JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
cDNA microarray gene expression profiling of hedgehog signaling pathway inhibition in human colon cancer cells.
PUBLISHED: 06-06-2010
Hedgehog (HH) signaling plays a critical role in normal cellular processes, in normal mammalian gastrointestinal development and differentiation, and in oncogenesis and maintenance of the malignant phenotype in a variety of human cancers. Increasing evidence further implicates the involvement of HH signaling in oncogenesis and metastatic behavior of colon cancers. However, genomic approaches to elucidate the role of HH signaling in cancers in general are lacking, and data derived on HH signaling in colon cancer is extremely limited.
Authors: Dongsheng Gu, Qipeng Fan, Jingwu Xie.
Published: 08-21-2013
Cancer development is a multiple-step process involving many cell types including cancer precursor cells, immune cells, fibroblasts and endothelial cells. Each type of cells undergoes signaling and functional changes during carcinogenesis. The current challenge for many cancer researchers is to dissect these changes in each cell type during the multiple-step process in vivo. In the last few years, the authors have developed a set of procedures to isolate different cell populations during skin cancer development using K14creER/R26-SmoM2YFP mice. The procedure is divided into 6 parts: 1) generating appropriate mice for the study (K14creER+ and R26-SmoM2YFP+ mice in this protocol); 2) inducing SmoM2YFP expression in mouse skin; 3) preparing mouse skin biopsies; 4) isolating epidermis from skin; 5) preparing single cells from epidermis; 6) labeling single cell populations for flow cytometry analysis. Generation of sufficient number of mice with the right genotype is the limiting step in this protocol, which may take up to two months. The rest of steps take a few hours to a few days. Within this protocol, we also include a section for troubleshooting. Although we focus on skin cancer, this protocol may be modified to apply for other animal models of human diseases.
23 Related JoVE Articles!
Play Button
In ovo Electroporation in Chick Midbrain for Studying Gene Function in Dopaminergic Neuron Development
Authors: Ben Yang, Lauren B. Geary, Yong-Chao Ma.
Institutions: Children's Hospital of Chicago Research Center, Northwestern University Feinberg School of Medicine.
Dopaminergic neurons located in the ventral midbrain control movement, emotional behavior, and reward mechanisms1-3. The dysfunction of ventral midbrain dopaminergic neurons is implicated in Parkinson's disease, Schizophrenia, depression, and dementia1-5. Thus, studying the regulation of midbrain dopaminergic neuron differentiation could not only provide important insight into mechanisms regulating midbrain development and neural progenitor fate specification, but also help develop new therapeutic strategies for treating a variety of human neurological disorders. Dopaminergic neurons differentiate from neural progenitors lining the ventricular zone of embryonic ventral midbrain. The development of neural progenitors is controlled by gene expression programs6,7. Here we report techniques utilizing electroporation to express genes specifically in the midbrain of Hamburger Hamilton (HH) stage 11 (thirteen somites, 42 hours) chick embryos8,9. The external development of chick embryos allows for convenient experimental manipulations at specific embryonic stages, with the effects determined at later developmental time points10-13. Chick embryonic neural tubes earlier than HH stage 13 (nineteen somites, 48 hours) consist of multipotent neural progenitors that are capable of differentiating into distinct cell types of the nervous system. The pCAG vector, which contains both a CMV promoter and a chick β-actin enhancer, allows for robust expression of Flag or other epitope-tagged constructs in embryonic chick neural tubes14. In this report, we emphasize special measures to achieve regionally restricted gene expression in embryonic midbrain dopaminergic neuron progenitors, including how to inject DNA constructs specifically into the embryonic midbrain region and how to pinpoint electroporation with small custom-made electrodes. Analyzing chick midbrain at later stages provides an excellent in vivo system for plasmid vector-mediated gain-of-function and loss-of-function studies of midbrain development. Modification of the experimental system may extend the assay to other parts of the nervous system for performing fate mapping analysis and for investigating the regulation of gene expression.
Neuroscience, Issue 66, Developmental Biology, Genetics, In ovo electroporation, midbrain development, dopaminergic neuron, neural progenitor, fate specification
Play Button
Micropatterned Surfaces to Study Hyaluronic Acid Interactions with Cancer Cells
Authors: Laura E. Dickinson, Sharon Gerecht.
Institutions: Johns Hopkins University.
