JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Dietary determinants of changes in waist circumference adjusted for body mass index - a proxy measure of visceral adiposity.
PUBLISHED: 03-16-2010
Given the recognized health effects of visceral fat, the understanding of how diet can modulate changes in the phenotype "waist circumference for a given body mass index (WC(BMI))", a proxy measure of visceral adiposity, is deemed necessary. Hence, the objective of the present study was to assess the association between dietary factors and prospective changes in visceral adiposity as measured by changes in the phenotype WC(BMI).
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Published: 06-04-2014
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
20 Related JoVE Articles!
Play Button
Localization, Identification, and Excision of Murine Adipose Depots
Authors: Adrien Mann, Allie Thompson, Nathan Robbins, Andra L. Blomkalns.
Institutions: University of Cincinnati College of Medicine.
Obesity has increased dramatically in the last few decades and affects over one third of the adult US population. The economic effect of obesity in 2005 reached a staggering sum of $190.2 billion in direct medical costs alone. Obesity is a major risk factor for a wide host of diseases. Historically, little was known regarding adipose and its major and essential functions in the body. Brown and white adipose are the two main types of adipose but current literature has identified a new type of fat called brite or beige adipose. Research has shown that adipose depots have specific metabolic profiles and certain depots allow for a propensity for obesity and other related disorders. The goal of this protocol is to provide researchers the capacity to identify and excise adipose depots that will allow for the analysis of different factorial effects on adipose; as well as the beneficial or detrimental role adipose plays in disease and overall health. Isolation and excision of adipose depots allows investigators to look at gross morphological changes as well as histological changes. The adipose isolated can also be used for molecular studies to evaluate transcriptional and translational change or for in vitro experimentation to discover targets of interest and mechanisms of action. This technique is superior to other published techniques due to the design allowing for isolation of multiple depots with simplicity and minimal contamination.
Medicine, Issue 94, adipose, surgical, excision, subcutaneous adipose tissue (SQ), perivascular adipose tissue (PVAT), visceral adipose tissue (VAT), brown adipose tissue (BAT), white adipose tissue (WAT)
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
Play Button
Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
Authors: Clare L. Protheroe, Henrike (Rianne) J.C. Ravensbergen, Jessica A. Inskip, Victoria E. Claydon.
Institutions: Simon Fraser University .
Orthostatic tolerance (OT) refers to the ability to maintain cardiovascular stability when upright, against the hydrostatic effects of gravity, and hence to maintain cerebral perfusion and prevent syncope (fainting). Various techniques are available to assess OT and the effects of gravitational stress upon the circulation, typically by reproducing a presyncopal event (near-fainting episode) in a controlled laboratory environment. The time and/or degree of stress required to provoke this response provides the measure of OT. Any technique used to determine OT should: enable distinction between patients with orthostatic intolerance (of various causes) and asymptomatic control subjects; be highly reproducible, enabling evaluation of therapeutic interventions; avoid invasive procedures, which are known to impair OT1. In the late 1980s head-upright tilt testing was first utilized for diagnosing syncope2. Since then it has been used to assess OT in patients with syncope of unknown cause, as well as in healthy subjects to study postural cardiovascular reflexes2-6. Tilting protocols comprise three categories: passive tilt; passive tilt accompanied by pharmacological provocation; and passive tilt with combined lower body negative pressure (LBNP). However, the effects of tilt testing (and other orthostatic stress testing modalities) are often poorly reproducible, with low sensitivity and specificity to diagnose orthostatic intolerance7. Typically, a passive tilt includes 20-60 min of orthostatic stress continued until the onset of presyncope in patients2-6. However, the main drawback of this procedure is its inability to