JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex.
PUBLISHED: 05-24-2010
Proteins constituting the presynaptic machinery of vesicle release undergo substantial conformational changes during the process of exocytosis. While changes in the conformation make proteins vulnerable to aggregation and degradation, little is known about synaptic chaperones which counteract these processes. We show that the cell adhesion molecule CHL1 directly interacts with and regulates the activity of the synaptic chaperones Hsc70, CSP and alphaSGT. CHL1, Hsc70, CSP and alphaSGT form predominantly CHL1/Hsc70/alphaSGT and CHL1/CSP complexes in synapses. Among the various complexes formed by CHL1, Hsc70, CSP and alphaSGT, SNAP25 and VAMP2 induce chaperone activity only in CHL1/Hsc70/alphaSGT and CHL1/CSP complexes, respectively, indicating a remarkable selectivity of a presynaptic chaperone activity for proteins of the exocytotic machinery. In mice with genetic ablation of CHL1, chaperone activity in synapses is reduced and the machinery for synaptic vesicle exocytosis and, in particular, the SNARE complex is unable to sustain prolonged synaptic activity. Thus, we reveal a novel role for a cell adhesion molecule in selective activation of the presynaptic chaperone machinery.
Authors: Patrick J. M. Murphy, Hannah R. Franklin, Nathan W. Furukawa.
Published: 09-21-2011
Hsp90 is an essential and highly abundant molecular chaperone protein that has been found to regulate more than 150 eukaryotic signaling proteins, including transcription factors (e.g. nuclear receptors, p53) and protein kinases (e.g. Src, Raf, Akt kinase) involved in cell cycling, tumorigenesis, apoptosis, and multiple eukaryotic signaling pathways 1,2. Of these many 'client' proteins for hsp90, the assembly of steroid receptor•hsp90 complexes is the best defined (Figure 1). We present here an adaptable glucocorticoid receptor (GR) immunoprecipitation assay and in vitro GR•hsp90 reconstitution method that may be readily used to probe eukaryotic hsp90 functional activity, hsp90-mediated steroid receptor ligand binding, and molecular chaperone cofactor requirements. For example, this assay can be used to test hsp90 cofactor requirements and the effects of adding exogenous compounds to the reconstitution process. The GR has been a particularly useful system for studying hsp90 because the receptor must be bound to hsp90 to have an open ligand binding cleft that is accessible to steroid 3. Endogenous, unliganded GR is present in the cytoplasm of mammalian cells noncovalently bound to hsp90. As found in the endogenous GR•hsp90 heterocomplex, the GR ligand binding cleft is open and capable of binding steroid. If hsp90 dissociates from the GR or if its function is inhibited, the receptor is unable to bind steroid and requires reconstitution of the GR•hsp90 heterocomplex before steroid binding activity is restored 4 . GR can be immunoprecipitated from cell cytosol using a monoclonal antibody, and proteins such as hsp90 complexed to the GR can be assayed by western blot. Steroid binding activity of the immunoprecipitated GR can be determined by incubating the immunopellet with [3H]steroid. Previous experiments have shown hsp90-mediated opening of the GR ligand binding cleft requires hsp70, a second molecular chaperone also essential for eukaryotic cell viability. Biochemical activity of hsp90 and hsp70 are catalyzed by co-chaperone proteins Hop, hsp40, and p23 5. A multiprotein chaperone machinery containing hsp90, hsp70, Hop, and hsp40 are endogenously present in eukaryotic cell cytoplasm, and reticulocyte lysate provides a chaperone-rich protein source 6. In the method presented, GR is immunoadsorbed from cell cytosol and stripped of the endogenous hsp90/hsp70 chaperone machinery using mild salt conditions. The salt-stripped GR is then incubated with reticulocyte lysate, ATP, and K+, which results in the reconstitution of the GR•hsp90 heterocomplex and reactivation of steroid binding activity 7. This method can be utilized to test the effects of various chaperone cofactors, novel proteins, and experimental hsp90 or GR inhibitors in order to determine their functional significance on hsp90-mediated steroid binding 8-11.
