JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The QKI-6 RNA binding protein localizes with the MBP mRNAs in stress granules of glial cells.
PUBLISHED: 01-03-2010
The quaking viable (qk(v)) mouse has several developmental defects that result in rapid tremors in the hind limbs. The qkI gene expresses three major alternatively spliced mRNAs (5, 6 and 7 kb) that encode the QKI-5, QKI-6 and QKI-7 RNA binding proteins that differ in their C-terminal 30 amino acids. The QKI isoforms are known to regulate RNA metabolism within oligodendrocytes, however, little is known about their roles during cellular stress.
Authors: Sophie Martin, Jamal Tazi.
Published: 05-21-2014
SGs can be visualized in cells by immunostaining of specific protein components or polyA+ mRNAs. SGs are highly dynamic and the study of their assembly and fate is important to understand the cellular response to stress. The deficiency in key factors of SGs like G3BP (RasGAP SH3 domain Binding Protein) leads to developmental defects in mice and alterations of the Central Nervous System. To study the dynamics of SGs in cells from an organism, one can culture primary cells and follow the localization of a transfected tagged component of SGs. We describe time-lapse experiment to observe G3BP1-containing SGs in Mouse Embryonic Fibroblasts (MEFs). This technique can also be used to study G3BP-containing SGs in live neurons, which is crucial as it was recently shown that these SGs are formed at the onset of neurodegenerative diseases like Alzheimer's disease. This approach can be adapted to any other cellular body and granule protein component, and performed with transgenic animals, allowing the live study of granules dynamics for example in the absence of a specific factor of these granules.
22 Related JoVE Articles!
Play Button
Preparation of the Mgm101 Recombination Protein by MBP-based Tagging Strategy
Authors: Xiaowen Wang, MacMillan Mbantenkhu, Sara Wierzbicki, Xin Jie Chen.
Institutions: State University of New York Upstate Medical University.
The MGM101 gene was identified 20 years ago for its role in the maintenance of mitochondrial DNA. Studies from several groups have suggested that the Mgm101 protein is involved in the recombinational repair of mitochondrial DNA. Recent investigations have indicated that Mgm101 is related to the Rad52-type recombination protein family. These proteins form large oligomeric rings and promote the annealing of homologous single stranded DNA molecules. However, the characterization of Mgm101 has been hindered by the difficulty in producing the recombinant protein. Here, a reliable procedure for the preparation of recombinant Mgm101 is described. Maltose Binding Protein (MBP)-tagged Mgm101 is first expressed in Escherichia coli. The fusion protein is initially purified by amylose affinity chromatography. After being released by proteolytic cleavage, Mgm101 is separated from MBP by cationic exchange chromatography. Monodispersed Mgm101 is then obtained by size exclusion chromatography. A yield of ~0.87 mg of Mgm101 per liter of bacterial culture can be routinely obtained. The recombinant Mgm101 has minimal contamination of DNA. The prepared samples are successfully used for biochemical, structural and single particle image analyses of Mgm101. This protocol may also be used for the preparation of other large oligomeric DNA-binding proteins that may be misfolded and toxic to bacterial cells.
Biochemistry, Issue 76, Genetics, Molecular Biology, Cellular Biology, Microbiology, Bacteria, Proteins, Mgm101, Rad52, mitochondria, recombination, mtDNA, maltose-binding protein, MBP, E. coli., yeast, Saccharomyces cerevisiae, chromatography, electron microscopy, cell culture
Play Button
Vaccinia Virus Infection & Temporal Analysis of Virus Gene Expression: Part 2
Authors: Judy Yen, Ron Golan, Kathleen Rubins.
Institutions: MIT - Massachusetts Institute of Technology.