Cancer invasion and progression involves a motile cell phenotype, which is under complex regulation by growth factors/cytokines and extracellular matrix (ECM) components within the tumor microenvironment. Hyaluronic acid (HA) is one stromal ECM component that is known to facilitate tumor progression by enhancing invasion, growth, and angiogenesis1. Interaction of HA with its cell surface receptor CD44 induces signaling events that promote tumor cell growth, survival, and migration, thereby increasing metastatic spread2-3. HA is an anionic, nonsulfated glycosaminoglycan composed of repeating units of D-glucuronic acid and D-N-acetylglucosamine. Due to the presence of carboxyl and hydroxyl groups on repeating disaccharide units, native HA is largely hydrophilic and amenable to chemical modifications that introduce sulfate groups for photoreative immobilization 4-5. Previous studies involving the immobilizations of HA onto surfaces utilize the bioresistant behavior of HA and its sulfated derivative to control cell adhesion onto surfaces6-7. In these studies cell adhesion preferentially occurs on non-HA patterned regions. To analyze cellular interactions with exogenous HA, we have developed patterned functionalized surfaces that enable a controllable study and high-resolution visualization of cancer cell interactions with HA. We utilized microcontact printing (uCP) to define discrete patterned regions of HA on glass surfaces. A "tethering" approach that applies carbodiimide linking chemistry to immobilize HA was used 8. Glass surfaces were microcontact printed with an aminosilane and reacted with a HA solution of optimized ratios of EDC and NHS to enable HA immobilization in patterned arrays. Incorporating carbodiimide chemistry with mCP enabled the immobilization of HA to defined regions, creating surfaces suitable for in vitro applications. Both colon cancer cells and breast cancer cells implicitly interacted with the HA micropatterned surfaces. Cancer cell adhesion occurred within 24 hours with proliferation by 48 hours. Using HA micropatterned surfaces, we demonstrated that cancer cell adhesion occurs through the HA receptor CD44. Furthermore, HA patterned surfaces were compatible with scanning electron microscopy (SEM) and allowed high resolution imaging of cancer cell adhesive protrusions and spreading on HA patterns to analyze cancer cell motility on exogenous HA.
Bioengineering, Issue 46, Hyaluronic acid, microcontact printing, carbodiimide chemistry, cancer, cell adhesion
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Microarray-based Identification of Individual HERV Loci Expression: Application to Biomarker Discovery in Prostate Cancer
Authors: Philippe Pérot, Valérie Cheynet, Myriam Decaussin-Petrucci, Guy Oriol, Nathalie Mugnier, Claire Rodriguez-Lafrasse, Alain Ruffion, François Mallet.
Institutions: Joint Unit Hospices de Lyon-bioMérieux, BioMérieux, Hospices Civils de Lyon, Lyon 1 University, BioMérieux, Hospices Civils de Lyon, Hospices Civils de Lyon.
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1​​. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Medicine, Issue 81, Cancer Biology, Genetics, Molecular Biology, Prostate, Retroviridae, Biomarkers, Pharmacological, Tumor Markers, Biological, Prostatectomy, Microarray Analysis, Gene Expression, Diagnosis, Human Endogenous Retroviruses, HERV, microarray, Transcriptome, prostate cancer, Affymetrix
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
Play Button
Single-cell Profiling of Developing and Mature Retinal Neurons
Authors: Jillian J. Goetz, Jeffrey M. Trimarchi.
Institutions: Iowa State University.
Highly specialized, but exceedingly small populations of cells play important roles in many tissues. The identification of cell-type specific markers and gene expression programs for extremely rare cell subsets has been a challenge using standard whole-tissue approaches. Gene expression profiling of individual cells allows for unprecedented access to cell types that comprise only a small percentage of the total tissue1-7. In addition, this technique can be used to examine the gene expression programs that are transiently expressed in small numbers of cells during dynamic developmental transitions8. This issue of cellular diversity arises repeatedly in the central nervous system (CNS) where neuronal connections can occur between quite diverse cells9. The exact number of distinct cell types is not precisely known, but it has been estimated that there may be as many as 1000 different types in the cortex itself10. The function(s) of complex neural circuits may rely on some of the rare neuronal types and the genes they express. By identifying new markers and helping to molecularly classify different neurons, the single-cell approach is particularly useful in the analysis of cell types in the nervous system. It may also help to elucidate mechanisms of neural development by identifying differentially expressed genes and gene pathways during early stages of neuronal progenitor development. As a simple, easily accessed tissue with considerable neuronal diversity, the vertebrate retina is an excellent model system for studying the processes of cellular development, neuronal differentiation and neuronal diversification. However, as in other parts of the CNS, this cellular diversity can present a problem for determining the genetic pathways that drive retinal progenitors to adopt a specific cell fate, especially given that rod photoreceptors make up the majority of the total retinal cell population11. Here we report a method for the identification of the transcripts expressed in single retinal cells (Figure 1). The single-cell profiling technique allows for the assessment of the amount of heterogeneity present within different cellular populations of the retina2,4,5,12. In addition, this method has revealed a host of new candidate genes that may play role(s) in the cell fate decision-making processes that occur in subsets of retinal progenitor cells8. With some simple adjustments to the protocol, this technique can be utilized for many different tissues and cell types.