22 Related JoVE Articles!
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
Play Button
Determining Genetic Expression Profiles in C. elegans Using Microarray and Real-time PCR
Authors: Kassandra L. Guthmueller, Maggie L. Yoder, Andrea M. Holgado.
Institutions: Southwestern Oklahoma State University.
Synapses are composed of a presynaptic active zone in the signaling cell and a postsynaptic terminal in the target cell. In the case of chemical synapses, messages are carried by neurotransmitters released from presynaptic terminals and received by receptors on postsynaptic cells. Our previous research in Caenorhabditis elegans has shown that VSM-1 negatively regulates exocytosis. Additionally, analysis of synapses in vsm-1 mutants showed that animals lacking a fully functional VSM-1 have increased synaptic connectivity. Based on these preliminary findings, we hypothesized that C. elegans VSM-1 may play a crucial role in synaptogenesis. To test this hypothesis, double-labeled microarray analysis was performed, and gene expression profiles were determined. First, total RNA was isolated, reversely transcribed to cDNA, and hybridized to the DNA microarrays. Then, in-silico analysis of fluorescent probe hybridization revealed significant induction of many genes coding for members of the major sperm protein family (MSP) in mutants with enhanced synaptogenesis. MSPs are the major component of sperm in C. elegans and appear to signal nematode oocyte maturation and ovulation . In fruit flies, Chai and colleagues 1 demonstrated that MSP-like molecules regulate presynaptic bouton number and size at the neuromuscular junction. Moreover, analysis performed by Tsuda and coworkers 2 suggested that MSPs may act as ligands for Eph receptors and trigger receptor tyrosine kinase signaling cascades. Lastly, real time PCR analysis corroborated that the gene coding for MSP-32 is induced in vsm-1(ok1468) mutants. Taken together, research performed by our laboratory has shown that vsm-1 mutants have a significant increase in synaptic density, which could be mediated by MSP-32 signaling.
Molecular Biology, Issue 53, microarray, C. elegans, real-time PCR, neuroscience
Play Button
Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons
Authors: Sam A. Booker, Jie Song, Imre Vida.
Institutions: Charité Universitätmedizin.
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Neuroscience, Issue 91, electrophysiology, acute slice, whole-cell patch-clamp recording, neuronal morphology, immunocytochemistry, parvalbumin, hippocampus, inhibition, GABAergic interneurons, synaptic transmission, IPSC, GABA-B receptor
Play Button
Quantifying Synapses: an Immunocytochemistry-based Assay to Quantify Synapse Number
Authors: Dominic M. Ippolito, Cagla Eroglu.
Institutions: Duke University, Duke University.
One of the most important goals in neuroscience is to understand the molecular cues that instruct early stages of synapse formation. As such it has become imperative to develop objective approaches to quantify changes in synaptic connectivity. Starting from sample fixation, this protocol details how to quantify synapse number both in dissociated neuronal culture and in brain sections using immunocytochemistry. Using compartment-specific antibodies, we label presynaptic terminals as well as sites of postsynaptic specialization. We define synapses as points of colocalization between the signals generated by these markers. The number of these colocalizations is quantified using a plug in Puncta Analyzer (written by Bary Wark, available upon request, under the ImageJ analysis software platform. The synapse assay described in this protocol can be applied to any neural tissue or culture preparation for which you have selective pre- and postsynaptic markers. This synapse assay is a valuable tool that can be widely utilized in the study of synaptic development.
Neuroscience, Issue 45, synapse, immunocytochemistry, brain, neuron, astrocyte
Play Button
Intracellular Refolding Assay
Authors: Tamara Vanessa Walther, Danilo Maddalo.
Institutions: Karlsruhe Institute of Technology.
