JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi.
PLoS ONE
PUBLISHED: 07-18-2010
Ascorbic acid (AsA) is a unique antioxidant as well as an enzyme cofactor. Although it has multiple roles in plants, it is unclear how its accumulation is controlled at the expression level, especially in sink tissues. Kiwifruit (Actinidia) is well-known for its high ascorbate content. Our objective was to determine whether AsA accumulates in the fruits primarily through biosynthesis or because it is imported from the foliage.
ABSTRACT
Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes - a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture.
24 Related JoVE Articles!
Play Button
Floral-dip Transformation of Arabidopsis thaliana to Examine pTSO2::β-glucuronidase Reporter Gene Expression
Authors: Chloe Mara, Boyana Grigorova, Zhongchi Liu.
Institutions: University of Maryland College Park.
The ability to introduce foreign genes into an organism is the foundation for modern biology and biotechnology. In the model flowering plant Arabidopsis thaliana, the floral-dip transformation method1-2 has replaced all previous methods because of its simplicity, efficiency, and low cost. Specifically, shoots of young flowering Arabidopsis plants are dipped in a solution of Agrobacterium tumefaciens carrying specific plasmid constructs. After dipping, the plants are returned to normal growth and yield seeds, a small percentage of which are transformed with the foreign gene and can be selected for on medium containing antibiotics. This floral-dip method significantly facilitated Arabidopsis research and contributed greatly to our understanding of plant gene function. In this study, we use the floral-dip method to transform a reporter gene, β-glucuronidase (GUS), under the control of TSO2 promoter. TSO2, coding for the Ribonucleotide Reductase (RNR) small subunit3, is a cell cycle regulated gene essential for dNDP biosynthesis in the S-phase of the cell cycle. Examination of GUS expression in transgenic Arabidopsis seedlings shows that TSO2 is expressed in actively dividing tissues. The reported experimental method and materials can be easily adapted not only for research but also for education at high school and college levels.
Cellular Biology, Issue 40, Floral-dip transformation, Agrobacterium tumefaciens, beta-glucuronidase (GUS) reporter, cell cycle, Ribonucleotide Reductase (RNR), Arabidopsis thaliana
1952
Play Button
A Cell-to-cell Macromolecular Transport Assay in Planta Utilizing Biolistic Bombardment
Authors: Shoko Ueki, Benjamin L. Meyers, Farzana Yasmin, Vitaly Citovsky.
Institutions: State University of New York at Stony Brook, NED University of Engineering and Technology.
Here, we present a simple and rapid protocol to detect and assess the extent of cell-to-cell macromolecular transport in planta. In this protocol, a fluorescently tagged-protein of interest is transiently expressed in plant tissue following biolistic delivery of its encoding DNA construct. The intra- and intercellular distribution of the tagged protein is then analyzed by confocal microscopy. We describe this technology in detail, providing step-by-step protocols to assay and evaluate the extent of symplastic protein transport in three plant species, Arabidopsis thaliana, Nicotiana benthamiana and N. tabacum (tobacco).
Cellular Biology, Issue 42, Symplastic transport, transient expression, microbombardment, fluorescent protein, plant, confocal microscopy
2208
Play Button
Tissue Engineering of Tumor Stromal Microenvironment with Application to Cancer Cell Invasion
Authors: Yi-Zhen Ng, Andrew P. South.
Institutions: University of Dundee, A*Star, Singapore.
3D organotypic cultures of epithelial cells on a matrix embedded with mesenchymal cells are widely used to study epithelial cell differentiation and invasion. Rat tail type I collagen and/or matrix derived from Engelbreth-Holm-Swarm mouse sarcoma cells have been traditionally employed as the substrates to model the matrix or stromal microenvironment into which mesenchymal cells (usually fibroblasts) are populated. Although experiments using such matrices are very informative, it can be argued that due to an overriding presence of a single protein (such as in type I Collagen) or a high content of basement membrane components and growth factors (such as in matrix derived from mouse sarcoma cells), these substrates do not best reflect the contribution to matrix composition made by the stromal cells themselves. To study native matrices produced by primary dermal fibroblasts isolated from patients with a tumor prone, genetic blistering disorder (recessive dystrophic epidermolysis bullosa), we have adapted an existing native matrix protocol to study tumor cell invasion. Fibroblasts are induced to produce their own matrix over a prolonged period in culture. This native matrix is then detached from the culture dish and epithelial cells are seeded onto it before the entire coculture is raised to the air-liquid interface. Cellular differentiation and/or invasion can then be assessed over time. This technique provides the ability to assess epithelial-mesenchymal cell interactions in a 3D setting without the need for a synthetic or foreign matrix with the only disadvantage being the prolonged period of time required to produce the native matrix. Here we describe the application of this technique to assess the ability of a single molecule expressed by fibroblasts, type VII collagen, to inhibit tumor cell invasion.