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Cellular Biology, Immunology, Microbiology, Issue 26, Vaccinia, virus, infection, HeLa, TRIzol reagent, total RNA, Microarray, amplification, amino allyl, RNA, Ambion Amino Allyl MessageAmpII, gene expression
Play Button
Isolation of Translating Ribosomes Containing Peptidyl-tRNAs for Functional and Structural Analyses
Authors: Nitin Shirole, Sreeram Balasubramanian, Charles Yanofsky, Luis Cruz-Vera.
Institutions: University of Alabama Huntsville, Stanford University .
Recently, structural and biochemical studies have detailed many of the molecular events that occur in the ribosome during inhibition of protein synthesis by antibiotics and during nascent polypeptide synthesis. Some of these antibiotics, and regulatory nascent polypeptides mostly in the form of peptidyl-tRNAs, inhibit either peptide bond formation or translation termination1-7. These inhibitory events can stop the movement of the ribosome, a phenomenon termed "translational arrest". Translation arrest induced by either an antibiotic or a nascent polypeptide has been shown to regulate the expression of genes involved in diverse cellular functions such as cell growth, antibiotic resistance, protein translocation and cell metabolism8-13. Knowledge of how antibiotics and regulatory nascent polypeptides alter ribosome function is essential if we are to understand the complete role of the ribosome in translation, in every organism. Here, we describe a simple methodology that can be used to purify, exclusively, for analysis, those ribosomes translating a specific mRNA and containing a specific peptidyl-tRNA14. This procedure is based on selective isolation of translating ribosomes bound to a biotin-labeled mRNA. These translational complexes are separated from other ribosomes in the same mixture, using streptavidin paramagnetic beads (SMB) and a magnetic field (MF). Biotin-labeled mRNAs are synthesized by run-off transcription assays using as templates PCR-generated DNA fragments that contain T7 transcriptional promoters. T7 RNA polymerase incorporates biotin-16-UMP from biotin-UTP; under our conditions approximately ten biotin-16-UMP molecules are incorporated in a 600 nt mRNA with a 25% UMP content. These biotin-labeled mRNAs are then isolated, and used in in vitro translation assays performed with release factor 2 (RF2)-depleted cell-free extracts obtained from Escherichia coli strains containing wild type or mutant ribosomes. Ribosomes translating the biotin-labeled mRNA sequences are stalled at the stop codon region, due to the absence of the RF2 protein, which normally accomplishes translation termination. Stalled ribosomes containing the newly synthesized peptidyl-tRNA are isolated and removed from the translation reactions using SMB and an MF. These beads only bind biotin-containing messages. The isolated, translational complexes, can be used to analyze the structural and functional features of wild type or mutant ribosomal components, or peptidyl-tRNA sequences, as well as determining ribosome interaction with antibiotics or other molecular factors 1,14-16. To examine the function of these isolated ribosome complexes, peptidyl-transferase assays can be performed in the presence of the antibiotic puromycin1. To study structural changes in translational complexes, well established procedures can be used, such as i) crosslinking to specific amino acids14 and/or ii) alkylation protection assays1,14,17.
Molecular Biology, Issue 48, Ribosome stalling, ribosome isolation, peptidyl-tRNA, in vitro translation, RNA chemical modification, puromycin, antibiotics.
Play Button
Analysis of Translation Initiation During Stress Conditions by Polysome Profiling
Authors: Laëtitia Coudert, Pauline Adjibade, Rachid Mazroui.
Institutions: Laval University, CHU de Quebec Research Center.
Precise control of mRNA translation is fundamental for eukaryotic cell homeostasis, particularly in response to physiological and pathological stress. Alterations of this program can lead to the growth of damaged cells, a hallmark of cancer development, or to premature cell death such as seen in neurodegenerative diseases. Much of what is known concerning the molecular basis for translational control has been obtained from polysome analysis using a density gradient fractionation system. This technique relies on ultracentrifugation of cytoplasmic extracts on a linear sucrose gradient. Once the spin is completed, the system allows fractionation and quantification of centrifuged zones corresponding to different translating ribosomes populations, thus resulting in a polysome profile. Changes in the polysome profile are indicative of changes or defects in translation initiation that occur in response to various types of stress. This technique also allows to assess the role of specific proteins on translation initiation, and to measure translational activity of specific mRNAs. Here we describe our protocol to perform polysome profiles in order to assess translation initiation of eukaryotic cells and tissues under either normal or stress growth conditions.