This protocol describes a method to measure the enzymatic activity of molecular chaperones in a cell-based system and the possible effects of compounds with inhibitory/stimulating activity. Molecular chaperones are proteins involved in regulation of protein folding1 and have a crucial role in promoting cell survival upon stress insults like heat shock2, nutrient starvation and exposure to chemicals/poisons3. For this reason chaperones are found to be involved in events like tumor development, chemioresistance of cancer cells4 as well as neurodegeneration5. Design of small molecules able to inhibit or stimulate the activity of these enzymes is therefore one of the most studied strategies for cancer therapy7 and neurodegenerative disorders9. The assay here described offers the possibility to measure the refolding activity of a particular molecular chaperone and to study the effect of compounds on its activity. In this method the gene of the molecular chaperone investigated is transfected together with an expression vector encoding for the firefly luciferase gene. It has been already described that denaturated firefly luciferase can be refolded by molecular chaperones10,11. As normalizing transfection control, a vector encoding for the renilla luciferase gene is transfected. All transfections described in this protocol are performed with X-treme Gene 11 (Roche) in HEK-293 cells. In the first step, protein synthesis is inhibited by treating the cells with cycloheximide. Thereafter protein unfolding is induced by heat shock at 45°C for 30 minutes. Upon recovery at 37°C, proteins are re-folded into their active conformation and the activity of the firefly luciferase is used as read-out: the more light will be produced, the more protein will have re-gained the original conformation. Non-heat shocked cells are set as reference (100% of refolded luciferase).
Molecular Biology, Issue 59, chaperone, refolding, stress, luciferase, heat shock
Play Button
An Engulfment Assay: A Protocol to Assess Interactions Between CNS Phagocytes and Neurons
Authors: Dorothy P. Schafer, Emily K. Lehrman, Christopher T. Heller, Beth Stevens.
Institutions: Boston Children's Hospital, Harvard Medical School.
Phagocytosis is a process in which a cell engulfs material (entire cell, parts of a cell, debris, etc.) in its surrounding extracellular environment and subsequently digests this material, commonly through lysosomal degradation. Microglia are the resident immune cells of the central nervous system (CNS) whose phagocytic function has been described in a broad range of conditions from neurodegenerative disease (e.g., beta-amyloid clearance in Alzheimer’s disease) to development of the healthy brain (e.g., synaptic pruning)1-6. The following protocol is an engulfment assay developed to visualize and quantify microglia-mediated engulfment of presynaptic inputs in the developing mouse retinogeniculate system7. While this assay was used to assess microglia function in this particular context, a similar approach may be used to assess other phagocytes throughout the brain (e.g., astrocytes) and the rest of the body (e.g., peripheral macrophages) as well as other contexts in which synaptic remodeling occurs (e.g. ,brain injury/disease).
Neuroscience, Issue 88, Central Nervous System (CNS), Engulfment, Phagocytosis, Microglia, Synapse, Anterograde Tracing, Presynaptic Input, Retinogeniculate System
Play Button
Analyzing Protein Dynamics Using Hydrogen Exchange Mass Spectrometry
Authors: Nikolai Hentze, Matthias P. Mayer.
Institutions: University of Heidelberg.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.   
Chemistry, Issue 81, Molecular Chaperones, mass spectrometers, Amino Acids, Peptides, Proteins, Enzymes, Coenzymes, Protein dynamics, conformational changes, allostery, protein folding, secondary structure, mass spectrometry
Play Button
Preparation of Synaptic Plasma Membrane and Postsynaptic Density Proteins Using a Discontinuous Sucrose Gradient
Authors: Marie Kristel Bermejo, Marija Milenkovic, Ali Salahpour, Amy J. Ramsey.
Institutions: University of Toronto.
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960’s, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
Neurobiology, Issue 91, brain, synapse, western blot, ultracentrifugation, SPM, PSD
Play Button
Preparation of Synaptoneurosomes from Mouse Cortex using a Discontinuous Percoll-Sucrose Density Gradient
Authors: Pamela R. Westmark, Cara J. Westmark, Athavi Jeevananthan, James S. Malter.
Institutions: University of Wisconsin, University of Wisconsin.