Biomedical Engineering, Issue 85, tumor microenvironment, stromal fibroblasts, extracellular matrix, tissue engineering, dermal equivalent, collagen, native matrix
51321
Play Button
Isolation of Viable Multicellular Glands from Tissue of the Carnivorous Plant, Nepenthes
Authors: Sandy Rottloff, Axel Mithöfer, Ute Müller, Roland Kilper.
Institutions: Université de Lorraine, Max Planck Institute for Chemical Ecology, aura optik.
Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores. Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands. In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA.
Plant Biology, Issue 82, Plant, Plant Preparations, Plant Physiological Processes, Plant Pathology, micropreparation, mechanical dissection, glands, carnivory, Nepenthes, PCR, RNA
50993
Play Button
High-throughput Screening for Broad-spectrum Chemical Inhibitors of RNA Viruses
Authors: Marianne Lucas-Hourani, Hélène Munier-Lehmann, Olivier Helynck, Anastassia Komarova, Philippe Desprès, Frédéric Tangy, Pierre-Olivier Vidalain.
Institutions: Institut Pasteur, CNRS UMR3569, Institut Pasteur, CNRS UMR3523, Institut Pasteur.
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.
Immunology, Issue 87, Viral infections, high-throughput screening assays, broad-spectrum antivirals, chikungunya virus, measles virus, luciferase reporter, chemical libraries
51222
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
Monitoring Intraspecies Competition in a Bacterial Cell Population by Cocultivation of Fluorescently Labelled Strains
Authors: Lorena Stannek, Richard Egelkamp, Katrin Gunka, Fabian M. Commichau.
Institutions: Georg-August University.
Many microorganisms such as bacteria proliferate extremely fast and the populations may reach high cell densities. Small fractions of cells in a population always have accumulated mutations that are either detrimental or beneficial for the cell. If the fitness effect of a mutation provides the subpopulation with a strong selective growth advantage, the individuals of this subpopulation may rapidly outcompete and even completely eliminate their immediate fellows. Thus, small genetic changes and selection-driven accumulation of cells that have acquired beneficial mutations may lead to a complete shift of the genotype of a cell population. Here we present a procedure to monitor the rapid clonal expansion and elimination of beneficial and detrimental mutations, respectively, in a bacterial cell population over time by cocultivation of fluorescently labeled individuals of the Gram-positive model bacterium Bacillus subtilis. The method is easy to perform and very illustrative to display intraspecies competition among the individuals in a bacterial cell population.
Cellular Biology, Issue 83, Bacillus subtilis, evolution, adaptation, selective pressure, beneficial mutation, intraspecies competition, fluorophore-labelling, Fluorescence Microscopy
51196
Play Button
The Logic, Experimental Steps, and Potential of Heterologous Natural Product Biosynthesis Featuring the Complex Antibiotic Erythromycin A Produced Through E. coli
Authors: Ming Jiang, Haoran Zhang, Blaine A. Pfeifer.
Institutions: State University of New York at Buffalo, Massachusetts Institute of Technology.
