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport.
Cellular Biology, Issue 81, Drosophila melanogaster, cytoskeleton, S2 cells, primary neuron culture, microtubules, kinesin, dynein, fluorescence microscopy, live imaging
50838
Play Button
Characterizing the Composition of Molecular Motors on Moving Axonal Cargo Using "Cargo Mapping" Analysis
Authors: Sylvia Neumann, George E. Campbell, Lukasz Szpankowski, Lawrence S.B. Goldstein, Sandra E. Encalada.
Institutions: The Scripps Research Institute, University of California San Diego, University of California San Diego, University of California San Diego School of Medicine.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.
Neuroscience, Issue 92, kinesin, dynein, single vesicle, axonal transport, microfluidic devices, primary hippocampal neurons, quantitative fluorescence microscopy
52029
Play Button
Preparation of Segmented Microtubules to Study Motions Driven by the Disassembling Microtubule Ends
Authors: Vladimir A. Volkov, Anatoly V. Zaytsev, Ekaterina L. Grishchuk.
Institutions: Russian Academy of Sciences, Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia, University of Pennsylvania.
Microtubule depolymerization can provide force to transport different protein complexes and protein-coated beads in vitro. The underlying mechanisms are thought to play a vital role in the microtubule-dependent chromosome motions during cell division, but the relevant proteins and their exact roles are ill-defined. Thus, there is a growing need to develop assays with which to study such motility in vitro using purified components and defined biochemical milieu. Microtubules, however, are inherently unstable polymers; their switching between growth and shortening is stochastic and difficult to control. The protocols we describe here take advantage of the segmented microtubules that are made with the photoablatable stabilizing caps. Depolymerization of such segmented microtubules can be triggered with high temporal and spatial resolution, thereby assisting studies of motility at the disassembling microtubule ends. This technique can be used to carry out a quantitative analysis of the number of molecules in the fluorescently-labeled protein complexes, which move processively with dynamic microtubule ends. To optimize a signal-to-noise ratio in this and other quantitative fluorescent assays, coverslips should be treated to reduce nonspecific absorption of soluble fluorescently-labeled proteins. Detailed protocols are provided to take into account the unevenness of fluorescent illumination, and determine the intensity of a single fluorophore using equidistant Gaussian fit. Finally, we describe the use of segmented microtubules to study microtubule-dependent motions of the protein-coated microbeads, providing insights into the ability of different motor and nonmotor proteins to couple microtubule depolymerization to processive cargo motion.
Basic Protocol, Issue 85, microscopy flow chamber, single-molecule fluorescence, laser trap, microtubule-binding protein, microtubule-dependent motor, microtubule tip-tracking
51150
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
50645
Play Button
Microinjection Techniques for Studying Mitosis in the Drosophila melanogaster Syncytial Embryo
Authors: Ingrid Brust-Mascher, Jonathan M. Scholey.
Institutions: University of California, Davis.
This protocol describes the use of the Drosophila melanogaster syncytial embryo for studying mitosis1. Drosophila has useful genetics with a sequenced genome, and it can be easily maintained and manipulated. Many mitotic mutants exist, and transgenic flies expressing functional fluorescently (e.g. GFP) - tagged mitotic proteins have been and are being generated. Targeted gene expression is possible using the GAL4/UAS system2. The Drosophila early embryo carries out multiple mitoses very rapidly (cell cycle duration, ≈10 min). It is well suited for imaging mitosis, because during cycles 10-13, nuclei divide rapidly and synchronously without intervening cytokinesis at the surface of the embryo in a single monolayer just underneath the cortex. These rapidly dividing nuclei probably use the same mitotic machinery as other cells, but they are optimized for speed; the checkpoint is generally believed to not be stringent, allowing the study of mitotic proteins whose absence would cause cell cycle arrest in cells with a strong checkpoint. Embryos expressing GFP labeled proteins or microinjected with fluorescently labeled proteins can be easily imaged to follow live dynamics (Fig. 1). In addition, embryos can be microinjected with function-blocking antibodies or inhibitors of specific proteins to study the effect of the loss or perturbation of their function3. These reagents can diffuse throughout the embryo, reaching many spindles to produce a gradient of concentration of inhibitor, which in turn results in a gradient of defects comparable to an allelic series of mutants. Ideally, if the target protein is fluorescently labeled, the gradient of inhibition can be directly visualized4. It is assumed that the strongest phenotype is comparable to the null phenotype, although it is hard to formally exclude the possibility that the antibodies may have dominant effects in rare instances, so rigorous controls and cautious interpretation must be applied. Further away from the injection site, protein function is only partially lost allowing other functions of the target protein to become evident.
Developmental Biology, Issue 31, mitosis, Drosophila melanogaster syncytial embryo, microinjection, protein inhibition
1382
Play Button
Live Imaging of GFP-labeled Proteins in Drosophila Oocytes
Authors: Nancy Jo Pokrywka.
Institutions: Vassar College.
The Drosophila oocyte has been established as a versatile system for investigating fundamental questions such as cytoskeletal function, cell organization, and organelle structure and function. The availability of various GFP-tagged proteins means that many cellular processes can be monitored in living cells over the course of minutes or hours, and using this technique, processes such as RNP transport, epithelial morphogenesis, and tissue remodeling have been described in great detail in Drosophila oocytes1,2. The ability to perform video imaging combined with a rich repertoire of mutants allows an enormous variety of genes and processes to be examined in incredible detail. One such example is the process of ooplasmic streaming, which initiates at mid-oogenesis3,4. This vigorous movement of cytoplasmic vesicles is microtubule and kinesin-dependent5 and provides a useful system for investigating cytoskeleton function at these stages. Here I present a protocol for time lapse imaging of living oocytes using virtually any confocal microscopy setup.
Developmental Biology, Issue 73, Biochemistry, Genetics, Cellular Biology, Molecular Biology, Proteins, Anatomy, Physiology, Drosophila melanogaster, fruit fly, Cell Biology, Drosophila oocytes, oogenesis, oocytes, ovaries, GFP, Live Imaging, Time Lapse Video, imaging, confocal microscopy, dissection, animal model
50044
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.