Synaptoneurosomes (SNs) are obtained after homogenization and fractionation of mouse brain cortex. They are resealed vesicles or isolated terminals that break away from axon terminals when the cortical tissue is homogenized. The SNs retain pre- and postsynaptic characteristics, which makes them useful in the study of synaptic transmission. They retain the molecular machinery used in neuronal signaling and are capable of uptake, storage, and release of neurotransmitters. The production and isolation of active SNs can be problematic using medias like Ficoll, which can be cytotoxic and require extended centrifugation due to high density, and filtration and centrifugation methods, which can result in low activity due to mechanical damage of the SNs. However, the use of discontinuous Percoll-sucrose density gradients to isolate SNs provides a rapid method to produce good yields of translationally active SNs. The Percoll-sucrose gradient method is quick and gentle as it employs isotonic conditions, has fewer and shorter centrifugation spins and avoids centrifugation steps that pellet SNs and cause mechanical damage.
Neuroscience, Issue 55, synaptoneurosomes, synaptosomes, Percoll-sucrose gradients, neurons, synapse, cortex, mouse
Play Button
Examination of Synaptic Vesicle Recycling Using FM Dyes During Evoked, Spontaneous, and Miniature Synaptic Activities
Authors: Sadahiro Iwabuchi, Yasuhiro Kakazu, Jin-Young Koh, Kirsty M. Goodman, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Bath.
Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.
Neuroscience, Issue 85, Presynaptic Terminals, Synaptic Vesicles, Microscopy, Biological Assay, Nervous System, Endocytosis, exocytosis, fluorescence imaging, FM dye, neuron, photobleaching
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
Play Button
Methods for Cell-attached Capacitance Measurements in Mouse Adrenal Chromaffin Cell
Authors: Kelly T. Varga, Zhongjiao Jiang, Liang-Wei Gong.
Institutions: University of Illinois at Chicago.
Neuronal transmission is an integral part of cellular communication within the brain. Depolarization of the presynaptic membrane leads to vesicle fusion known as exocytosis that mediates synaptic transmission. Subsequent retrieval of synaptic vesicles is necessary to generate new neurotransmitter-filled vesicles in a process identified as endocytosis. During exocytosis, fusing vesicle membranes will result in an increase in surface area and subsequent endocytosis results in a decrease in the surface area. Here, our lab demonstrates a basic introduction to cell-attached capacitance recordings of single endocytic events in the mouse adrenal chromaffin cell. This type of electrical recording is useful for high-resolution recordings of exocytosis and endocytosis at the single vesicle level. While this technique can detect both vesicle exocytosis and endocytosis, the focus of our lab is vesicle endocytosis. Moreover, this technique allows us to analyze the kinetics of single endocytic events. Here the methods for mouse adrenal gland tissue dissection, chromaffin cell culture, basic cell-attached techniques, and subsequent examples of individual traces measuring singular endocytic event are described.
Neuroscience, Issue 92, Cell-attached capacitance measurements, chromaffin cells, single vesicles, endocytosis, exocytosis, clathrin-mediated endocytosis (CME), patch clamp
Play Button
Acute Dissociation of Lamprey Reticulospinal Axons to Enable Recording from the Release Face Membrane of Individual Functional Presynaptic Terminals
Authors: Shankar Ramachandran, Simon Alford.
Institutions: University of Illinois at Chicago.
Synaptic transmission is an extremely rapid process. Action potential driven influx of Ca2+ into the presynaptic terminal, through voltage-gated calcium channels (VGCCs) located in the release face membrane, is the trigger for vesicle fusion and neurotransmitter release. Crucial to the rapidity of synaptic transmission is the spatial and temporal synchrony between the arrival of the action potential, VGCCs and the neurotransmitter release machinery. The ability to directly record Ca2+ currents from the release face membrane of individual presynaptic terminals is imperative for a precise understanding of the relationship between presynaptic Ca2+ and neurotransmitter release. Access to the presynaptic release face membrane for electrophysiological recording is not available in most preparations and presynaptic Ca2+ entry has been characterized using imaging techniques and macroscopic current measurements – techniques that do not have sufficient temporal resolution to visualize Ca2+ entry. The characterization of VGCCs directly at single presynaptic terminals has not been possible in central synapses and has thus far been successfully achieved only in the calyx-type synapse of the chick ciliary ganglion and in rat calyces. We have successfully addressed this problem in the giant reticulospinal synapse of the lamprey spinal cord by developing an acutely dissociated preparation of the spinal cord that yields isolated reticulospinal axons with functional presynaptic terminals devoid of postsynaptic structures. We can fluorescently label and identify individual presynaptic terminals and target them for recording. Using this preparation, we have characterized VGCCs directly at the release face of individual presynaptic terminals using immunohistochemistry and electrophysiology approaches. Ca2+ currents have been recorded directly at the release face membrane of individual presynaptic terminals, the first such recording to be carried out at central synapses.
