JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
E-?-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera).
PUBLISHED: 07-09-2010
In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae) was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-?-ocimene, which partially inhibits ovary development in workers.
Authors: Daniel Münch, Nicholas Baker, Erik M.K. Rasmussen, Ashish K. Shah, Claus D. Kreibich, Lars E. Heidem, Gro V. Amdam.
Published: 08-29-2013
Societies of highly social animals feature vast lifespan differences between closely related individuals. Among social insects, the honey bee is the best established model to study how plasticity in lifespan and aging is explained by social factors. The worker caste of honey bees includes nurse bees, which tend the brood, and forager bees, which collect nectar and pollen. Previous work has shown that brain functions and flight performance senesce more rapidly in foragers than in nurses. However, brain functions can recover, when foragers revert back to nursing tasks. Such patterns of accelerated and reversed functional senescence are linked to changed metabolic resource levels, to alterations in protein abundance and to immune function. Vitellogenin, a yolk protein with adapted functions in hormonal control and cellular defense, may serve as a major regulatory element in a network that controls the different aging dynamics in workers. Here we describe how the emergence of nurses and foragers can be monitored, and manipulated, including the reversal from typically short-lived foragers into longer-lived nurses. Our representative results show how individuals with similar chronological age differentiate into foragers and nurse bees under experimental conditions. We exemplify how behavioral reversal from foragers back to nurses can be validated. Last, we show how different cellular senescence can be assessed by measuring the accumulation of lipofuscin, a universal biomarker of senescence. For studying mechanisms that may link social influences and aging plasticity, this protocol provides a standardized tool set to acquire relevant sample material, and to improve data comparability among future studies.
20 Related JoVE Articles!
Play Button
RNAi-mediated Double Gene Knockdown and Gustatory Perception Measurement in Honey Bees (Apis mellifera)
Authors: Ying Wang, Nicholas Baker, Gro V. Amdam.
Institutions: Arizona State University , Norwegian University of Life Sciences.
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception. RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species. The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee's behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.
Neuroscience, Issue 77, Genetics, Behavior, Neurobiology, Molecular Biology, Chemistry, Biochemistry, biology (general), genetics (animal and plant), animal biology, RNA interference, RNAi, double stranded RNA, dsRNA, double gene knockdown, vitellogenin gene, vg, ultraspiracle gene, usp, vitellogenin protein, Vg, ultraspiracle protein, USP, green fluorescence protein, GFP, gustatory perception, proboscis extension response, PER, honey bees, Apis mellifera, animal model, assay
Play Button
Tactile Conditioning And Movement Analysis Of Antennal Sampling Strategies In Honey Bees (Apis mellifera L.)
Authors: Samir Mujagić, Simon Michael Würth, Sven Hellbach, Volker Dürr.
Institutions: Bielefeld University.
Honey bees (Apis mellifera L.) are eusocial insects and well known for their complex division of labor and associative learning capability1, 2. The worker bees spend the first half of their life inside the dark hive, where they are nursing the larvae or building the regular hexagonal combs for food (e.g. pollen or nectar) and brood3. The antennae are extraordinary multisensory feelers and play a pivotal role in various tactile mediated tasks4, including hive building5 and pattern recognition6. Later in life, each single bee leaves the hive to forage for food. Then a bee has to learn to discriminate profitable food sources, memorize their location, and communicate it to its nest mates7. Bees use different floral signals like colors or odors7, 8, but also tactile cues from the petal surface9 to form multisensory memories of the food source. Under laboratory conditions, bees can be trained in an appetitive learning paradigm to discriminate tactile object features, such as edges or grooves with their antennae10, 11, 12, 13. This learning paradigm is closely related to the classical olfactory conditioning of the proboscis extension response (PER) in harnessed bees14. The advantage of the tactile learning paradigm in the laboratory is the possibility of combining behavioral experiments on learning with various physiological measurements, including the analysis of the antennal movement pattern.
Neuroscience, Issue 70, Physiology, Anatomy, Entomology, Behavior, Sensilla, Bees, behavioral sciences, Sense Organs, Honey bee, Apis mellifera L., Insect antenna, Tactile sampling, conditioning, Proboscis extension response, Motion capture
Play Button
In vivo Ca2+- Imaging of Mushroom Body Neurons During Olfactory Learning in the Honey Bee
Authors: Melanie Haehnel, Anja Froese, Randolf Menzel.