The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each experimental component is under continual optimization to meet the challenges and anticipate the opportunities associated with this emerging approach. Heterologous biosynthesis begins with the identification of a genetic sequence responsible for a valuable natural product. Transferring this sequence to a heterologous host is complicated by the biosynthetic pathway complexity responsible for product formation. The antibiotic erythromycin A is a good example. Twenty genes (totaling >50 kb) are required for eventual biosynthesis. In addition, three of these genes encode megasynthases, multi-domain enzymes each ~300 kDa in size. This genetic material must be designed and transferred to E. coli for reconstituted biosynthesis. The use of PCR isolation, operon construction, multi-cystronic plasmids, and electro-transformation will be described in transferring the erythromycin A genetic cluster to E. coli. Once transferred, the E. coli cell must support eventual biosynthesis. This process is also challenging given the substantial differences between E. coli and most original hosts responsible for complex natural product formation. The cell must provide necessary substrates to support biosynthesis and coordinately express the transferred genetic cluster to produce active enzymes. In the case of erythromycin A, the E. coli cell had to be engineered to provide the two precursors (propionyl-CoA and (2S)-methylmalonyl-CoA) required for biosynthesis. In addition, gene sequence modifications, plasmid copy number, chaperonin co-expression, post-translational enzymatic modification, and process temperature were also required to allow final erythromycin A formation. Finally, successful production must be assessed. For the erythromycin A case, we will present two methods. The first is liquid chromatography-mass spectrometry (LC-MS) to confirm and quantify production. The bioactivity of erythromycin A will also be confirmed through use of a bioassay in which the antibiotic activity is tested against Bacillus subtilis. The assessment assays establish erythromycin A biosynthesis from E. coli and set the stage for future engineering efforts to improve or diversify production and for the production of new complex natural compounds using this approach.
Biomedical Engineering, Issue 71, Chemical Engineering, Bioengineering, Molecular Biology, Cellular Biology, Microbiology, Basic Protocols, Biochemistry, Biotechnology, Heterologous biosynthesis, natural products, antibiotics, erythromycin A, metabolic engineering, E. coli
4346
Play Button
A Single-fly Assay for Foraging Behavior in Drosophila
Authors: Orel A. Zaninovich, Susy M. Kim, Cory R. Root, David S. Green, Kang I. Ko, Jing W. Wang.
Institutions: University of California-San Diego, Columbia University, Dart NeuroScience, University of Pennsylvania.
For many animals, hunger promotes changes in the olfactory system in a manner that facilitates the search for appropriate food sources. In this video article, we describe an automated assay to measure the effect of hunger or satiety on olfactory dependent food search behavior in the adult fruit fly Drosophila melanogaster. In a light-tight box illuminated by red light that is invisible to fruit flies, a camera linked to custom data acquisition software monitors the position of six flies simultaneously. Each fly is confined to walk in individual arenas containing a food odor at the center. The testing arenas rest on a porous floor that functions to prevent odor accumulation. Latency to locate the odor source, a metric that reflects olfactory sensitivity under different physiological states, is determined by software analysis. Here, we discuss the critical mechanics of running this behavioral paradigm and cover specific issues regarding fly loading, odor contamination, assay temperature, data quality, and statistical analysis.
Neuroscience, Issue 81, Drosophila, olfaction, neuromodulation, chemotaxis, hunger, nervous system, behavioral sciences
50801
Play Button
Efficient Agroinfiltration of Plants for High-level Transient Expression of Recombinant Proteins
Authors: Kahlin Leuzinger, Matthew Dent, Jonathan Hurtado, Jake Stahnke, Huafang Lai, Xiaohong Zhou, Qiang Chen.
Institutions: Arizona State University .
Mammalian cell culture is the major platform for commercial production of human vaccines and therapeutic proteins. However, it cannot meet the increasing worldwide demand for pharmaceuticals due to its limited scalability and high cost. Plants have shown to be one of the most promising alternative pharmaceutical production platforms that are robust, scalable, low-cost and safe. The recent development of virus-based vectors has allowed rapid and high-level transient expression of recombinant proteins in plants. To further optimize the utility of the transient expression system, we demonstrate a simple, efficient and scalable methodology to introduce target-gene containing Agrobacterium into plant tissue in this study. Our results indicate that agroinfiltration with both syringe and vacuum methods have resulted in the efficient introduction of Agrobacterium into leaves and robust production of two fluorescent proteins; GFP and DsRed. Furthermore, we demonstrate the unique advantages offered by both methods. Syringe infiltration is simple and does not need expensive equipment. It also allows the flexibility to either infiltrate the entire leave with one target gene, or to introduce genes of multiple targets on one leaf. Thus, it can be used for laboratory scale expression of recombinant proteins as well as for comparing different proteins or vectors for yield or expression kinetics. The simplicity of syringe infiltration also suggests its utility in high school and college education for the subject of biotechnology. In contrast, vacuum infiltration is more robust and can be scaled-up for commercial manufacture of pharmaceutical proteins. It also offers the advantage of being able to agroinfiltrate plant species that are not amenable for syringe infiltration such as lettuce and Arabidopsis. Overall, the combination of syringe and vacuum agroinfiltration provides researchers and educators a simple, efficient, and robust methodology for transient protein expression. It will greatly facilitate the development of pharmaceutical proteins and promote science education.