Neuroscience, Issue 92, reticulospinal synapse, reticulospinal axons, presynaptic terminal, presynaptic calcium, voltage-gated calcium channels, vesicle fusion, synaptic transmission, neurotransmitter release, spinal cord, lamprey, synaptic vesicles, acute dissociation
Play Button
Analysis of SNARE-mediated Membrane Fusion Using an Enzymatic Cell Fusion Assay
Authors: Nazarul Hasan, David Humphrey, Krista Riggs, Chuan Hu.
Institutions: University of Louisville School of Medicine.
The interactions of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and on target membranes (t-SNAREs) catalyze intracellular vesicle fusion1-4. Reconstitution assays are essential for dissecting the mechanism and regulation of SNARE-mediated membrane fusion5. In a cell fusion assay6,7, SNARE proteins are expressed ectopically at the cell surface. These "flipped" SNARE proteins drive cell-cell fusion, demonstrating that SNAREs are sufficient to fuse cellular membranes. Because the cell fusion assay is based on microscopic analysis, it is less efficient when used to analyze multiple v- and t-SNARE interactions quantitatively. Here we describe a new assay8 that quantifies SNARE-mediated cell fusion events by activated expression of β-galactosidase. Two components of the Tet-Off gene expression system9 are used as a readout system: the tetracycline-controlled transactivator (tTA) and a reporter plasmid that encodes the LacZ gene under control of the tetracycline-response element (TRE-LacZ). We transfect tTA into COS-7 cells that express flipped v-SNARE proteins at the cell surface (v-cells) and transfect TRE-LacZ into COS-7 cells that express flipped t-SNARE proteins at the cell surface (t-cells). SNARE-dependent fusion of the v- and t-cells results in the binding of tTA to TRE, the transcriptional activation of LacZ and expression of β-galactosidase. The activity of β-galactosidase is quantified using a colorimetric method by absorbance at 420 nm. The vesicle-associated membrane proteins (VAMPs) are v-SNAREs that reside in various post-Golgi vesicular compartments10-15. By expressing VAMPs 1, 3, 4, 5, 7 and 8 at the same level, we compare their membrane fusion activities using the enzymatic cell fusion assay. Based on spectrometric measurement, this assay offers a quantitative approach for analyzing SNARE-mediated membrane fusion and for high-throughput studies.
Molecular Biology, Issue 68, Biochemistry, Cellular Biology, SNARE, membrane fusion, VAMP, syntaxin, vesicles
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Paired Whole Cell Recordings in Organotypic Hippocampal Slices
Authors: Chantelle Fourie, Marianna Kiraly, Daniel V. Madison, Johanna M. Montgomery.
Institutions: University of Auckland, Stanford University.
Pair recordings involve simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling not only direct electrophysiological characterization of the synaptic connections between individual neurons, but also pharmacological manipulation of either the presynaptic or the postsynaptic neuron. When carried out in organotypic hippocampal slice cultures, the probability that two neurons are synaptically connected is significantly increased. This preparation readily enables identification of cell types, and the neurons maintain their morphology and properties of synaptic function similar to that in native brain tissue. A major advantage of paired whole cell recordings is the highly precise information it can provide on the properties of synaptic transmission and plasticity that are not possible with other more crude techniques utilizing extracellular axonal stimulation. Paired whole cell recordings are often perceived as too challenging to perform. While there are challenging aspects to this technique, paired recordings can be performed by anyone trained in whole cell patch clamping provided specific hardware and methodological criteria are followed. The probability of attaining synaptically connected paired recordings significantly increases with healthy organotypic slices and stable micromanipulation allowing independent attainment of pre- and postsynaptic whole cell recordings. While CA3-CA3 pyramidal cell pairs are most widely used in the organotypic slice hippocampal preparation, this technique has also been successful in CA3-CA1 pairs and can be adapted to any neurons that are synaptically connected in the same slice preparation. In this manuscript we provide the detailed methodology and requirements for establishing this technique in any laboratory equipped for electrophysiology.
