JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors.
PUBLISHED: 06-04-2010
A fundamental requirement for the exploitation of embryonic stem (ES) cells in regenerative medicine is the ability to reproducibly derive sufficient numbers of cells of a consistent quality in a cost-effective manner. However, undifferentiated ES cells are not ideally suited to suspension culture due to the formation of cellular aggregates, ultimately limiting scalability. Significant advances have been made in recent years in the culture of ES cells, including automated adherent culture and suspension microcarrier or embryoid body bioreactor culture. However, each of these methods exhibits specific disadvantages, such as high cost, additional downstream processes or reduced cell doubling times.
Authors: Maureen R. Lynch, Judith C. Gasson, Helicia Paz.
Published: 06-07-2011
The in vitro differentiation of ES cells towards a hematopoietic cell fate is useful when studying cell populations that are difficult to access in vivo and for characterizing the earliest genes involved in hematopoiesis, without having to deal with embryonic lethalities. The ES/OP9 co-culture system was originally designed to produce hematopoietic progeny, without the over production of macrophages, as the OP9 stromal cell line is derived from the calvaria of osteopetrosis mutant mice that lack functional M-CSF. The in vitro ES/OP9 co-culture system can be used in order to recapitulate early hematopoietic development. When cultured on OP9 stromal cells, ES cells differentiate into Flk-1+ hemangioblasts, hematopoietic progenitors, and finally mature, terminally differentiated lineages. The standard ES/OP9 co-culture protocol entails the placement of ES cells onto a confluent layer of OP9 cells; as well as, periodic replating steps in order to remove old, contaminating OP9 cells. Furthermore, current protocols involve evaluating only the hematopoietic cells found in suspension and are not optimized for evaluation of ES-derived progeny at each day of differentiation. However, with replating steps and the harvesting of only suspension cells one potentially misses a large portion of ES-derived progeny and developing hematopoietic cells. This issue becomes important to address when trying to characterize hematopoietic defects associated with knockout ES lines. Here we describe a modified ES/mStrawberry OP9 co-culture, which allows for the elimination of contaminating OP9 cells from downstream assays. This method allows for the complete evaluation of all ES-derived progeny at all days of co-culture, resulting in a hematopoietic differentiation pattern, which more directly corresponds to the hematopoietic differentiation pattern observed within the embryo.
23 Related JoVE Articles!
Play Button
Robust Generation of Hepatocyte-like Cells from Human Embryonic Stem Cell Populations
Authors: Claire N. Medine, Baltasar Lucendo-Villarin, Wenli Zhou, Christopher C. West, David C. Hay.
Institutions: University of Edinburgh.
Despite progress in modelling human drug toxicity, many compounds fail during clinical trials due to unpredicted side effects. The cost of clinical studies are substantial, therefore it is essential that more predictive toxicology screens are developed and deployed early on in drug development (Greenhough et al 2010). Human hepatocytes represent the current gold standard model for evaluating drug toxicity, but are a limited resource that exhibit variable function. Therefore, the use of immortalised cell lines and animal tissue models are routinely employed due to their abundance. While both sources are informative, they are limited by poor function, species variability and/or instability in culture (Dalgetty et al 2009). Pluripotent stem cells (PSCs) are an attractive alternative source of human hepatocyte like cells (HLCs) (Medine et al 2010). PSCs are capable of self renewal and differentiation to all somatic cell types found in the adult and thereby represent a potentially inexhaustible source of differentiated cells. We have developed a procedure that is simple, highly efficient, amenable to automation and yields functional human HLCs (Hay et al 2008 ; Fletcher et al 2008 ; Hannoun et al 2010 ; Payne et al 2011 and Hay et al 2011). We believe our technology will lead to the scalable production of HLCs for drug discovery, disease modeling, the construction of extra-corporeal devices and possibly cell based transplantation therapies.
Developmental Biology, Issue 56, Stem Cells, hESC, Development, Endoderm, Liver, Hepatocyte, Endocrine Function, Exocrine Function
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
The Specification of Telencephalic Glutamatergic Neurons from Human Pluripotent Stem Cells
Authors: Erin M. Boisvert, Kyle Denton, Ling Lei, Xue-Jun Li.
Institutions: The University of Connecticut Health Center, The University of Connecticut Health Center, The University of Connecticut Health Center.