Cellular Biology, Issue 87, Translation initiation, polysome profile, sucrose gradient, protein and RNA isolation, stress conditions
Play Button
Affinity-based Isolation of Tagged Nuclei from Drosophila Tissues for Gene Expression Analysis
Authors: Jingqun Ma, Vikki Marie Weake.
Institutions: Purdue University.
Drosophila melanogaster embryonic and larval tissues often contain a highly heterogeneous mixture of cell types, which can complicate the analysis of gene expression in these tissues. Thus, to analyze cell-specific gene expression profiles from Drosophila tissues, it may be necessary to isolate specific cell types with high purity and at sufficient yields for downstream applications such as transcriptional profiling and chromatin immunoprecipitation. However, the irregular cellular morphology in tissues such as the central nervous system, coupled with the rare population of specific cell types in these tissues, can pose challenges for traditional methods of cell isolation such as laser microdissection and fluorescence-activated cell sorting (FACS). Here, an alternative approach to characterizing cell-specific gene expression profiles using affinity-based isolation of tagged nuclei, rather than whole cells, is described. Nuclei in the specific cell type of interest are genetically labeled with a nuclear envelope-localized EGFP tag using the Gal4/UAS binary expression system. These EGFP-tagged nuclei can be isolated using antibodies against GFP that are coupled to magnetic beads. The approach described in this protocol enables consistent isolation of nuclei from specific cell types in the Drosophila larval central nervous system at high purity and at sufficient levels for expression analysis, even when these cell types comprise less than 2% of the total cell population in the tissue. This approach can be used to isolate nuclei from a wide variety of Drosophila embryonic and larval cell types using specific Gal4 drivers, and may be useful for isolating nuclei from cell types that are not suitable for FACS or laser microdissection.
Biochemistry, Issue 85, Gene Expression, nuclei isolation, Drosophila, KASH, GFP, cell-type specific
Play Button
Derivation of Enriched Oligodendrocyte Cultures and Oligodendrocyte/Neuron Myelinating Co-cultures from Post-natal Murine Tissues
Authors: Ryan W. O'Meara, Scott D. Ryan, Holly Colognato, Rashmi Kothary.
Institutions: Ottawa Hospital Research Institute, University of Ottawa , Stony Brook University, University of Ottawa .
Identifying the molecular mechanisms underlying OL development is not only critical to furthering our knowledge of OL biology, but also has implications for understanding the pathogenesis of demyelinating diseases such as Multiple Sclerosis (MS). Cellular development is commonly studied with primary cell culture models. Primary cell culture facilitates the evaluation of a given cell type by providing a controlled environment, free of the extraneous variables that are present in vivo. While OL cultures derived from rats have provided a vast amount of insight into OL biology, similar efforts at establishing OL cultures from mice has been met with major obstacles. Developing methods to culture murine primary OLs is imperative in order to take advantage of the available transgenic mouse lines. Multiple methods for extraction of OPCs from rodent tissue have been described, ranging from neurosphere derivation, differential adhesion purification and immunopurification 1-3. While many methods offer success, most require extensive culture times and/or costly equipment/reagents. To circumvent this, purifying OPCs from murine tissue with an adaptation of the method originally described by McCarthy & de Vellis 2 is preferred. This method involves physically separating OPCs from a mixed glial culture derived from neonatal rodent cortices. The result is a purified OPC population that can be differentiated into an OL-enriched culture. This approach is appealing due to its relatively short culture time and the unnecessary requirement for growth factors or immunopanning antibodies. While exploring the mechanisms of OL development in a purified culture is informative, it does not provide the most physiologically relevant environment for assessing myelin sheath formation. Co-culturing OLs with neurons would lend insight into the molecular underpinnings regulating OL-mediated myelination of axons. For many OL/neuron co-culture studies, dorsal root ganglion neurons (DRGNs) have proven to be the neuron type of choice. They are ideal for co-culture with OLs due to their ease of extraction, minimal amount of contaminating cells, and formation of dense neurite beds. While studies using rat/mouse myelinating xenocultures have been published 4-6, a method for the derivation of such OL/DRGN myelinating co-cultures from post-natal murine tissue has not been described. Here we present detailed methods on how to effectively produce such cultures, along with examples of expected results. These methods are useful for addressing questions relevant to OL development/myelinating function, and are useful tools in the field of neuroscience.