Neuroscience, Issue 62, Single-cells, transcriptomics, gene expression, cell-type markers, retina, neurons, genetics
Play Button
Genome-wide Screen for miRNA Targets Using the MISSION Target ID Library
Authors: Matthew J. Coussens, Kevin Forbes, Carol Kreader, Jack Sago, Carrie Cupp, John Swarthout.
Institutions: Sigma-Aldrich.
The Target ID Library is designed to assist in discovery and identification of microRNA (miRNA) targets. The Target ID Library is a plasmid-based, genome-wide cDNA library cloned into the 3'UTR downstream from the dual-selection fusion protein, thymidine kinase-zeocin (TKzeo). The first round of selection is for stable transformants, followed with introduction of a miRNA of interest, and finally, selecting for cDNAs containing the miRNA's target. Selected cDNAs are identified by sequencing (see Figure 1-3 for Target ID Library Workflow and details). To ensure broad coverage of the human transcriptome, Target ID Library cDNAs were generated via oligo-dT priming using a pool of total RNA prepared from multiple human tissues and cell lines. Resulting cDNA range from 0.5 to 4 kb, with an average size of 1.2 kb, and were cloned into the p3΄TKzeo dual-selection plasmid (see Figure 4 for plasmid map). The gene targets represented in the library can be found on the Sigma-Aldrich webpage. Results from Illumina sequencing (Table 3), show that the library includes 16,922 of the 21,518 unique genes in UCSC RefGene (79%), or 14,000 genes with 10 or more reads (66%).
Genetics, Issue 62, Target ID, miRNA, ncRNA, RNAi, genomics
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Immunohistochemical Staining of B7-H1 (PD-L1) on Paraffin-embedded Slides of Pancreatic Adenocarcinoma Tissue
Authors: Elaine Bigelow, Katherine M. Bever, Haiying Xu, Allison Yager, Annie Wu, Janis Taube, Lieping Chen, Elizabeth M. Jaffee, Robert A. Anders, Lei Zheng.
Institutions: The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine, Yale School of Medicine, The Johns Hopkins University School of Medicine, The Johns Hopkins University School of Medicine.
B7-H1/PD-L1, a member of the B7 family of immune-regulatory cell-surface proteins, plays an important role in the negative regulation of cell-mediated immune responses through its interaction with its receptor, programmed death-1 (PD-1) 1,2. Overexpression of B7-H1 by tumor cells has been noted in a number of human cancers, including melanoma, glioblastoma, and carcinomas of the lung, breast, colon, ovary, and renal cells, and has been shown to impair anti-tumor T-cell immunity3-8. Recently, B7-H1 expression by pancreatic adenocarcinoma tissues has been identified as a potential prognostic marker9,10. Additionally, blockade of B7-H1 in a mouse model of pancreatic cancer has been shown to produce an anti-tumor response11. These data suggest the importance of B7-H1 as a potential therapeutic target. Anti-B7-H1 blockade antibodies are therefore being tested in clinical trials for multiple human solid tumors including melanoma and cancers of lung, colon, kidney, stomach and pancreas12. In order to eventually be able to identify the patients who will benefit from B7-H1 targeting therapies, it is critical to investigate the correlation between expression and localization of B7-H1 and patient response to treatment with B7-H1 blockade antibodies. Examining the expression of B7-H1 in human pancreatic adenocarcinoma tissues through immunohistochemistry will give a better understanding of how this co-inhibitory signaling molecule contributes to the suppression of antitumor immunity in the tumor's microenvironment. The anti-B7-H1 monoclonal antibody (clone 5H1) developed by Chen and coworkers has been shown to produce reliable staining results in cryosections of multiple types of human neoplastic tissues4,8, but staining on paraffin-embedded slides had been a challenge until recently13-18. We have developed the B7-H1 staining protocol for paraffin-embedded slides of pancreatic adenocarcinoma tissues. The B7-H1 staining protocol described here produces consistent membranous and cytoplasmic staining of B7-H1 with little background.