invoke presyncope in all individuals undergoing the test, and corresponding low sensitivity8,9. Thus, different methods were explored to increase the orthostatic stress and improve sensitivity. Pharmacological provocation has been used to increase the orthostatic challenge, for example using isoprenaline4,7,10,11 or sublingual nitrate12,13. However, the main drawback of these approaches are increases in sensitivity at the cost of unacceptable decreases in specificity10,14, with a high positive response rate immediately after administration15. Furthermore, invasive procedures associated with some pharmacological provocations greatly increase the false positive rate1. Another approach is to combine passive tilt testing with LBNP, providing a stronger orthostatic stress without invasive procedures or drug side-effects, using the technique pioneered by Professor Roger Hainsworth in the 1990s16-18. This approach provokes presyncope in almost all subjects (allowing for symptom recognition in patients with syncope), while discriminating between patients with syncope and healthy controls, with a specificity of 92%, sensitivity of 85%, and repeatability of 1.1±0.6 min16,17. This allows not only diagnosis and pathophysiological assessment19-22, but also the evaluation of treatments for orthostatic intolerance due to its high repeatability23-30. For these reasons, we argue this should be the "gold standard" for orthostatic stress testing, and accordingly this will be the method described in this paper.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Neurobiology, Kinesiology, Cardiology, tilt test, lower body negative pressure, orthostatic stress, syncope, orthostatic tolerance, fainting, gravitational stress, head upright, stroke, clinical techniques
Play Button
The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry
Authors: Ludovico Carbone, Paul Fulda, Charlotte Bond, Frank Brueckner, Daniel Brown, Mengyao Wang, Deepali Lodhia, Rebecca Palmer, Andreas Freise.
Institutions: University of Birmingham.
Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry.
Physics, Issue 78, Optics, Astronomy, Astrophysics, Gravitational waves, Laser interferometry, Metrology, Thermal noise, Laguerre-Gauss modes, interferometry
Play Button
Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers
Authors: Rasa Ghaffarian, Silvia Muro.
Institutions: University of Maryland, University of Maryland.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Bioengineering, Issue 80, Antigens, Enzymes, Biological Therapy, bioengineering (general), Pharmaceutical Preparations, Macromolecular Substances, Therapeutics, Digestive System and Oral Physiological Phenomena, Biological Phenomena, Cell Physiological Phenomena, drug delivery systems, targeted nanocarriers, transcellular transport, epithelial cells, tight junctions, transepithelial electrical resistance, endocytosis, transcytosis, radioisotope tracing, immunostaining
Play Button
Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans
Authors: Marshall L. Deline, Tracy L. Vrablik, Jennifer L. Watts.
Institutions: Washington State University, Washington State University.
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.
Biochemistry, Issue 81, Caenorhabditis elegans, C. elegans, Nutrition Therapy, genetics (animal and plant), Polyunsaturated fatty acids, omega-6, omega-3, dietary fat, dihomo-gamma-linolenic acid, germ cells
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
From Fast Fluorescence Imaging to Molecular Diffusion Law on Live Cell Membranes in a Commercial Microscope
Authors: Carmine Di Rienzo, Enrico Gratton, Fabio Beltram, Francesco Cardarelli.
Institutions: Scuola Normale Superiore, Instituto Italiano di Tecnologia, University of California, Irvine.
It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn’t need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range.
Bioengineering, Issue 92, fluorescence, protein dynamics, lipid dynamics, membrane heterogeneity, transient confinement, single molecule, GFP
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
In vivo Imaging of Transgenic Leishmania Parasites in a Live Host
Authors: Colin J. Thalhofer, Joel W. Graff, Laurie Love-Homan, Suzanne M. Hickerson, Noah Craft, Stephen M. Beverley, Mary E. Wilson.
Institutions: University of Iowa, and the VA Medical Center, University of Iowa, and the VA Medical Center, University of Iowa, Washington University School of Medicine, Harbor-UCLA Medical Center, Hanley-Hardison Research Center, Iowa City VA Medical Center, University of Iowa.