Neuroscience, Issue 54, Oligodendrocyte, myelination, in vitro, dorsal root ganglion neuron, co-culture, primary cells, mouse, neuroscience
Play Button
Electrophoretic Mobility Shift Assay (EMSA) for the Study of RNA-Protein Interactions: The IRE/IRP Example
Authors: Carine Fillebeen, Nicole Wilkinson, Kostas Pantopoulos.
Institutions: Jewish General Hospital, McGill University.
RNA/protein interactions are critical for post-transcriptional regulatory pathways. Among the best-characterized cytosolic RNA-binding proteins are iron regulatory proteins, IRP1 and IRP2. They bind to iron responsive elements (IREs) within the untranslated regions (UTRs) of several target mRNAs, thereby controlling the mRNAs translation or stability. IRE/IRP interactions have been widely studied by EMSA. Here, we describe the EMSA protocol for analyzing the IRE-binding activity of IRP1 and IRP2, which can be generalized to assess the activity of other RNA-binding proteins as well. A crude protein lysate containing an RNA-binding protein, or a purified preparation of this protein, is incubated with an excess of32 P-labeled RNA probe, allowing for complex formation. Heparin is added to preclude non-specific protein to probe binding. Subsequently, the mixture is analyzed by non-denaturing electrophoresis on a polyacrylamide gel. The free probe migrates fast, while the RNA/protein complex exhibits retarded mobility; hence, the procedure is also called “gel retardation” or “bandshift” assay. After completion of the electrophoresis, the gel is dried and RNA/protein complexes, as well as free probe, are detected by autoradiography. The overall goal of the protocol is to detect and quantify IRE/IRP and other RNA/protein interactions. Moreover, EMSA can also be used to determine specificity, binding affinity, and stoichiometry of the RNA/protein interaction under investigation.
Biochemistry, Issue 94, RNA metabolism, mRNA translation, post-transcriptional gene regulation, mRNA stability, IRE, IRP1, IRP2, iron metabolism, ferritin, transferrin receptor
Play Button
Progenitor-derived Oligodendrocyte Culture System from Human Fetal Brain
Authors: Maria Chiara G. Monaco, Dragan Maric, Alexandra Bandeian, Emily Leibovitch, Wan Yang, Eugene O. Major.
Institutions: National Institute of Neurological Disorders and Stroke, National Institutes of Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health.