Cancer Biology, Issue 71, Medicine, Immunology, Biochemistry, Molecular Biology, Cellular Biology, Chemistry, Oncology, immunohistochemistry, B7-H1 (PD-L1), pancreatic adenocarcinoma, pancreatic cancer, pancreas, tumor, T-cell immunity, cancer
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
Play Button
Isolation of Primary Myofibroblasts from Mouse and Human Colon Tissue
Authors: Hassan Khalil, Wenxian Nie, Robert A Edwards, James Yoo.
Institutions: UCLA, UC Irvine.
The myofibroblast is a stromal cell of the gastrointestinal (GI) tract that has been gaining considerable attention for its critical role in many GI functions. While several myofibroblast cell lines are commercially available to study these cells in vitro, research results from a cell line exposed to experimental cell culture conditions have inherent limitations due to the overly reductionist nature of the work. Use of primary myofibroblasts offers a great advantage in terms of confirming experimental findings identified in a cell line. Isolation of primary myofibroblasts from an animal model allows for the study of myofibroblasts under conditions that more closely mimic the disease state being studied. Isolation of primary myofibroblasts from human colon tissue provides arguably the most relevant experimental data, since the cells come directly from patients with the underlying disease. We describe a well-established technique that can be utilized to isolate primary myofibroblasts from both mouse and human colon tissue. These isolated cells have been characterized to be alpha-smooth muscle actin and vimentin-positive, and desmin-negative, consistent with subepithelial intestinal myofibroblasts. Primary myofibroblast cells can be grown in cell culture and used for experimental purposes over a limited number of passages.
Cellular Biology, Issue 80, Myofibroblasts, Mesenchymal Stromal Cells, Gastrointestinal Tract, stroma, colon, primary cells
Play Button
Deficient Pms2, ERCC1, Ku86, CcOI in Field Defects During Progression to Colon Cancer
Authors: Huy Nguyen, Cristy Loustaunau, Alexander Facista, Lois Ramsey, Nadia Hassounah, Hilary Taylor, Robert Krouse, Claire M. Payne, V. Liana Tsikitis, Steve Goldschmid, Bhaskar Banerjee, Rafael F. Perini, Carol Bernstein.
Institutions: University of Arizona, Tucson, Tucson, AZ, University of Arizona, Tucson, Tucson, AZ, University of Arizona, Tucson.
In carcinogenesis, the "field defect" is recognized clinically because of the high propensity of survivors of certain cancers to develop other malignancies of the same tissue type, often in a nearby location. Such field defects have been indicated in colon cancer. The molecular abnormalities that are responsible for a field defect in the colon should be detectable at high frequency in the histologically normal tissue surrounding a colonic adenocarcinoma or surrounding an adenoma with advanced neoplasia (well on the way to a colon cancer), but at low frequency in the colonic mucosa from patients without colonic neoplasia. Using immunohistochemistry, entire crypts within 10 cm on each side of colonic adenocarcinomas or advanced colonic neoplasias were found to be frequently reduced or absent in expression for two DNA repair proteins, Pms2 and/or ERCC1. Pms2 is a dual role protein, active in DNA mismatch repair as well as needed in apoptosis of cells with excess DNA damage. ERCC1 is active in DNA nucleotide excision repair. The reduced or absent expression of both ERCC1 and Pms2 would create cells with both increased ability to survive (apoptosis resistance) and increased level of mutability. The reduced or absent expression of both ERCC1 and Pms2 is likely an early step in progression to colon cancer. DNA repair gene Ku86 (active in DNA non-homologous end joining) and Cytochrome c Oxidase Subunit I (involved in apoptosis) had each been reported to be decreased in expression in mucosal areas close to colon cancers. However, immunohistochemical evaluation of their levels of expression showed only low to modest frequencies of crypts to be deficient in their expression in a field defect surrounding colon cancer or surrounding advanced colonic neoplasia. We show, here, our method of evaluation of crypts for expression of ERCC1, Pms2, Ku86 and CcOI. We show that frequency of entire crypts deficient for Pms2 and ERCC1 is often as great as 70% to 95% in 20 cm long areas surrounding a colonic neoplasia, while frequency of crypts deficient in Ku86 has a median value of 2% and frequency of crypts deficient in CcOI has a median value of 16% in these areas. The entire colon is 150 cm long (about 5 feet) and has about 10 million crypts in its mucosal layer. The defect in Pms2 and ERCC1 surrounding a colon cancer thus may include 1 million crypts. It is from a defective crypt that colon cancer arises.