Institutions: Freie Universität Berlin, Free University Berlin - Freie Universitaet Berlin.
The in vivo and semi-in vivo preparation for Calcium imaging has been developed in our lab by Joerges, Küttner and Galizia over ten years ago, to measure odor evoked activity in the antennal lobe1. From then on, it has been continuously refined and applied to different neuropiles in the bee brain. Here, we describe the preparation currently used in the lab to measure activity in mushroom body neurons using a dextran coupled calcium-sensitive dye (Fura-2). We retrogradely stain mushroom body neurons by injecting dye into their axons or soma region. We focus on reducing the invasiveness, to achieve a preparation in which it is still possible to train the bee using PER conditioning. We are able to monitor and quantify the behavioral response by recording electro-myograms from the muscle which controls the PER (M17)2. After the physiological experiment the imaged structures are investigated in greater detail using confocal scanning microscopy to address the identity of the neurons.
Neuroscience, Issue 30, Calcium Imaging, Insects, Mushroom Body, PER Conditioning, Olfaction, Fura-2
Play Button
Identification of Olfactory Volatiles using Gas Chromatography-Multi-unit Recordings (GCMR) in the Insect Antennal Lobe
Authors: Kelsey J. R. P. Byers, Elischa Sanders, Jeffrey A. Riffell.
Institutions: University of Washington.
All organisms inhabit a world full of sensory stimuli that determine their behavioral and physiological response to their environment. Olfaction is especially important in insects, which use their olfactory systems to respond to, and discriminate amongst, complex odor stimuli. These odors elicit behaviors that mediate processes such as reproduction and habitat selection1-3. Additionally, chemical sensing by insects mediates behaviors that are highly significant for agriculture and human health, including pollination4-6, herbivory of food crops7, and transmission of disease8,9. Identification of olfactory signals and their role in insect behavior is thus important for understanding both ecological processes and human food resources and well-being. To date, the identification of volatiles that drive insect behavior has been difficult and often tedious. Current techniques include gas chromatography-coupled electroantennogram recording (GC-EAG), and gas chromatography-coupled single sensillum recordings (GC-SSR)10-12. These techniques proved to be vital in the identification of bioactive compounds. We have developed a method that uses gas chromatography coupled to multi-channel electrophysiological recordings (termed 'GCMR') from neurons in the antennal lobe (AL; the insect's primary olfactory center)13,14. This state-of-the-art technique allows us to probe how odor information is represented in the insect brain. Moreover, because neural responses to odors at this level of olfactory processing are highly sensitive owing to the degree of convergence of the antenna's receptor neurons into AL neurons, AL recordings will allow the detection of active constituents of natural odors efficiently and with high sensitivity. Here we describe GCMR and give an example of its use. Several general steps are involved in the detection of bioactive volatiles and insect response. Volatiles first need to be collected from sources of interest (in this example we use flowers from the genus Mimulus (Phyrmaceae)) and characterized as needed using standard GC-MS techniques14-16. Insects are prepared for study using minimal dissection, after which a recording electrode is inserted into the antennal lobe and multi-channel neural recording begins. Post-processing of the neural data then reveals which particular odorants cause significant neural responses by the insect nervous system. Although the example we present here is specific to pollination studies, GCMR can be expanded to a wide range of study organisms and volatile sources. For instance, this method can be used in the identification of odorants attracting or repelling vector insects and crop pests. Moreover, GCMR can also be used to identify attractants for beneficial insects, such as pollinators. The technique may be expanded to non-insect subjects as well.
Neuroscience, Issue 72, Neurobiology, Physiology, Biochemistry, Chemistry, Entomlogy, Behavior, electrophysiology, olfaction, olfactory system, insect, multi-channel recording, gas chromatography, pollination, bees, Bombus impatiens, antennae, brain, animal model
Play Button
Behavioural Pharmacology in Classical Conditioning of the Proboscis Extension Response in Honeybees (Apis mellifera)
Authors: Johannes Felsenberg, Katrin B. Gehring, Victoria Antemann, Dorothea Eisenhardt.