Neuroscience, Issue 91, hippocampus, paired recording, whole cell recording, organotypic slice, synapse, synaptic transmission, synaptic plasticity
Play Button
Drosophila Larval NMJ Immunohistochemistry
Authors: Jonathan Brent, Kristen Werner, Brian D. McCabe.
Institutions: Columbia University College of Physicians and Surgeons.
The Drosophila neuromuscular junction (NMJ) is an established model system used for the study of synaptic development and plasticity. The widespread use of the Drosophila motor system is due to its high accessibility. It can be analyzed with single-cell resolution. There are 30 muscles per hemisegment whose arrangement within the peripheral body wall are known. A total of 31 motor neurons attach to these muscles in a pattern that has high fidelity. Using molecular biology and genetics, one can create transgenic animals or mutants. Then, one can study the developmental consequences on the morphology and function of the NMJ. Immunohistochemistry can be used to clearly image the components of the NMJ. In this article, we demonstrate how to use antibody staining to visualize the Drosophila larval NMJ.
Developmental Biology, Issue 25, NMJ, Drosophila, Larvae, Immunohistochemistry, Neuroscience
Play Button
Methods for Patch Clamp Capacitance Recordings from the Calyx
Authors: Kenneth Paradiso, Wei Wu, Ling-Gang Wu.
Institutions: National Institute of Health.
We demonstrate the basic techniques for presynaptic patch clamp recording at the calyx of Held, a mammalian central nervous system nerve terminal. Electrical recordings from the presynaptic terminal allow the measurement of action potentials, calcium channel currents, vesicle fusion (exocytosis) and subsequent membrane uptake (endocytosis). The fusion of vesicles containing neurotransmitter causes the vesicle membrane to be added to the cell membrane of the calyx. This increase in the amount of cell membrane is measured as an increase in capacitance. The subsequent reduction in capacitance indicates endocytosis, the process of membrane uptake or removal from the calyx membrane. Endocytosis, is necessary to maintain the structure of the calyx and it is also necessary to form vesicles that will be filled with neurotransmitter for future exocytosis events. Capacitance recordings at the calyx of Held have made it possible to directly and rapidly measure vesicular release and subsequent endocytosis in a mammalian CNS nerve terminal. In addition, the corresponding postsynaptic activity can be simultaneously measured by using paired recordings. Thus a complete picture of the presynaptic and postsynaptic electrical activity at a central nervous system synapse is achievable using this preparation. Here, the methods for slice preparation, morphological features for identification of calyces of Held, basic patch clamping techniques, and examples of capacitance recordings to measure exocytosis and endocytosis are presented.
Neuroscience, Issue 6, membrane fusion, exocytosis, endocytosis
Play Button
Visualization of the Embryonic Nervous System in Whole-mount Drosophila Embryos
Authors: Tadeusz J. Kaczynski, Shermali Gunawardena.
Institutions: SUNY-University at Buffalo.
The Drosophila embryo is an attractive model system for investigating the cellular and molecular basis of neuronal development. Here we describe the procedure for the visualization of Drosophila embryonic nervous system using antibodies to neuronal proteins. Since the entire embryonic peripheral nervous and central nervous systems are well characterized at the level of individual cells (Dambly-Chaudière et al., 1986; Bodmer et al., 1987; Bodmer et al., 1989), any aberrations to these systems can be easily identified using antibodies to different neuronal proteins. The developing embryos are collected at certain times to ensure that the embryos are in the proper developmental stages for visualization. After collection, the outer layers of the embryo, the chorion membrane and the vitelline envelope that surrounds the embryo, are removed before fixation. Embryos are then incubated with neuronal antibodies and visualized using fluorescently labeled secondary antibodies. Embryos at stages 12-17 are visualized to access the embryonic nervous system. At stage 12 the CNS germ band starts shortening and by stage 15 the definitive pattern of the commissure has been achieved. By stage 17 the CNS contracts and the PNS is fully developed (Campos-Ortega et al. 1985). Thus changes in the pattern of the PNS and CNS can be easily observed during these developmental stages.