Here, a stepwise procedure for efficiently generating telencephalic glutamatergic neurons from human pluripotent stem cells (PSCs) has been described. The differentiation process is initiated by breaking the human PSCs into clumps which round up to form aggregates when the cells are placed in a suspension culture. The aggregates are then grown in hESC medium from days 1-4 to allow for spontaneous differentiation. During this time, the cells have the capacity to become any of the three germ layers. From days 5-8, the cells are placed in a neural induction medium to push them into the neural lineage. Around day 8, the cells are allowed to attach onto 6 well plates and differentiate during which time the neuroepithelial cells form. These neuroepithelial cells can be isolated at day 17. The cells can then be kept as neurospheres until they are ready to be plated onto coverslips. Using a basic medium without any caudalizing factors, neuroepithelial cells are specified into telencephalic precursors, which can then be further differentiated into dorsal telencephalic progenitors and glutamatergic neurons efficiently. Overall, our system provides a tool to generate human glutamatergic neurons for researchers to study the development of these neurons and the diseases which affect them.
Stem Cell Biology, Issue 74, Neuroscience, Neurobiology, Developmental Biology, Cellular Biology, Molecular Biology, Stem Cells, Embryonic Stem Cells, ESCs, Pluripotent Stem Cells, Induced Pluripotent Stem Cells, iPSC, neural differentiation, forebrain, glutamatergic neuron, neural patterning, development, neurons
Play Button
Enrichment and Purging of Human Embryonic Stem Cells by Detection of Cell Surface Antigens Using the Monoclonal Antibodies TG30 and GCTM-2
Authors: Juan Carlos Polanco, Bei Wang, Qi Zhou, Hun Chy, Carmel O'Brien, Andrew L. Laslett.
Institutions: CSIRO.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.
Stem Cell Biology, Issue 82, Stem cells, cell surface antigens, antibodies, FACS, purging stem cells, differentiation, pluripotency, teratoma, human embryonic stem cells (hESC)
Play Button
The use of SC1 (Pluripotin) to Support mESC Self-renewal in the Absence of LIF
Authors: Wen Xiong, Yan Gao, Xun Cheng, Charles Martin, Dongmei Wu, Shuyuan Yao, Min-Ju Kim, Yang Liu.
Institutions: Stemgent, Stemgent.
Mouse embryonic stem (ES) cells are conventionally cultured with Leukemia Inhibitory Factor (LIF) to maintain self-renewal.1 However, LIF is expensive and activation of the LIF/JAK/STAT3 pathway is not absolutely required to maintain the self-renewal state.2 The SC1 small molecule may be an economical alternative to LIF. SC1 functions through dual inhibition of Ras-GAP and ERK1.3 Illustration of its mechanism of action makes it a useful tool to study the fundamental molecular mechanism of self-renewal. Here we demonstrate the procedure for culturing mouse ES cells in the presence of SC1 and show that they are able to maintain self-renewal in the absence of LIF. Cells cultured with SC1 showed similar morphology compared to cells maintained with LIF. Both exhibited typical mouse ES morphology after five passages. Expression of typical pluripotency markers (Oct4, Sox2, Nanog, and SSEA1) was observed after five passages in the presence of SC1. Furthermore, SC1 caused no overt toxicity on mouse ES cells.
Cellular Biology, Issue 33, SC1(Pluripotin), LIF, mESC, mouse ESC, mouse ES cells, pluripotency, self-renewal, small molecule
Play Button
Efficient Generation Human Induced Pluripotent Stem Cells from Human Somatic Cells with Sendai-virus
Authors: In Young Choi, HoTae Lim, Gabsang Lee.
Institutions: Johns Hopkins University School of Medicine.
A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases. Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner.
Stem Cell Biology, Issue 86, Induced pluripotent stem cells, Human embryonic stem cells, Sendai-virus
Play Button
Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells
Authors: Tahsin Stefan Barakat, Joost Gribnau.
Institutions: Erasmus MC - University Medical Center.
Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected.
Biochemistry, Issue 88, Fluorescent in situ hybridization (FISH), combined DNA-RNA FISH, ES cell, cytogenetics, single cell analysis, X chromosome inactivation (XCI), Xist, Bacterial artificial chromosome (BAC), DNA-probe, Rnf12
Play Button
Rapid and Efficient Generation of Neurons from Human Pluripotent Stem Cells in a Multititre Plate Format
Authors: Miao Zhang, Hans R. Schöler, Boris Greber.
Institutions: Max Planck Institute for Molecular Biomedicine, University of Münster.