Differentiation of human neural progenitors into neuronal and glial cell types offers a model to study and compare molecular regulation of neural cell lineage development. In vitro expansion of neural progenitors from fetal CNS tissue has been well characterized. Despite the identification and isolation of glial progenitors from adult human sub-cortical white matter and development of various culture conditions to direct differentiation of fetal neural progenitors into myelin producing oligodendrocytes, acquiring sufficient human oligodendrocytes for in vitro experimentation remains difficult. Differentiation of galactocerebroside+ (GalC) and O4+ oligodendrocyte precursor or progenitor cells (OPC) from neural precursor cells has been reported using second trimester fetal brain. However, these cells do not proliferate in the absence of support cells including astrocytes and neurons, and are lost quickly over time in culture. The need remains for a culture system to produce cells of the oligodendrocyte lineage suitable for in vitro experimentation. Culture of primary human oligodendrocytes could, for example, be a useful model to study the pathogenesis of neurotropic infectious agents like the human polyomavirus, JCV, that in vivo infects those cells. These cultured cells could also provide models of other demyelinating diseases of the central nervous system (CNS). Primary, human fetal brain-derived, multipotential neural progenitor cells proliferate in vitro while maintaining the capacity to differentiate into neurons (progenitor-derived neurons, PDN) and astrocytes (progenitor-derived astrocytes, PDA) This study shows that neural progenitors can be induced to differentiate through many of the stages of oligodendrocytic lineage development (progenitor-derived oligodendrocytes, PDO). We culture neural progenitor cells in DMEM-F12 serum-free media supplemented with basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), Sonic hedgehog (Shh), neurotrophic factor 3 (NT-3), N-2 and triiodothyronine (T3). The cultured cells are passaged at 2.5e6 cells per 75cm flasks approximately every seven days. Using these conditions, the majority of the cells in culture maintain a morphology characterized by few processes and express markers of pre-oligodendrocyte cells, such as A2B5 and O-4. When we remove the four growth factors (GF) (bFGF, PDGF-AA, Shh, NT-3) and add conditioned media from PDN, the cells start to acquire more processes and express markers specific of oligodendrocyte differentiation, such as GalC and myelin basic protein (MBP). We performed phenotypic characterization using multicolor flow cytometry to identify unique markers of oligodendrocyte.
Neuroscience, Issue 70, Developmental Biology, Medicine, Stem Cell Biology, Molecular Biology, Cellular Biology, Physiology, lineage characterization, neural progenitors, differentiation, cell culture model
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
Transient Gene Expression in Tobacco using Gibson Assembly and the Gene Gun
Authors: Matthew D. Mattozzi, Mathias J. Voges, Pamela A. Silver, Jeffrey C. Way.
Institutions: Harvard University, Harvard Medical School, Delft University of Technology.
In order to target a single protein to multiple subcellular organelles, plants typically duplicate the relevant genes, and express each gene separately using complex regulatory strategies including differential promoters and/or signal sequences. Metabolic engineers and synthetic biologists interested in targeting enzymes to a particular organelle are faced with a challenge: For a protein that is to be localized to more than one organelle, the engineer must clone the same gene multiple times. This work presents a solution to this strategy: harnessing alternative splicing of mRNA. This technology takes advantage of established chloroplast and peroxisome targeting sequences and combines them into a single mRNA that is alternatively spliced. Some splice variants are sent to the chloroplast, some to the peroxisome, and some to the cytosol. Here the system is designed for multiple-organelle targeting with alternative splicing. In this work, GFP was expected to be expressed in the chloroplast, cytosol, and peroxisome by a series of rationally designed 5’ mRNA tags. These tags have the potential to reduce the amount of cloning required when heterologous genes need to be expressed in multiple subcellular organelles. The constructs were designed in previous work11, and were cloned using Gibson assembly, a ligation independent cloning method that does not require restriction enzymes. The resultant plasmids were introduced into Nicotiana benthamiana epidermal leaf cells with a modified Gene Gun protocol. Finally, transformed leaves were observed with confocal microscopy.
Environmental Sciences, Issue 86, Plant Leaves, Synthetic Biology, Plants, Genetically Modified, DNA, Plant, RNA, Gene Targeting, Plant Physiological Processes, Genes, Gene gun, Gibson assembly, Nicotiana benthamiana, Alternative splicing, confocal microscopy, chloroplast, peroxisome
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Detection of Alternative Splicing During Epithelial-Mesenchymal Transition
Authors: Huilin Huang, Yilin Xu, Chonghui Cheng.
Institutions: Northwestern University Feinberg School of Medicine.