Institutions: Freie Universität Berlin.
Honeybees (Apis mellifera) are well known for their communication and orientation skills and for their impressive learning capability1,2. Because the survival of a honeybee colony depends on the exploitation of food sources, forager bees learn and memorize variable flower sites as well as their profitability. Forager bees can be easily trained in natural settings where they forage at a feeding site and learn the related signals such as odor or color. Appetitive associative learning can also be studied under controlled conditions in the laboratory by conditioning the proboscis extension response (PER) of individually harnessed honeybees3,4. This learning paradigm enables the study of the neuronal and molecular mechanisms that underlie learning and memory formation in a simple and highly reliable way5-12. A behavioral pharmacology approach is used to study molecular mechanisms. Drugs are injected systemically to interfere with the function of specific molecules during or after learning and memory formation13-16. Here we demonstrate how to train harnessed honeybees in PER conditioning and how to apply drugs systemically by injection into the bee flight muscle.
Neuroscience, Issue 47, Classical conditioning, behavioural pharmacology, insect, invertebrate, honeybee, learning, memory
Play Button
Using the Overlay Assay to Qualitatively Measure Bacterial Production of and Sensitivity to Pneumococcal Bacteriocins
Authors: Natalie Maricic, Suzanne Dawid.
Institutions: University of Michigan, University of Michigan.
Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.
Infectious Diseases, Issue 91, bacteriocins, antimicrobial peptides, blp locus, bacterial competition, Streptococcus pneumoniae, overlay assay
Play Button
Electrophysiological Measurements from a Moth Olfactory System
Authors: Zainulabeuddin Syed, Walter S. Leal.
Institutions: University of California, Davis.
Insect olfactory systems provide unique opportunities for recording odorant-induced responses in the forms of electroantennograms (EAG) and single sensillum recordings (SSR), which are summed responses from all odorant receptor neurons (ORNs) located on the antenna and from those housed in individual sensilla, respectively. These approaches have been exploited for getting a better understanding of insect chemical communication. The identified stimuli can then be used as either attractants or repellents in management strategies for insect pests.
Neuroscience, Issue 49, Insect Olfaction, Electroantennogram (EAG), Single Sensillum Recordings (SSR), navel orangeworm
Play Button
Measuring the Effects of Bacteria on C. Elegans Behavior Using an Egg Retention Assay
Authors: Mona Gardner, Mary Rosell, Edith M. Myers.
Institutions: Fairleigh Dickinson University.
C. elegans egg-laying behavior is affected by environmental cues such as osmolarity1 and vibration2. In the total absence of food C. elegans also cease egg-laying and retain fertilized eggs in their uterus3. However, the effect of different sources of food, especially pathogenic bacteria and particularly Enterococcus faecalis, on egg-laying behavior is not well characterized. The egg-in-worm (EIW) assay is a useful tool to quantify the effects of different types of bacteria, in this case E. faecalis, on egg- laying behavior. EIW assays involve counting the number of eggs retained in the uterus of C. elegans4. The EIW assay involves bleaching staged, gravid adult C. elegans to remove the cuticle and separate the retained eggs from the animal. Prior to bleaching, worms are exposed to bacteria (or any type of environmental cue) for a fixed period of time. After bleaching, one is very easily able to count the number of eggs retained inside the uterus of the worms. In this assay, a quantifiable increase in egg retention after E. faecalis exposure can be easily measured. The EIW assay is a behavioral assay that may be used to screen for potentially pathogenic bacteria or the presence of environmental toxins. In addition, the EIW assay may be a tool to screen for drugs that affect neurotransmitter signaling since egg-laying behavior is modulated by neurotransmitters such as serotonin and acetylcholine5-9.
Developmental Biology, Issue 80, Microbiology, C. elegans, Behavior, Animal, Microbiology, Caenorhabditis elegans, Enterococcus faecalis, egg-laying behavior, animal model
Play Button
Using Insect Electroantennogram Sensors on Autonomous Robots for Olfactory Searches
Authors: Dominique Martinez, Lotfi Arhidi, Elodie Demondion, Jean-Baptiste Masson, Philippe Lucas.