Existing protocols for the generation of neurons from human pluripotent stem cells (hPSCs) are often tedious in that they are multistep procedures involving the isolation and expansion of neural precursor cells, prior to terminal differentiation. In comparison to these time-consuming approaches, we have recently found that combined inhibition of three signaling pathways, TGFβ/SMAD2, BMP/SMAD1, and FGF/ERK, promotes rapid induction of neuroectoderm from hPSCs, followed by immediate differentiation into functional neurons. Here, we have adapted our procedure to a novel multititre plate format, to further enhance its reproducibility and to make it compatible with mid-throughput applications. It comprises four days of neuroectoderm formation in floating spheres (embryoid bodies), followed by a further four days of differentiation into neurons under adherent conditions. Most cells obtained with this protocol appear to be bipolar sensory neurons. Moreover, the procedure is highly efficient, does not require particular expert skills, and is based on a simple chemically defined medium with cost-efficient small molecules. Due to these features, the procedure may serve as a useful platform for further functional investigation as well as for cell-based screening approaches requiring human sensory neurons or neurons of any type.
Stem Cell Biology, Issue 73, Neuroscience, Biomedical Engineering, Medicine, Bioengineering, Physiology, Genetics, Molecular Biomedicine, human pluripotent stem cells, hPSC, neuronal differentiation, neuroectoderm, embryoid bodies, chemically defined conditions, stem cells, neurons, signalling pathways, mid-throughput, PCR, multititre, cell culture
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Development, Expansion, and In vivo Monitoring of Human NK Cells from Human Embryonic Stem Cells (hESCs) and Induced Pluripotent Stem Cells (iPSCs)
Authors: Allison M. Bock, David Knorr, Dan S. Kaufman.
Institutions: University of Minnesota, Minneapolis, University of Minnesota, Minneapolis.
We present a method for deriving natural killer (NK) cells from undifferentiated hESCs and iPSCs using a feeder-free approach. This method gives rise to high levels of NK cells after 4 weeks culture and can undergo further 2-log expansion with artificial antigen presenting cells. hESC- and iPSC-derived NK cells developed in this system have a mature phenotype and function. The production of large numbers of genetically modifiable NK cells is applicable for both basic mechanistic as well as anti-tumor studies. Expression of firefly luciferase in hESC-derived NK cells allows a non-invasive approach to follow NK cell engraftment, distribution, and function. We also describe a dual-imaging scheme that allows separate monitoring of two different cell populations to more distinctly characterize their interactions in vivo. This method of derivation, expansion, and dual in vivo imaging provides a reliable approach for producing NK cells and their evaluation which is necessary to improve current NK cell adoptive therapies.
Stem Cell Biology, Issue 74, Bioengineering, Biomedical Engineering, Medicine, Physiology, Anatomy, Cellular Biology, Molecular Biology, Biochemistry, Hematology, Embryonic Stem Cells, ESCs, ES Cells, Hematopoietic Stem Cells, HSC, Pluripotent Stem Cells, Induced Pluripotent Stem Cells, iPSCs, Luciferases, Firefly, Immunotherapy, Immunotherapy, Adoptive, stem cells, differentiation, NK cells, in vivo imaging, fluorescent imaging, turboFP650, FACS, cell culture
Play Button
A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue
Authors: Brandon C. Shelley, Geneviève Gowing, Clive N. Svendsen.
Institutions: Cedars-Sinai Medical Center.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
Neuroscience, Issue 88, neural progenitor cell, neural precursor cell, neural stem cell, passaging, neurosphere, chopping, stem cell, neuroscience, suspension culture, good manufacturing practice, GMP
Play Button
Cell Surface Marker Mediated Purification of iPS Cell Intermediates from a Reprogrammable Mouse Model
Authors: Christian M. Nefzger, Sara Alaei, Anja S. Knaupp, Melissa L. Holmes, Jose M. Polo.
Institutions: Monash University, Monash University.
Mature cells can be reprogrammed to a pluripotent state. These so called induced pluripotent stem (iPS) cells are able to give rise to all cell types of the body and consequently have vast potential for regenerative medicine applications. Traditionally iPS cells are generated by viral introduction of transcription factors Oct-4, Klf-4, Sox-2, and c-Myc (OKSM) into fibroblasts. However, reprogramming is an inefficient process with only 0.1-1% of cells reverting towards a pluripotent state, making it difficult to study the reprogramming mechanism. A proven methodology that has allowed the study of the reprogramming process is to separate the rare intermediates of the reaction from the refractory bulk population. In the case of mouse embryonic fibroblasts (MEFs), we and others have previously shown that reprogramming cells undergo a distinct series of changes in the expression profile of cell surface markers which can be used for the separation of these cells. During the early stages of OKSM expression successfully reprogramming cells lose fibroblast identity marker Thy-1.2 and up-regulate pluripotency associated marker Ssea-1. The final transition of a subset of Ssea-1 positive cells towards the pluripotent state is marked by the expression of Epcam during the late stages of reprogramming. Here we provide a detailed description of the methodology used to isolate reprogramming intermediates from cultures of reprogramming MEFs. In order to increase experimental reproducibility we use a reprogrammable mouse strain that has been engineered to express a transcriptional transactivator (m2rtTA) under control of the Rosa26 locus and OKSM under control of a doxycycline responsive promoter. Cells isolated from these mice are isogenic and express OKSM homogenously upon addition of doxycycline. We describe in detail the establishment of the reprogrammable mice, the derivation of MEFs, and the subsequent isolation of intermediates during reprogramming into iPS cells via fluorescent activated cells sorting (FACS).