Plant Biology, Issue 77, Genetics, Molecular Biology, Cellular Biology, Virology, Microbiology, Bioengineering, Plant Viruses, Antibodies, Monoclonal, Green Fluorescent Proteins, Plant Proteins, Recombinant Proteins, Vaccines, Synthetic, Virus-Like Particle, Gene Transfer Techniques, Gene Expression, Agroinfiltration, plant infiltration, plant-made pharmaceuticals, syringe agroinfiltration, vacuum agroinfiltration, monoclonal antibody, Agrobacterium tumefaciens, Nicotiana benthamiana, GFP, DsRed, geminiviral vectors, imaging, plant model
50521
Play Button
Sequence-specific Labeling of Nucleic Acids and Proteins with Methyltransferases and Cofactor Analogues
Authors: Gisela Maria Hanz, Britta Jung, Anna Giesbertz, Matyas Juhasz, Elmar Weinhold.
Institutions: RWTH Aachen University.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.
Biochemistry, Issue 93, S-adenosyl-l-methionine, AdoMet, SAM, aziridine cofactor, double activated cofactor, methyltransferase, DNA methylation, protein methylation, biotin labeling, fluorescence labeling, SMILing, mTAG
52014
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
51204
Play Button
Mechanical Stimulation of Chondrocyte-agarose Hydrogels
Authors: James A. Kaupp, Joanna F. Weber, Stephen D. Waldman.
Institutions: Queen's University , Queen's University .
Articular cartilage suffers from a limited repair capacity when damaged by mechanical insult or degraded by disease, such as osteoarthritis. To remedy this deficiency, several medical interventions have been developed. One such method is to resurface the damaged area with tissue-engineered cartilage; however, the engineered tissue typically lacks the biochemical properties and durability of native cartilage, questioning its long-term survivability. This limits the application of cartilage tissue engineering to the repair of small focal defects, relying on the surrounding tissue to protect the implanted material. To improve the properties of the developed tissue, mechanical stimulation is a popular method utilized to enhance the synthesis of cartilaginous extracellular matrix as well as the resultant mechanical properties of the engineered tissue. Mechanical stimulation applies forces to the tissue constructs analogous to those experienced in vivo. This is based on the premise that the mechanical environment, in part, regulates the development and maintenance of native tissue1,2. The most commonly applied form of mechanical stimulation in cartilage tissue engineering is dynamic compression at physiologic strains of approximately 5-20% at a frequency of 1 Hz1,3. Several studies have investigated the effects of dynamic compression and have shown it to have a positive effect on chondrocyte metabolism and biosynthesis, ultimately affecting the functional properties of the developed tissue4-8. In this paper, we illustrate the method to mechanically stimulate chondrocyte-agarose hydrogel constructs under dynamic compression and analyze changes in biosynthesis through biochemical and radioisotope assays. This method can also be readily modified to assess any potentially induced changes in cellular response as a result of mechanical stimuli.
Cellular Biology, Issue 68, Tissue Engineering, Mechanical Stimulation, Chondrocytes, Agarose, Cartilage
4229
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
51328
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis
Authors: Sang-Hyuck Park, Rebecca Garlock Ong, Chuansheng Mei, Mariam Sticklen.
Institutions: University of Arizona, Michigan State University, The Institute for Advanced Learning and Research, Michigan State University.
To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.
Bioengineering, Issue 89, Zea mays, cinnamoyl-CoA reductase (CCR), dsRNAi, Klason lignin measurement, cell wall carbohydrate analysis, gas chromatography (GC)
51340
Play Button
Histochemical Staining of Arabidopsis thaliana Secondary Cell Wall Elements
Authors: Prajakta Pradhan Mitra, Dominique Loqué.
Institutions: Joint Bioenergy Institute, Lawrence Berkeley National Laboratory.
Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40–50%), hemicellulose (25–30%), and lignin (20–30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.
Cellular Biology, Issue 87, Xylem, Fibers, Lignin, polysaccharides, Plant cell wall, Mäule staining, Phloroglucinol, Congo red, Toluidine blue O, Calcofluor white, Cell wall staining methods
51381
Play Button
Long-term Intravital Immunofluorescence Imaging of Tissue Matrix Components with Epifluorescence and Two-photon Microscopy
Authors: Esra Güç, Manuel Fankhauser, Amanda W. Lund, Melody A. Swartz, Witold W. Kilarski.