Distinct species of Leishmania, a protozoan parasite of the family Trypanosomatidae, typically cause different human disease manifestations. The most common forms of disease are visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). Mouse models of leishmaniasis are widely used, but quantification of parasite burdens during murine disease requires mice to be euthanized at various times after infection. Parasite loads are then measured either by microscopy, limiting dilution assay, or qPCR amplification of parasite DNA. The in vivo imaging system (IVIS) has an integrated software package that allows the detection of a bioluminescent signal associated with cells in living organisms. Both to minimize animal usage and to follow infection longitudinally in individuals, in vivo models for imaging Leishmania spp. causing VL or CL were established. Parasites were engineered to express luciferase, and these were introduced into mice either intradermally or intravenously. Quantitative measurements of the luciferase driving bioluminescence of the transgenic Leishmania parasites within the mouse were made using IVIS. Individual mice can be imaged multiple times during longitudinal studies, allowing us to assess the inter-animal variation in the initial experimental parasite inocula, and to assess the multiplication of parasites in mouse tissues. Parasites are detected with high sensitivity in cutaneous locations. Although it is very likely that the signal (photons/second/parasite) is lower in deeper visceral organs than the skin, but quantitative comparisons of signals in superficial versus deep sites have not been done. It is possible that parasite numbers between body sites cannot be directly compared, although parasite loads in the same tissues can be compared between mice. Examples of one visceralizing species (L. infantum chagasi) and one species causing cutaneous leishmaniasis (L. mexicana) are shown. The IVIS procedure can be used for monitoring and analyzing small animal models of a wide variety of Leishmania species causing the different forms of human leishmaniasis.
Microbiology, Issue 41, IVIS, Leishmania, in vivo imaging, parasite, transgenic, bioluminescence, luciferase, cutaneous leishmaniasis, visceral leishmaniasis
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Isolation and Differentiation of Stromal Vascular Cells to Beige/Brite Cells
Authors: Ulrike Liisberg Aune, Lauren Ruiz, Shingo Kajimura.
Institutions: University of California, San Francisco , University of Copenhagen, Denmark, National Institute of Nutrition and Seafood Research, Bergen, Norway.
Brown adipocytes have the ability to uncouple the respiratory chain in mitochondria and dissipate chemical energy as heat. Development of UCP1-positive brown adipocytes in white adipose tissues (so called beige or brite cells) is highly induced by a variety of environmental cues such as chronic cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target for obesity treatment. Although most immortalized adipocyte lines cannot recapitulate the process of "browning" of white fat in culture, primary adipocytes isolated from stromal vascular fraction in subcutaneous white adipose tissue (WAT) provide a reliable cellular system to study the molecular control of beige/brite cell development. Here we describe a protocol for effective isolation of primary preadipocytes and for inducing differentiation to beige/brite cells in culture. The browning effect can be assessed by the expression of brown fat-selective markers such as UCP1.
Cellular Biology, Issue 73, Medicine, Anatomy, Physiology, Molecular Biology, Surgery, Adipose Tissue, Adipocytes, Transcription Factors, Cell Differentiation, Obesity, Diabetes, brown adipose tissue, beige/brite cells, primary adipocytes, stromal-vascular fraction, differentiation, uncoupling protein 1, rosiglitazone, differentiation, cells, isolation, fat, animal model
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
A Simple Composite Phenotype Scoring System for Evaluating Mouse Models of Cerebellar Ataxia
Authors: Stephan J. Guyenet, Stephanie A. Furrer, Vincent M. Damian, Travis D. Baughan, Albert R. La Spada, Gwenn A. Garden.
Institutions: University of Washington, University of Washington, University of California, San Diego - Rady Children’s Hospital.