Institutions: Centre National de la Recherche Scientifique (CNRS), Institut d'Ecologie et des Sciences de l'Environnement de Paris, Institut Pasteur.
Robots designed to track chemical leaks in hazardous industrial facilities1 or explosive traces in landmine fields2 face the same problem as insects foraging for food or searching for mates3: the olfactory search is constrained by the physics of turbulent transport4. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity5-6, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones7 but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells8 or toxic and illicit substances9-11. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors12. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies13. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration14 or using nanostructured gas sensors that mimic insect antennae15.
Neuroscience, Issue 90, robotics, electroantennogram, EAG, gas sensor, electronic nose, olfactory search, surge and casting, moth, insect, olfaction, neuron
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Radio Frequency Identification and Motion-sensitive Video Efficiently Automate Recording of Unrewarded Choice Behavior by Bumblebees
Authors: Levente L. Orbán, Catherine M.S. Plowright.
Institutions: University of Ottawa.
We present two methods for observing bumblebee choice behavior in an enclosed testing space. The first method consists of Radio Frequency Identification (RFID) readers built into artificial flowers that display various visual cues, and RFID tags (i.e., passive transponders) glued to the thorax of bumblebee workers. The novelty in our implementation is that RFID readers are built directly into artificial flowers that are capable of displaying several distinct visual properties such as color, pattern type, spatial frequency (i.e., “busyness” of the pattern), and symmetry (spatial frequency and symmetry were not manipulated in this experiment). Additionally, these visual displays in conjunction with the automated systems are capable of recording unrewarded and untrained choice behavior. The second method consists of recording choice behavior at artificial flowers using motion-sensitive high-definition camcorders. Bumblebees have number tags glued to their thoraces for unique identification. The advantage in this implementation over RFID is that in addition to observing landing behavior, alternate measures of preference such as hovering and antennation may also be observed. Both automation methods increase experimental control, and internal validity by allowing larger scale studies that take into account individual differences. External validity is also improved because bees can freely enter and exit the testing environment without constraints such as the availability of a research assistant on-site. Compared to human observation in real time, the automated methods are more cost-effective and possibly less error-prone.
Neuroscience, Issue 93, bumblebee, unlearned behaviors, floral choice, visual perception, Bombus spp, information processing, radio-frequency identification, motion-sensitive video
Play Button
Simultaneous Long-term Recordings at Two Neuronal Processing Stages in Behaving Honeybees
Authors: Martin Fritz Brill, Maren Reuter, Wolfgang Rössler, Martin Fritz Strube-Bloss.
Institutions: University of Würzburg.
In both mammals and insects neuronal information is processed in different higher and lower order brain centers. These centers are coupled via convergent and divergent anatomical connections including feed forward and feedback wiring. Furthermore, information of the same origin is partially sent via parallel pathways to different and sometimes into the same brain areas. To understand the evolutionary benefits as well as the computational advantages of these wiring strategies and especially their temporal dependencies on each other, it is necessary to have simultaneous access to single neurons of different tracts or neuropiles in the same preparation at high temporal resolution. Here we concentrate on honeybees by demonstrating a unique extracellular long term access to record multi unit activity at two subsequent neuropiles1, the antennal lobe (AL), the first olfactory processing stage and the mushroom body (MB), a higher order integration center involved in learning and memory formation, or two parallel neuronal tracts2 connecting the AL with the MB. The latter was chosen as an example and will be described in full. In the supporting video the construction and permanent insertion of flexible multi channel wire electrodes is demonstrated. Pairwise differential amplification of the micro wire electrode channels drastically reduces the noise and verifies that the source of the signal is closely related to the position of the electrode tip. The mechanical flexibility of the used wire electrodes allows stable invasive long term recordings over many hours up to days, which is a clear advantage compared to conventional extra and intracellular in vivo recording techniques.
Neuroscience, Issue 89, honeybee brain, olfaction, extracellular long term recordings, double recordings, differential wire electrodes, single unit, multi-unit recordings
Play Button
Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles
Authors: John J. Beck, Douglas M. Light, Wai S. Gee.
Institutions: Agricultural Research Service.
Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol demonstrated here presents a rapid, high-throughput standardized method for screening volatiles. Each volatile is at a set, constant amount as to standardize the stimulus level and thus allow antennal responses to be indicative of the relative chemoreceptivity. The negative control helps eliminate the electrophysiological response to both residual solvent and mechanical force of the puff. The positive control (in this instance acetophenone) is a single compound that has elicited a consistent response from male and female navel orangeworm (NOW) moth. An additional semiochemical standard that provides consistent response and is used for bioassay studies with the male NOW moth is (Z,Z)-11,13-hexdecadienal, an aldehyde component from the female-produced sex pheromone.6-8
Plant Biology, Issue 63, bioassay, chemoreception, electroantennography, electrophysiological response, high-throughput, host-plant volatiles, navel orangeworm, screening tool
Play Button
Ablation of a Single Cell From Eight-cell Embryos of the Amphipod Crustacean Parhyale hawaiensis
Authors: Anastasia R. Nast, Cassandra G. Extavour.
Institutions: Harvard University.
The amphipod Parhyale hawaiensis is a small crustacean found in intertidal marine habitats worldwide. Over the past decade, Parhyale has emerged as a promising model organism for laboratory studies of development, providing a useful outgroup comparison to the well studied arthropod model organism Drosophila melanogaster. In contrast to the syncytial cleavages of Drosophila, the early cleavages of Parhyale are holoblastic. Fate mapping using tracer dyes injected into early blastomeres have shown that all three germ layers and the germ line are established by the eight-cell stage. At this stage, three blastomeres are fated to give rise to the ectoderm, three are fated to give rise to the mesoderm, and the remaining two blastomeres are the precursors of the endoderm and germ line respectively. However, blastomere ablation experiments have shown that Parhyale embryos also possess significant regulatory capabilities, such that the fates of blastomeres ablated at the eight-cell stage can be taken over by the descendants of some of the remaining blastomeres. Blastomere ablation has previously been described by one of two methods: injection and subsequent activation of phototoxic dyes or manual ablation. However, photoablation kills blastomeres but does not remove the dead cell body from the embryo. Complete physical removal of specific blastomeres may therefore be a preferred method of ablation for some applications. Here we present a protocol for manual removal of single blastomeres from the eight-cell stage of Parhyale embryos, illustrating the instruments and manual procedures necessary for complete removal of the cell body while keeping the remaining blastomeres alive and intact. This protocol can be applied to any Parhyale cell at the eight-cell stage, or to blastomeres of other early cleavage stages. In addition, in principle this protocol could be applicable to early cleavage stage embryos of other holoblastically cleaving marine invertebrates.
Developmental Biology, Issue 85, Amphipod, experimental embryology, micromere, germ line, ablation, developmental potential, vasa
Play Button
In Vivo Imaging of Dauer-specific Neuronal Remodeling in C. elegans
Authors: Nathan E. Schroeder, Kristen M. Flatt.
Institutions: University of Illinois Urbana-Champaign.
The mechanisms controlling stress-induced phenotypic plasticity in animals are frequently complex and difficult to study in vivo. A classic example of stress-induced plasticity is the dauer stage of C. elegans. Dauers are an alternative developmental larval stage formed under conditions of low concentrations of bacterial food and high concentrations of a dauer pheromone. Dauers display extensive developmental and behavioral plasticity. For example, a set of four inner-labial quadrant (IL2Q) neurons undergo extensive reversible remodeling during dauer formation. Utilizing the well-known environmental pathways regulating dauer entry, a previously established method for the production of crude dauer pheromone from large-scale liquid nematode cultures is demonstrated. With this method, a concentration of 50,000 - 75,000 nematodes/ml of liquid culture is sufficient to produce a highly potent crude dauer pheromone. The crude pheromone potency is determined by a dose-response bioassay. Finally, the methods used for in vivo time-lapse imaging of the IL2Qs during dauer formation are described.
Neuroscience, Issue 91, C. elegans, dauer, dendrite, arborization, phenotypic plasticity, stress, imaging, pheromone
Play Button
Protocols for Oral Infection of Lepidopteran Larvae with Baculovirus
Authors: Wendy Sparks, Huarong Li, Bryony Bonning.
Institutions: Iowa State University.
Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. This video shows how lepidopteran larvae can be infected with polyhedra by droplet feeding and diet plug-based bioassays. This accompanying Springer Protocols section provides an overview of the baculovirus lifecycle and use of baculoviruses as insecticidal agents, including discussion of the pros and cons for use of baculoviruses as insecticides, and progress made in genetic enhancement of baculoviruses for improved insecticidal efficacy.
Plant Biology, Issue 19, Springer Protocols, Baculovirus insecticides, recombinant baculovirus, insect pest management
Play Button
Dissection of Imaginal Discs from 3rd Instar Drosophila Larvae
Authors: Dianne C. Purves, Carrie Brachmann.
Institutions: University of California, Irvine (UCI).
Developmental Biology, Issue 2, Drosophila, Imaginal Disks, Dissection Technique
Play Button
Protocols for Microapplicator-assisted Infection of Lepidopteran Larvae with Baculovirus
Authors: Huarong Li, Wendy Sparks, Bryony Bonning.
Institutions: Iowa State University.
Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. . This video shows how lepidopteran larvae can be infected with microapplicator techniques in the gut with baculovirus polyhedra and in the hemolymph with budded virus. This accompanying Springer Protocols section provides an overview of the baculovirus lifecycle and use of baculoviruses as insecticidal agents. Formulation and application of baculoviruses for pest control purposes are described elsewhere.
Plant Biology, Issue 18, Springer Protocols, Baculovirus insecticides, recombinant baculovirus, insect pest management
Play Button
Choice and No-Choice Assays for Testing the Resistance of A. thaliana to Chewing Insects
Authors: Martin De Vos, Georg Jander.
Institutions: Cornell University.
Larvae of the small white cabbage butterfly are a pest in agricultural settings. This caterpillar species feeds from plants in the cabbage family, which include many crops such as cabbage, broccoli, Brussel sprouts etc. Rearing of the insects takes place on cabbage plants in the greenhouse. At least two cages are needed for the rearing of Pieris rapae. One for the larvae and the other to contain the adults, the butterflies. In order to investigate the role of plant hormones and toxic plant chemicals in resistance to this insect pest, we demonstrate two experiments. First, determination of the role of jasmonic acid (JA - a plant hormone often indicated in resistance to insects) in resistance to the chewing insect Pieris rapae. Caterpillar growth can be compared on wild-type and mutant plants impaired in production of JA. This experiment is considered "No Choice", because larvae are forced to subsist on a single plant which synthesizes or is deficient in JA. Second, we demonstrate an experiment that investigates the role of glucosinolates, which are used as oviposition (egg-laying) signals. Here, we use WT and mutant Arabidopsis impaired in glucosinolate production in a "Choice" experiment in which female butterflies are allowed to choose to lay their eggs on plants of either genotype. This video demonstrates the experimental setup for both assays as well as representative results.
Plant Biology, Issue 15, Annual Review, Plant Resistance, Herbivory, Arabidopsis thaliana, Pieris rapae, Caterpillars, Butterflies, Jasmonic Acid, Glucosinolates
Play Button
Dissection of Larval CNS in Drosophila Melanogaster
Authors: Nathaniel Hafer, Paul Schedl.
Institutions: Princeton University.
The central nervous system (CNS) of Drosophila larvae is complex and poorly understood. One way to investigate the CNS is to use immunohistochemistry to examine the expression of various novel and marker proteins. Staining of whole larvae is impractical because the tough cuticle prevents antibodies from penetrating inside the body cavity. In order to stain these tissues it is necessary to dissect the animal prior to fixing and staining. In this article we demonstrate how to dissect Drosophila larvae without damaging the CNS. Begin by tearing the larva in half with a pair of fine forceps, and then turn the cuticle "inside-out" to expose the CNS. If the dissection is performed carefully the CNS will remain attached to the cuticle. We usually keep the CNS attached to the cuticle throughout the fixation and staining steps, and only completely remove the CNS from the cuticle just prior to mounting the samples on glass slides. We also show some representative images of a larval CNS stained with Eve, a transcription factor expressed in a subset of neurons in the CNS. The article concludes with a discussion of some of the practical uses of this technique and the potential difficulties that may arise.
Developmental Biology, Issue 1, Drosophila, fly, CNS, larvae
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.