Alternative splicing plays a critical role in the epithelial-mesenchymal transition (EMT), an essential cellular program that occurs in various physiological and pathological processes. Here we describe a strategy to detect alternative splicing during EMT using an inducible EMT model by expressing the transcription repressor Twist. EMT is monitored by changes in cell morphology, loss of E-cadherin localization at cell-cell junctions, and the switched expression of EMT markers, such as loss of epithelial markers E-cadherin and γ-catenin and gain of mesenchymal markers N-cadherin and vimentin. Using isoform-specific primer sets, the alternative splicing of interested mRNAs are analyzed by quantitative RT-PCR. The production of corresponding protein isoforms is validated by immunoblotting assays. The method of detecting splice isoforms described here is also suitable for the study of alternative splicing in other biological processes.
Cellular Biology, Issue 92, alternative splicing, EMT, RNA, primer design, real time PCR, splice isoforms
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Isolation of mRNAs Associated with Yeast Mitochondria to Study Mechanisms of Localized Translation
Authors: Chen Lesnik, Yoav Arava.
Institutions: Technion - Israel Institute of Technology.
Most of mitochondrial proteins are encoded in the nucleus and need to be imported into the organelle. Import may occur while the protein is synthesized near the mitochondria. Support for this possibility is derived from recent studies, in which many mRNAs encoding mitochondrial proteins were shown to be localized to the mitochondria vicinity. Together with earlier demonstrations of ribosomes’ association with the outer membrane, these results suggest a localized translation process. Such localized translation may improve import efficiency, provide unique regulation sites and minimize cases of ectopic expression. Diverse methods have been used to characterize the factors and elements that mediate localized translation. Standard among these is subcellular fractionation by differential centrifugation. This protocol has the advantage of isolation of mRNAs, ribosomes and proteins in a single procedure. These can then be characterized by various molecular and biochemical methods. Furthermore, transcriptomics and proteomics methods can be applied to the resulting material, thereby allow genome-wide insights. The utilization of yeast as a model organism for such studies has the advantages of speed, costs and simplicity. Furthermore, the advanced genetic tools and available deletion strains facilitate verification of candidate factors.
Biochemistry, Issue 85, mitochondria, mRNA localization, Yeast, S. cerevisiae, microarray, localized translation, biochemical fractionation
Play Button
Assessment of Selective mRNA Translation in Mammalian Cells by Polysome Profiling
Authors: Mame Daro Faye, Tyson E Graber, Martin Holcik.
Institutions: University of Ottawa, Montreal Neurological Institute, University of Ottawa.
Regulation of protein synthesis represents a key control point in cellular response to stress. In particular, discreet RNA regulatory elements were shown to allow to selective translation of specific mRNAs, which typically encode for proteins required for a particular stress response. Identification of these mRNAs, as well as the characterization of regulatory mechanisms responsible for selective translation has been at the forefront of molecular biology for some time. Polysome profiling is a cornerstone method in these studies. The goal of polysome profiling is to capture mRNA translation by immobilizing actively translating ribosomes on different transcripts and separate the resulting polyribosomes by ultracentrifugation on a sucrose gradient, thus allowing for a distinction between highly translated transcripts and poorly translated ones. These can then be further characterized by traditional biochemical and molecular biology methods. Importantly, combining polysome profiling with high throughput genomic approaches allows for a large scale analysis of translational regulation.
Cellular Biology, Issue 92, cellular stress, translation initiation, internal ribosome entry site, polysome, RT-qPCR, gradient
Play Button
Preparation and Culture of Rat Lens Epithelial Explants for Studying Terminal Differentiation
Authors: Peggy S. Zelenka, Chun Y. Gao, Senthil S. Saravanamuthu.
Institutions: National Eye Institute (NEI), National Institutes of Health (NIH).