We describe a protocol for the rapid and sensitive quantification of disease severity in mouse models of cerebella ataxia. It is derived from previously published phenotype assessments in several disease models, including spinocerebellar ataxias, Huntington s disease and spinobulbar muscular atrophy. Measures include hind limb clasping, ledge test, gait and kyphosis. Each measure is recorded on a scale of 0-3, with a combined total of 0-12 for all four measures. The results effectively discriminate between affected and non-affected individuals, while also quantifying the temporal progression of neurodegenerative disease phenotypes. Measures may be analyzed individually or combined into a composite phenotype score for greater statistical power. The ideal combination of the four described measures will depend upon the disorder in question. We present an example of the protocol used to assess disease severity in a transgenic mouse model of spinocerebellar ataxia type 7 (SCA7). Albert R. La Spada and Gwenn A. Garden contributed to this manuscript equally.
JoVE Neuroscience, Issue 39, Neurodegeneration, Mouse behavior assay, cerebellar ataxia, polyglutamine disease
Play Button
Visualizing the Live Drosophila Glial-neuromuscular Junction with Fluorescent Dyes
Authors: Dee Brink, Mary Gilbert, Vanessa Auld.
Institutions: University of British Columbia - UBC.
Our project identified GFP labeled glial structures at the developing larval fly neuromuscular synapse. To look at development of live glial-nerve-muscle synapses, we developed a larval tissue preparation that had features of live intact larvae, but also had good optical properties. This new preparation also allowed for access of perfusates to the synapse. We used fly larvae, immersed them in artificial hemolymph, and relaxed their normal rhythmic body contractions by chilling them. Next we dissected off the posterior segments of each animal and with a blunt insect pin pushed the mouth parts backward through the body cavity. This everted the larval body wall, like turning a sock inside-out. We completed the dissection with ultra-fine dissection scissors and thus exposed the visceral side of the body wall muscles. The glial structures at the NMJ expressed membrane targeted GFP under the control of glial specific promoters. The post-synaptic membrane, the SSR (Subsynaptic Reticula) in muscle expressed synaptically targeted dsRed. We needed to acutely label the motor neuron terminals, the third part of the synapse. To do this we applied primary antibodies to HRP, conjugated to a far-red emitting flurophore. To test for dye diffusion properties into the perisynaptic space between the motor neuron terminals and the SSR, we applied a solution of large Dextran molecules conjugated to far-red emitting flurophore and collected images.
Neuroscience, Issue 27, Drosophila, fluorescence, glia, NMJ synapse, live imaging, dye permeation
Play Button
Deep Neuromuscular Blockade Leads to a Larger Intraabdominal Volume During Laparoscopy
Authors: Astrid Listov Lindekaer, Henrik Halvor Springborg, Olav Istre.
Institutions: Aleris-Hamlet Hospitals, Soeborg, Denmark, Aleris-Hamlet Hospitals, Soeborg, Denmark.
Shoulder pain is a commonly reported symptom following laparoscopic procedures such as myomectomy or hysterectomy, and recent studies have shown that lowering the insufflation pressure during surgery may reduce the risk of post-operative pain. In this pilot study, a method is presented for measuring the intra-abdominal space available to the surgeon during laproscopy, in order to examine whether the relaxation produced by deep neuromuscular blockade can increase the working surgical space sufficiently to permit a reduction in the CO2 insufflation pressure. Using the laproscopic grasper, the distance from the promontory to the skin is measured at two different insufflation pressures: 8 mm Hg and 12 mm Hg. After the initial measurements, a neuromuscular blocking agent (rocuronium) is administered to the patient and the intra-abdominal volume is measured again. Pilot data collected from 15 patients shows that the intra-abdominal space at 8 mm Hg with blockade is comparable to the intra-abdominal space measured at 12 mm Hg without blockade. The impact of neuromuscular blockade was not correlated with patient height, weight, BMI, and age. Thus, using neuromuscular blockade to maintain a steady volume while reducing insufflation pressure may produce improved patient outcomes.
Medicine, Issue 76, Anatomy, Physiology, Neurobiology, Surgery, gynecology, laparoscopy, deep neuromuscular blockade, reversal, rocuronium, sugammadex, laparoscopic surgery, clinical techniques, surgical techniques
Play Button
Demonstration of Cutaneous Allodynia in Association with Chronic Pelvic Pain
Authors: John Jarrell.