Stem Cell Biology, Issue 91, Induced pluripotent stem cells; reprogramming; intermediates; fluorescent activated cells sorting; cell surface marker; reprogrammable mouse model; derivation of mouse embryonic fibroblasts
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
Play Button
Derivation of T Cells In Vitro from Mouse Embryonic Stem Cells
Authors: Martina Kučerová-Levisohn, Jordana Lovett, Armin Lahiji, Roxanne Holmes, Juan Carlos Zúñiga-Pflücker, Benjamin D. Ortiz.
Institutions: City University of New York, University of Toronto.
The OP9/OP9-DL1 co-culture system has become a well-established method for deriving differentiated blood cell types from embryonic and hematopoietic progenitors of both mouse and human origin. It is now used to address a growing variety of complex genetic, cellular and molecular questions related to hematopoiesis, and is at the cutting edge of efforts to translate these basic findings to therapeutic applications. The procedures are straightforward and routinely yield robust results. However, achieving successful hematopoietic differentiation in vitro requires special attention to the details of reagent and cell culture maintenance. Furthermore, the protocol features technique sensitive steps that, while not difficult, take care and practice to master. Here we focus on the procedures for differentiation of T lymphocytes from mouse embryonic stem cells (mESC). We provide a detailed protocol with discussions of the critical steps and parameters that enable reproducibly robust cellular differentiation in vitro. It is in the interest of the field to consider wider adoption of this technology, as it has the potential to reduce animal use, lower the cost and shorten the timelines of both basic and translational experimentation.
Immunology, Issue 92, mouse, embryonic stem cells, in vitro differentiation, OP9 cells, Delta-like 1 (Dll-1) ligand, Notch, hematopoiesis, lymphocytes, T cells
Play Button
Modified Mouse Embryonic Stem Cell based Assay for Quantifying Cardiogenic Induction Efficiency
Authors: Ada Ao, Charles H. Williams, Jijun Hao, Charles C. Hong.
Institutions: Vanderbilt University School of Medicine, Vanderbilt University School of Medicine, Vanderbilt University School of Medicine, Veterans Administration TVHS.
Differentiation of pluripotent stem cells is tightly controlled by temporal and spatial regulation of multiple key signaling pathways. One of the hurdles to its understanding has been the varied methods in correlating changes of key signaling events to differentiation efficiency. We describe here the use of a mouse embryonic stem (ES) cell based assay to identify critical time windows for Wnt/β-catenin and BMP signal activation during cardiogenic induction. By scoring for contracting embryonic bodies (EBs) in a 96-well plate format, we can quickly quantify cardiogenic efficiency and identify crucial time windows for Wnt/β-catenin and BMP signal activation in a time course following specific modulator treatments. The principal outlined here is not limited to cardiac induction alone, and can be applied towards the study of many other cell lineages. In addition, the 96-well format has the potential to be further developed as a high throughput, automated assay to allow for the testing of more sophisticated experimental hypotheses.
Cellular Biology, Issue 50, Embryonic stem cells (ES) cells, embryonic bodies (EB), signaling pathways, modulators, 96-round bottom well microtiter plates and hanging droplets.
Play Button
From MEFs to Matrigel 2: Splitting hESCs from MEFs onto Matrigel
Authors: Ivan Khvorostov, Jin Zhang, Michael Teitell.
Institutions: University of California, Los Angeles.
This video demonstrates how to grow human embryonic stem cells (hESCs) on mouse embryonic fibroblast (MEF) feeder cells, how to passage hESCs from MEF plates to feeder cell-free Matrigel plates.
Cellular Biology, Issue 16, human embryonic stem cell (hESC), mouse embryonic fibroblast (MEF), matrigel, conditioned-media, feeder cell, pluripotency
Play Button
ES Cell-derived Neuroepithelial Cell Cultures
Authors: Shreeya Karki, Jan Pruszak, Ole Isacson, Kai C Sonntag.