Cellular Biology, Issue 41, DNA Repair, Apoptosis, Field Defect, Colon Cancer, Pms2, ERCC1, Cytochrome c Oxidase Subunit I, Ku86, Immunohistochemistry, Cancer Resection
Play Button
Three Dimensional Cultures: A Tool To Study Normal Acinar Architecture vs. Malignant Transformation Of Breast Cells
Authors: Anupama Pal, Celina G. Kleer.
Institutions: University of Michigan Comprehensive Cancer Center, University of Michigan Comprehensive Cancer Center.
Invasive breast carcinomas are a group of malignant epithelial tumors characterized by the invasion of adjacent tissues and propensity to metastasize. The interplay of signals between cancer cells and their microenvironment exerts a powerful influence on breast cancer growth and biological behavior1. However, most of these signals from the extracellular matrix are lost or their relevance is understudied when cells are grown in two dimensional culture (2D) as a monolayer. In recent years, three dimensional (3D) culture on a reconstituted basement membrane has emerged as a method of choice to recapitulate the tissue architecture of benign and malignant breast cells. Cells grown in 3D retain the important cues from the extracellular matrix and provide a physiologically relevant ex vivo system2,3. Of note, there is growing evidence suggesting that cells behave differently when grown in 3D as compared to 2D4. 3D culture can be effectively used as a means to differentiate the malignant phenotype from the benign breast phenotype and for underpinning the cellular and molecular signaling involved3. One of the distinguishing characteristics of benign epithelial cells is that they are polarized so that the apical cytoplasm is towards the lumen and the basal cytoplasm rests on the basement membrane. This apico-basal polarity is lost in invasive breast carcinomas, which are characterized by cellular disorganization and formation of anastomosing and branching tubules that haphazardly infiltrates the surrounding stroma. These histopathological differences between benign gland and invasive carcinoma can be reproduced in 3D6,7. Using the appropriate read-outs like the quantitation of single round acinar structures, or differential expression of validated molecular markers for cell proliferation, polarity and apoptosis in combination with other molecular and cell biology techniques, 3D culture can provide an important tool to better understand the cellular changes during malignant transformation and for delineating the responsible signaling.
Medicine, Issue 86, pathological conditions, signs and symptoms, neoplasms, three dimensional cultures, Matrigel, breast cells, malignant phenotype, signaling
Play Button
In vitro Organoid Culture of Primary Mouse Colon Tumors
Authors: Xiang Xue, Yatrik M. Shah.
Institutions: University of Michigan , University of Michigan .
Several human and murine colon cancer cell lines have been established, physiologic integrity of colon tumors such as multiple cell layers, basal-apical polarity, ability to differentiate, and anoikis are not maintained in colon cancer derived cell lines. The present study demonstrates a method for culturing primary mouse colon tumor organoids adapted from Sato T et al. 1, which retains important physiologic features of colon tumors. This method consists of mouse colon tumor tissue collection, adjacent normal colon epithelium dissociation, colon tumor cells digestion into single cells, embedding colon tumor cells into matrigel, and selective culture based on the principle that tumor cells maintain growth on limiting nutrient conditions compared to normal epithelial cells. The primary tumor organoids if isolated from genetically modified mice provide a very useful system to assess tumor autonomous function of specific genes. Moreover, the tumor organoids are amenable to genetic manipulation by virus meditated gene delivery; therefore signaling pathways involved in the colon tumorigenesis could also be extensively investigated by overexpression or knockdown. Primary tumor organoids culture provides a physiologic relevant and feasible means to study the mechanisms and therapeutic modalities for colon tumorigenesis.