Institutions: École Polytechnique Fédérale de Lausanne, Oregon Health & Science University.
Besides being a physical scaffold to maintain tissue morphology, the extracellular matrix (ECM) is actively involved in regulating cell and tissue function during development and organ homeostasis. It does so by acting via biochemical, biomechanical, and biophysical signaling pathways, such as through the release of bioactive ECM protein fragments, regulating tissue tension, and providing pathways for cell migration. The extracellular matrix of the tumor microenvironment undergoes substantial remodeling, characterized by the degradation, deposition and organization of fibrillar and non-fibrillar matrix proteins. Stromal stiffening of the tumor microenvironment can promote tumor growth and invasion, and cause remodeling of blood and lymphatic vessels. Live imaging of matrix proteins, however, to this point is limited to fibrillar collagens that can be detected by second harmonic generation using multi-photon microscopy, leaving the majority of matrix components largely invisible. Here we describe procedures for tumor inoculation in the thin dorsal ear skin, immunolabeling of extracellular matrix proteins and intravital imaging of the exposed tissue in live mice using epifluorescence and two-photon microscopy. Our intravital imaging method allows for the direct detection of both fibrillar and non-fibrillar matrix proteins in the context of a growing dermal tumor. We show examples of vessel remodeling caused by local matrix contraction. We also found that fibrillar matrix of the tumor detected with the second harmonic generation is spatially distinct from newly deposited matrix components such as tenascin C. We also showed long-term (12 hours) imaging of T-cell interaction with tumor cells and tumor cells migration along the collagen IV of basement membrane. Taken together, this method uniquely allows for the simultaneous detection of tumor cells, their physical microenvironment and the endogenous tissue immune response over time, which may provide important insights into the mechanisms underlying tumor progression and ultimate success or resistance to therapy.
Bioengineering, Issue 86, Intravital imaging, epifluorescence, two-photon imaging, Tumor matrix, Matrix remodeling
51388
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Characterizing Herbivore Resistance Mechanisms: Spittlebugs on Brachiaria spp. as an Example
Authors: Soroush Parsa, Guillermo Sotelo, Cesar Cardona.
Institutions: CIAT.
Plants can resist herbivore damage through three broad mechanisms: antixenosis, antibiosis and tolerance1. Antixenosis is the degree to which the plant is avoided when the herbivore is able to select other plants2. Antibiosis is the degree to which the plant affects the fitness of the herbivore feeding on it1.Tolerance is the degree to which the plant can withstand or repair damage caused by the herbivore, without compromising the herbivore's growth and reproduction1. The durability of herbivore resistance in an agricultural setting depends to a great extent on the resistance mechanism favored during crop breeding efforts3. We demonstrate a no-choice experiment designed to estimate the relative contributions of antibiosis and tolerance to spittlebug resistance in Brachiaria spp. Several species of African grasses of the genus Brachiaria are valuable forage and pasture plants in the Neotropics, but they can be severely challenged by several native species of spittlebugs (Hemiptera: Cercopidae)4.To assess their resistance to spittlebugs, plants are vegetatively-propagated by stem cuttings and allowed to grow for approximately one month, allowing the growth of superficial roots on which spittlebugs can feed. At that point, each test plant is individually challenged with six spittlebug eggs near hatching. Infestations are allowed to progress for one month before evaluating plant damage and insect survival. Scoring plant damage provides an estimate of tolerance while scoring insect survival provides an estimate of antibiosis. This protocol has facilitated our plant breeding objective to enhance spittlebug resistance in commercial brachiariagrases5.
Plant Biology, Issue 52, host plant resistance, antibiosis, antixenosis, tolerance, Brachiaria, spittlebugs
3047
Play Button
Isolation of Protoplasts from Tissues of 14-day-old Seedlings of Arabidopsis thaliana
Authors: Zhiyang Zhai, Ha-il Jung, Olena K. Vatamaniuk.
Institutions: Cornell University.