Institutions: Harvard Medical School.
ES cells have the potential to differentiate into cells from all germ layers, which makes them an attractive tool for the development of new therapies. In general, the differentiation of ES cells follows the concept to first generate immature progenitor cells, which then can be propagated and differentiated into mature cellular phenotypes. This also applies for ES cell-derived neurogenesis, in which the development of neural cells follows two major steps: First, the derivation and expansion of immature neuroepithelial precursors and second, their differentiation into mature neural cells. A common method to produce neural progenitors from ES cells is based on embryoid body (EB) formation, which reveals the differentiation of cells from all germ layers including neuroectoderm. An alternative and more efficient method to induce neuroepithelial cell development uses stromal cell-derived inducing activity (SDIA), which can be achieved by co-culturing ES cells with skull bone marrow-derived stromal cells (1). Both, EB formation and SDIA, reveal the development of rosette-like structures, which are thought to resemble neural tube- and/or neural crest-like progenitors. The neural precursors can be isolated, expanded and further differentiated into specific neurons and glia cells using defined culture conditions. Here, we describe the generation and isolation of such rosettes in co-culture experiments with the stromal cell line MS5 (2-5).
Cellular Biology, issue 1, embryonic stem (ES) cells, rosettes, neuroepithelial precursors, stromal cells, differentiation
Play Button
Passaging HuES Human Embryonic Stem Cell-lines with Trypsin
Authors: Erin Trish, John Dimos, Kevin Eggan.
Institutions: Harvard.
In this video we demonstrate how our lab routinely passages HuES human embryonic stem cell lines with trypsin. Human embryonic stem cells are artifacts of cell culture, and tend to acquire karyotypic abnormalities with high population doublings. Proper passaging is essential for maintaining a healthy, undifferentiated, karyotypically normal HuES human embryonic stem cell culture. First, an expanding culture is washed in PBS to remove residual media and cell debris, then cells are overlaid with a minimal volume of warm 0.05% Trypsin-EDTA. Trypsin is left on the cells for up to five minutes, then cells are gently dislodged with a 2mL serological pipette. The cell suspension is collected and mixed with a large volume of HuES media, then cells are collected by gentle centrifugation. The inactivated trypsin media mixture is removed, and cells resuspended in pre-warmed HuES media. An appropriate split ratio is calculated (generally 1:10 to 1:20), and cells re-plated onto a 1-2 day old plate containing a monolayer of irradiated mouse embryonic fibroblast feeder cells. The newly seeded HuES culture plate is left undisturbed for 48 hrs, then media is changed every day thereafter. It is important not to trpsinize down to a single cell suspension, as this increases the risk of introducing karyotypic abnormalities.
Cellular Biology, Issue 1, embryonic stem cells, ES, tissue culture
Play Button
BioMEMS and Cellular Biology: Perspectives and Applications
Authors: Albert Folch.
Institutions: University of Washington.
The ability to culture cells has revolutionized hypothesis testing in basic cell and molecular biology research. It has become a standard methodology in drug screening, toxicology, and clinical assays, and is increasingly used in regenerative medicine. However, the traditional cell culture methodology essentially consisting of the immersion of a large population of cells in a homogeneous fluid medium and on a homogeneous flat substrate has become increasingly limiting both from a fundamental and practical perspective. Microfabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, and the medium composition, as well as the neighboring cell type in the surrounding cellular microenvironment. Additionally, microtechnology is conceptually well-suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. In this interview, Albert Folch explains these limitations, how they can be overcome with soft lithography and microfluidics, and describes some relevant examples of research in his lab and future directions.
Biomedical Engineering, Issue 8, BioMEMS, Soft Lithography, Microfluidics, Agrin, Axon Guidance, Olfaction, Interview
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
Play Button
In vitro Differentiation of Mouse Embryonic Stem (mES) Cells Using the Hanging Drop Method
Authors: Xiang Wang, Phillip Yang.
Institutions: Stanford University .
Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells.
Cell Biology, Issue 17, Embryonic stem cell, hanging drop, embryoid body, cardiomyocyte
Play Button
From MEFs to Matrigel I: Passaging hESCs in the Presence of MEFs
Authors: Jin Zhang, Ivan Khvorostov, Michael Teitell.
Institutions: University of California, Los Angeles.
This video demonstrates how to grow human embryonic stem cells (hESCs) on mouse embryonic fibroblast (MEF) feeder cells.
Cellular Biology, Issue 16, human embryonic stem cell (hESC), mouse embryonic fibroblast (MEF), matrigel, conditioned-media, feeder cell, pluripotency
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.