Cancer Biology, Issue 75, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Genetics, Oncology, Surgery, Organoids, Tumor Cells, Cultured Colonic Neoplasms, Primary Cell Culture, Colon tumor, chelation, collagenase, matrigel, organoid, EGF, colon cancer, cancer, tumor, cell, isolation, immunohistochemistry, mouse, animal model
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
Quantification of Breast Cancer Cell Invasiveness Using a Three-dimensional (3D) Model
Authors: Donna Cvetković, Cameron Glenn-Franklin Goertzen, Moshmi Bhattacharya.
Institutions: University of Western Ontario, University of Western Ontario, Lawson Health Research Institute.
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.
Medicine, Issue 88, Breast cancer, cell invasion, extracellular matrix (ECM), three-dimensional (3D) cultures, immunocytochemistry, Matrigel, basement membrane matrix
Play Button
qPCR Is a Sensitive and Rapid Method for Detection of Cytomegaloviral DNA in Formalin-fixed, Paraffin-embedded Biopsy Tissue
Authors: Morgan H. McCoy, Kristin Post, Joyashree D. Sen, Hsim Y. Chang, Zijin Zhao, Rong Fan, Shaoxiong Chen, Diane Leland, Liang Cheng, Jingmei Lin.
Institutions: Indiana University School of Medicine, Indiana University Health.
It is crucial to identify cytomegalovirus (CMV) infection in the gastrointestinal (GI) tract of immunosuppressed patients, given their greater risk for developing severe infection. Many laboratory methods for the detection of CMV infection have been developed, including serology, viral culture, and molecular methods. Often, these methods reflect systemic involvement with CMV and do not specifically identify local tissue involvement. Therefore, detection of CMV infection in the GI tract is frequently done by traditional histology of biopsy tissue. Hematoxylin and eosin (H&E) staining in conjunction with immunohistochemistry (IHC) have remained the mainstays of examining these biopsies. H&E and IHC sometimes result in atypical (equivocal) staining patterns, making interpretation difficult. It was shown that quantitative polymerase chain reaction (qPCR) for CMV can successfully be performed on formalin-fixed, paraffin-embedded (FFPE) biopsy tissue for very high sensitivity and specificity. The goal of this protocol is to demonstrate how to perform qPCR testing for the detection of CMV in FFPE biopsy tissue in a clinical laboratory setting. This method is likely to be of great benefit for patients in cases of equivocal staining for CMV in GI biopsies.
Genetics, Issue 89, qPCR, cytomegalovirus, CMV, biopsy, real-time PCR, gastrointestinal, formalin-fixed, paraffin-embedded tissue
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
Play Button
Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology
Authors: Dustin P. Jones, William Hanna, Hamid El-Hamidi, Jonathan P. Celli.
Institutions: University of Massachusetts Boston.
The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic screening assays or molecular imaging to gain new insights into impact of treatments or biochemical stimuli on the mechanical microenvironment.
Bioengineering, Issue 88, viscoelasticity, mechanobiology, extracellular matrix (ECM), matrix remodeling, 3D tumor models, tumor microenvironment, stroma, matrix metalloprotease (MMP), epithelial-mesenchymal transition (EMT)
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Placing Growth Factor-Coated Beads on Early Stage Chicken Embryos
Authors: Matthew J. Korn, Karina S. Cramer.
Institutions: University of California, Irvine (UCI).
The neural tube expresses many proteins in specific spatiotemporal patterns during development. These proteins have been shown to be critical for cell fate determination, cell migration, and formation of neural circuits. Neuronal induction and patterning involve bone morphogenetic protein (BMP), sonic hedgehog (SHH), fibroblast growth factor (FGF), among others. In particular, the expression pattern of Fgf8 is in close proximity to regions expressing BMP4 and SHH. This expression pattern is consistent with developmental interactions that facilitate patterning in the telencephalon. Here we provide a visual demonstration of a method in which an in ovo preparation can be used to test the effects of Fgfs in the formation of the forebrain. Beads are coated with protein and placed in the developing neural tube to provide sustained exposure. Because the procedure uses small, carefully placed beads, it is minimally invasive and allows several beads to be placed within a single neural tube. Moreover, the method allows for continued development so that embryos can be analyzed at a more mature stage to detect changes in anatomy and in neural patterning. This simple but useful protocol allows for real time imaging. It provides a means to make spatially and temporally limited changes to endogenous protein levels.
Developmental Biology, Issue 8, Neuroscience, Growth Factor, Heparin-Coated Beads, Chicken, Embryos
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.