Institutions: University of Calgary.
Pelvic pain is a common condition that is associated with dysmenorrhea and endometriosis. In some women the severe episodes of cyclic pain change and the resultant pain becomes continuous and this condition becomes known as Chronic Pelvic Pain. This state can be present even after the appropriate medical or surgical therapy has been instituted. It can be associated with pain and tenderness in the muscles of the abdomen wall and intra-pelvic muscles leading to severe dyspareunia. Additional symptoms of irritable bowel and interstitial cystitis are common. A common sign of the development of this state is the emergence of cutaneous allodynia which emerges from the so-called viscero-somatic reflex. A simple bedside test for the presence of cutaneous allodynia is presented that does not require excessive time or special equipment. This test builds on previous work associated with changes in sensation related to gall bladder function and the viscera-somatic reflex(1;2). The test is undertaken with the subject s permission after an explanation of how the test will be performed. Allodynia refers to a condition in which a stimulus that is not normally painful is interpreted by the subject as painful. In this instance the light touch associated with a cotton-tipped applicator would not be expected to be painful. A positive test is however noted by the woman as suddenly painful or suddenly sharp. The patterns of this sensation are usually in a discrete pattern of a dermatome of the nerves that innervate the pelvis. The underlying pathology is now interpreted as evidence of neuroplasticity as a consequence of severe and repeating pain with changes in the functions of the dorsal horns of the spinal cord that results in altered function of visceral tissues and resultant somatic symptoms(3). The importance of recognizing the condition lies in an awareness that this process may present coincidentally with the initiating condition or after it has been treated. It also permits the clinician to evaluate the situation from the perspective that alternative explanations for the pain may be present that may not require additional surgery.
Medicine, Issue 28, Chronic pelvic pain, cutaneous allodynia, trigger points, dysmenorrhea, endometriosis, dyspareunia
Play Button
Segmentation and Measurement of Fat Volumes in Murine Obesity Models Using X-ray Computed Tomography
Authors: Todd A. Sasser, Sarah E. Chapman, Shengting Li, Caroline Hudson, Sean P. Orton, Justin M. Diener, Seth T. Gammon, Carlos Correcher, W. Matthew Leevy.
Institutions: Carestream Molecular Imaging , University of Notre Dame , University of Notre Dame , Oncovision, GEM-Imaging S.A..
Obesity is associated with increased morbidity and mortality as well as reduced metrics in quality of life.1 Both environmental and genetic factors are associated with obesity, though the precise underlying mechanisms that contribute to the disease are currently being delineated.2,3 Several small animal models of obesity have been developed and are employed in a variety of studies.4 A critical component to these experiments involves the collection of regional and/or total animal fat content data under varied conditions. Traditional experimental methods available for measuring fat content in small animal models of obesity include invasive (e.g. ex vivo measurement of fat deposits) and non-invasive (e.g. Dual Energy X-ray Absorptiometry (DEXA), or Magnetic Resonance (MR)) protocols, each of which presents relative trade-offs. Current invasive methods for measuring fat content may provide details for organ and region specific fat distribution, but sacrificing the subjects will preclude longitudinal assessments. Conversely, current non-invasive strategies provide limited details for organ and region specific fat distribution, but enable valuable longitudinal assessment. With the advent of dedicated small animal X-ray computed tomography (CT) systems and customized analytical procedures, both organ and region specific analysis of fat distribution and longitudinal profiling may be possible. Recent reports have validated the use of CT for in vivo longitudinal imaging of adiposity in living mice.5,6 Here we provide a modified method that allows for fat/total volume measurement, analysis and visualization utilizing the Carestream Molecular Imaging Albira CT system in conjunction with PMOD and Volview software packages.
Medicine, Issue 62, X-ray computed tomography (CT), image analysis, in vivo, obesity, metabolic disorders
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.