Protoplasts are plant cells that have had their cell walls enzymatically removed. Isolation of protoplasts from different plant tissues was first reported more than 40 years ago 1 and has since been adapted to study a variety of cellular processes, such as subcellular localization of proteins, isolation of intact organelles and targeted gene-inactivation by double stranded RNA interference (RNAi) 2-5. Most of the protoplast isolation protocols use leaf tissues of mature Arabidopsis (e.g. 35-day-old plants) 2-4. We modified existing protocols by employing 14-day-old Arabidopsis seedlings. In this procedure, one gram of 14-day-old seedlings yielded 5 106-107 protoplasts that remain intact at least 96 hours. The yield of protoplasts from seedlings is comparable with preparations from leaves of mature Arabidopsis, but instead of 35-36 days, isolation of protoplasts is completed in 15 days. This allows decreasing the time and growth chamber space that are required for isolating protoplasts when mature plants are used, and expedites the downstream studies that require intact protoplasts.
Plant Biology, Issue 30, protoplasts, isolation, Arabidopsis, seedlings
1149
Play Button
Testing the Physiological Barriers to Viral Transmission in Aphids Using Microinjection
Authors: Cecilia Tamborindeguy, Stewart Gray, Georg Jander.
Institutions: Cornell University, Cornell University.
Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insect gut to the hemolymph (the insect blood ) and then must pass through the salivary gland, in order to be transmitted back to a new plant. An aphid may take up different viruses when munching on a plant, however only a small fraction will pass through the gut and salivary gland, the two main barriers for transmission to infect more plants. In the lab, we use physalis plants to study PLRV transmission. In this host, symptoms are characterized by stunting and interveinal chlorosis (yellowing of the leaves between the veins with the veins remaining green). The video that we present demonstrates a method for performing aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut is preventing viral transmission. The video that we present demonstrates a method for performing Aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut or salivary gland is preventing viral transmission.
Plant Biology, Issue 15, Annual Review, Aphids, Plant Virus, Potato Leaf Roll Virus, Microinjection Technique
700
Play Button
Use of Arabidopsis eceriferum Mutants to Explore Plant Cuticle Biosynthesis
Authors: Lacey Samuels, Allan DeBono, Patricia Lam, Miao Wen, Reinhard Jetter, Ljerka Kunst.
Institutions: University of British Columbia - UBC, University of British Columbia - UBC.
The plant cuticle is a waxy outer covering on plants that has a primary role in water conservation, but is also an important barrier against the entry of pathogenic microorganisms. The cuticle is made up of a tough crosslinked polymer called "cutin" and a protective wax layer that seals the plant surface. The waxy layer of the cuticle is obvious on many plants, appearing as a shiny film on the ivy leaf or as a dusty outer covering on the surface of a grape or a cabbage leaf thanks to light scattering crystals present in the wax. Because the cuticle is an essential adaptation of plants to a terrestrial environment, understanding the genes involved in plant cuticle formation has applications in both agriculture and forestry. Today, we'll show the analysis of plant cuticle mutants identified by forward and reverse genetics approaches.
Plant Biology, Issue 16, Annual Review, Cuticle, Arabidopsis, Eceriferum Mutants, Cryso-SEM, Gas Chromatography
709
Play Button
Choice and No-Choice Assays for Testing the Resistance of A. thaliana to Chewing Insects
Authors: Martin De Vos, Georg Jander.
Institutions: Cornell University.
Larvae of the small white cabbage butterfly are a pest in agricultural settings. This caterpillar species feeds from plants in the cabbage family, which include many crops such as cabbage, broccoli, Brussel sprouts etc. Rearing of the insects takes place on cabbage plants in the greenhouse. At least two cages are needed for the rearing of Pieris rapae. One for the larvae and the other to contain the adults, the butterflies. In order to investigate the role of plant hormones and toxic plant chemicals in resistance to this insect pest, we demonstrate two experiments. First, determination of the role of jasmonic acid (JA - a plant hormone often indicated in resistance to insects) in resistance to the chewing insect Pieris rapae. Caterpillar growth can be compared on wild-type and mutant plants impaired in production of JA. This experiment is considered "No Choice", because larvae are forced to subsist on a single plant which synthesizes or is deficient in JA. Second, we demonstrate an experiment that investigates the role of glucosinolates, which are used as oviposition (egg-laying) signals. Here, we use WT and mutant Arabidopsis impaired in glucosinolate production in a "Choice" experiment in which female butterflies are allowed to choose to lay their eggs on plants of either genotype. This video demonstrates the experimental setup for both assays as well as representative results.
Plant Biology, Issue 15, Annual Review, Plant Resistance, Herbivory, Arabidopsis thaliana, Pieris rapae, Caterpillars, Butterflies, Jasmonic Acid, Glucosinolates
683
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.