Neuroscience, Issue 46, Drosophila neurobiology, Embryo, Immuno Fluorescence
Play Button
Measuring Exocytosis in Neurons Using FM Labeling
Authors: Jamila Newton, Venkatesh Murthy.
Institutions: Harvard.
The ability to measure the kinetics of vesicle release can help provide insight into some of the basics of neurotransmission. Here we used real-time imaging of vesicles labeled with FM dye to monitor the rate of presynaptic vesicle release. FM4-64 is a red fluorescent amphiphilic styryl dye that embeds into the membranes of synaptic vesicles as endocytosis is stimulated. Lipophilic interactions cause the dye to greatly increase in fluorescence, thus emitting a bright signal when associated with vesicles and a nominal one when in the extracellular fluid. After a wash step is used to help remove external dye within the plasma membrane, the remaining FM is concentrated within the vesicles and is then expelled when exocytosis is induced by another round of electrical stimulation. The rate of vesicles release is measured from the resulting decrease in fluorescence. Since FM dye can be applied external and transiently, it is a useful tool for determining rates of exocytosis in neuronal cultures, especially when comparing the rates between transfected synapses and neighboring control boutons.
Neuroscience, Issue 1, neuron, imaging, exocytosis
Play Button
Visualization of Larval Segmental Nerves in 3rd Instar Drosophila Larval Preparations
Authors: Samantha Fye, Kunsang Dolma, Min Jung Kang, Shermali Gunawardena.
Institutions: SUNY-University at Buffalo.
Drosophila melanogaster is emerging as a powerful model system for studying the development and function of the nervous system, particularly because of its convenient genetics and fully sequenced genome. Additionally, the larval nervous system is an ideal model system to study mechanisms of axonal transport as the larval segmental nerves contain bundles of axons with their cell bodies located within the brain and their nerve terminals ending along the length of the body. Here we describe the procedure for visualization of synaptic vesicle proteins within larval segmental nerves. If done correctly, all components of the nervous system, along with associated tissues such as muscles and NMJs, remain intact, undamaged, and ready to be visualized. 3rd instar larvae carrying various mutations are dissected, fixed, incubated with synaptic vesicle antibodies, visualized and compared to wild type larvae. This procedure can be adapted for several different synaptic or neuronal antibodies and changes in the distribution of a variety of proteins can be easily observed within larval segmental nerves.
Developmental Biology, Issue 43, Fluorescence, Microscopy, Drosophila, 3rd instar larvae, larval segmental nerves, axonal transport
Play Button
Presynaptically Silent Synapses Studied with Light Microscopy
Authors: Krista L. Moulder, Xiaoping Jiang, Amanda A. Taylor, Ann M. Benz, Steven Mennerick.
Institutions: Washington University School of Medicine, Washington University School of Medicine, Washington University School of Medicine.
Synaptic plasticity likely underlies the nervous system's ability to learn and remember and may also represent an adaptability that prevents otherwise damaging insults from becoming neurotoxic. We have been studying a form of presynaptic plasticity that is interesting in part because it is expressed as a digital switching on and off of a presynaptic terminal s ability to release vesicles containing the neurotransmitter glutamate. Here we demonstrate a protocol for visualizing the activity status of presynaptic terminals in dissociated cell cultures prepared from the rodent hippocampus. The method relies on detecting active synapses using staining with a fixable form of the styryl dye FM1-43, commonly used to label synaptic vesicles. This staining profile is compared with immunostaining of the same terminals with an antibody directed against the vesicular glutamate transporter 1 (vGluT-1), a stain designed to label all glutamate synapses regardless of activation status. We find that depolarizing stimuli induce presynaptic silencing. The population of synapses that is silent under baseline conditions can be activated by prolonged electrical silencing or by activation of cAMP signaling pathways.
Neurobiology, Issue 35, glutamate, synaptic plasticity, cAMP, excitotoxicity, homeostasis, FM1-43, presynaptic plasticity
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.