The anterior surface of the ocular lens is covered by a monolayer of epithelial cells, which proliferate in an annular zone underlying the ciliary body. Following division, these cells migrate posteriorly, where FGF diffusing from the retina induces them to differentiate into a posterior array of elongated lens fiber cells, which compose the bulk of the lens. Differentiation of lens epithelial cells into lens fibers can be induced in vitro by culturing explants of the central region of the anterior epithelium in the presence of FGF-2. Explants are prepared from lenses of neonatal rats by removing the lens from the eye and grasping the lens capsule on the posterior side with dissecting tweezers. The posterior capsule is then gently torn open and pressed down into the plastic bottom of a tissue culture dish. The peripheral regions of the explant are removed with a scalpel and the central area is then cultured in the presence of 100ng/ml FGF-2 for as long as 2-3 weeks, depending on the parameters to be studied. Since epithelial cells in cultured explants differentiate in approximate synchrony over a period of days to weeks, the time course of signaling and gene expression can be determined using molecular, biochemical, and pharmacological techniques. Immunofluorescence microscopy is a powerful adjunct to these methods as it demonstrates the subcellular localization of proteins of interest and can reveal the physiological consequences of experimental manipulations of signaling pathways.
Cellular Biology, Issue 31, lens, differentiation, FGF, rat
Play Button
Visualization of Endoplasmic Reticulum Localized mRNAs in Mammalian Cells
Authors: Xianying A. Cui, Alexander F. Palazzo.
Institutions: University of Toronto.
In eukaryotes, most of the messenger RNAs (mRNAs) that encode secreted and membrane proteins are localized to the surface of the endoplasmic reticulum (ER). However, the visualization of these mRNAs can be challenging. This is especially true when only a fraction of the mRNA is ER-associated and their distribution to this organelle is obstructed by non-targeted (i.e. "free") transcripts. In order to monitor ER-associated mRNAs, we have developed a method in which cells are treated with a short exposure to a digitonin extraction solution that selectively permeabilizes the plasma membrane, and thus removes the cytoplasmic contents, while simultaneously maintaining the integrity of the ER. When this method is coupled with fluorescent in situ hybridization (FISH), one can clearly visualize ER-bound mRNAs by fluorescent microscopy. Using this protocol the degree of ER-association for either bulk poly(A) transcripts or specific mRNAs can be assessed and even quantified. In the process, one can use this assay to investigate the nature of mRNA-ER interactions.
Cellular Biology, Issue 70, Biochemistry, Genetics, Molecular Biology, Genomics, mRNA localization, RNA, digitonin extraction, cell fractionation, endoplasmic reticulum, secretion, microscopy, imaging, fluorescent in situ hybridization, FISH, cell biology
Play Button
Vaccinia Virus Infection & Temporal Analysis of Virus Gene Expression: Part 3
Authors: Judy Yen, Ron Golan, Kathleen Rubins.
Institutions: MIT - Massachusetts Institute of Technology.
The family Poxviridae consists of large double-stranded DNA containing viruses that replicate exclusively in the cytoplasm of infected cells. Members of the orthopox genus include variola, the causative agent of human small pox, monkeypox, and vaccinia (VAC), the prototypic member of the virus family. Within the relatively large (~ 200 kb) vaccinia genome, three classes of genes are encoded: early, intermediate, and late. While all three classes are transcribed by virally-encoded RNA polymerases, each class serves a different function in the life cycle of the virus. Poxviruses utilize multiple strategies for modulation of the host cellular environment during infection. In order to understand regulation of both host and virus gene expression, we have utilized genome-wide approaches to analyze transcript abundance from both virus and host cells. Here, we demonstrate time course infections of HeLa cells with Vaccinia virus and sampling RNA at several time points post-infection. Both host and viral total RNA is isolated and amplified for hybridization to microarrays for analysis of gene expression.
Microbiology, Issue 26, Vaccinia, virus, infection, HeLa, Microarray, amplified RNA, amino allyl, RNA, Ambion Amino Allyl MessageAmpII, gene expression
Play Button
RNA Extraction from Neuroprecursor Cells Using the Bio-Rad Total RNA Kit
Authors: Jia Sheng Su, Edwin S. Monuki.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Basic Protocols, Issue 9, RNA, Purification, Brain
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.