JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Exit mechanisms of the intracellular bacterium Ehrlichia.
PUBLISHED: 08-30-2010
The obligately intracellular bacterium Ehrlichia chaffeensis that resides in mononuclear phagocytes is the causative agent of human monocytotropic ehrlichiosis. Ehrlichia muris and Ixodes ovatus Ehrlichia (IOE) are agents of mouse models of ehrlichiosis. The mechanism by which Ehrlichia are transported from an infected host cell to a non-infected cell has not been demonstrated.
Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells.
21 Related JoVE Articles!
Play Button
Monitoring Intraspecies Competition in a Bacterial Cell Population by Cocultivation of Fluorescently Labelled Strains
Authors: Lorena Stannek, Richard Egelkamp, Katrin Gunka, Fabian M. Commichau.
Institutions: Georg-August University.
Many microorganisms such as bacteria proliferate extremely fast and the populations may reach high cell densities. Small fractions of cells in a population always have accumulated mutations that are either detrimental or beneficial for the cell. If the fitness effect of a mutation provides the subpopulation with a strong selective growth advantage, the individuals of this subpopulation may rapidly outcompete and even completely eliminate their immediate fellows. Thus, small genetic changes and selection-driven accumulation of cells that have acquired beneficial mutations may lead to a complete shift of the genotype of a cell population. Here we present a procedure to monitor the rapid clonal expansion and elimination of beneficial and detrimental mutations, respectively, in a bacterial cell population over time by cocultivation of fluorescently labeled individuals of the Gram-positive model bacterium Bacillus subtilis. The method is easy to perform and very illustrative to display intraspecies competition among the individuals in a bacterial cell population.
Cellular Biology, Issue 83, Bacillus subtilis, evolution, adaptation, selective pressure, beneficial mutation, intraspecies competition, fluorophore-labelling, Fluorescence Microscopy
Play Button
Shallow Water (Paddling) Variants of Water Maze Tests in Mice
Authors: Robert M.J. Deacon.
Institutions: University of Oxford.
When Richard Morris devised his water maze in 19817, most behavioral work was done in rats. However, the greater understanding of mouse genetics led to the mouse becoming increasingly important. But researchers found that some strains of mutant mice were prone to problems like passively floating or diving when they were tested in the Morris water maze11. This was unsurprising considering their natural habitat; rats swim naturally (classically, the "sewer rat"), whereas mice evolved in the dry areas of central Asia. To overcome these problems, it was considered whether shallow water would be a sufficient stimulus to provide escape motivation for mice. This would also avoid the problems of drying the small creatures with a towel and then putting them in a heated recovery chamber to avoid hypothermia, which is a much more serious problem than with rats; the large ratio of surface area to volume of a mouse makes it particularly vulnerable to rapid heat loss. Another consideration was whether a more natural escape strategy could be used, to facilitate learning. Since animals that fall into water and swim away from the safety of the shore are unlikely to pass on their genes, animals have evolved a natural tendency to swim to the edge of a body of water. The Morris water maze, however, requires them to swim to a hidden platform towards the center of the maze - exactly opposite to their evolved behavior. Therefore the paddling maze should incorporate escape to the edge of the apparatus. This feature, coupled with the use of relatively non-aversive shallow water, embodies the "Refinement" aspect of the "3 Rs" of Russell and Burch8. Various types of maze design were tried; the common feature was that the water was always shallow (2 cm deep) and escape was via a tube piercing the transparent wall of the apparatus. Other tubes ("false exits") were also placed around the walls but these were blocked off. From the inside of the maze all false exits and the single true exit looked the same. Currently a dodecagonal (12-sided) maze is in use in Oxford, with 12 true/false exits set in the corners. In a recent development a transparent paddling Y-maze has been tested successfully.
Behavior, Issue 76, Neuroscience, Neurobiology, Medicine, Psychology, Mice, hippocampus, paddling pool, Alzheimer's, welfare, 3Rs, Morris water maze, paddling Y-maze, Barnes maze, animal model
Play Button
A Genetic Screen to Isolate Toxoplasma gondii Host-cell Egress Mutants
Authors: Bradley I. Coleman, Marc-Jan Gubbels.
Institutions: Boston College.
The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways1-5. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca2+, a signal that is also critical for host cell invasion6-8. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress9. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches10-12. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress13. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology11,14,15, only recently has genetic mapping of mutations underlying the phenotypes become routine16-18. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants with a temperature-sensitive egress phenotype13. The challenge for egress screens is to separate egressed from non-egressed parasites, which is complicated by fast re-invasion and general stickiness of the parasites to host cells. A previously established egress screen was based on a cumbersome series of biotinylation steps to separate intracellular from extracellular parasites11. This method also did not generate conditional mutants resulting in weak phenotypes. The method described here overcomes the strong attachment of egressing parasites by including a glycan competitor, dextran sulfate (DS), that prevents parasites from sticking to the host cell19. Moreover, extracellular parasites are specifically killed off by pyrrolidine dithiocarbamate (PDTC), which leaves intracellular parasites unharmed20. Therefore, with a new phenotypic screen to specifically isolate parasite mutants with defects in induced egress, the power of genetics can now be fully deployed to unravel the molecular mechanisms underlying host cell egress.
Immunology, Issue 60, Genetics, Toxoplasma gondii, chemical mutagenesis, egress, genetic screen
Play Button
Monitoring Changes in Membrane Polarity, Membrane Integrity, and Intracellular Ion Concentrations in Streptococcus pneumoniae Using Fluorescent Dyes
Authors: Emily A. Clementi, Laura R. Marks, Hazeline Roche-Håkansson, Anders P. Håkansson.
Institutions: University at Buffalo, State University of New York, University at Buffalo, State University of New York, University at Buffalo, State University of New York.
Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca2+, K+, and H+, respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial species. Though our protocols have been optimized for S. pneumoniae, we believe these approaches should form an excellent starting-point for similar studies in other bacterial species.
Immunology, Issue 84, Streptococcus pneumoniae, pneumococcus, potential-sensitive dyes, DiBAC, Propidium Iodide, acetoxymethyl (AM) ester, membrane rupture, Ion transport, bacterial ion concentrations, ion-sensitive fluorescence
Play Button
Methods for Rapid Transfer and Localization of Lyme Disease Pathogens Within the Tick Gut
Authors: Toru Kariu, Adam S. Coleman, John F. Anderson, Utpal Pal.
Institutions: University of Maryland, Connecticut Agricultural Experiment Station.
Lyme disease is caused by infection with the spirochete pathogen Borrelia burgdorferi, which is maintained in nature by a tick-rodent infection cycle 1. A tick-borne murine model 2 has been developed to study Lyme disease in the laboratory. While naíve ticks can be infected with B. burgdorferi by feeding them on infected mice, the molting process takes several weeks to months to complete. Therefore, development of more rapid and efficient tick infection techniques, such as a microinjection-based procedure, is an important tool for the study of Lyme disease 3,4. The procedure requires only hours to generate infected ticks and allows control over the delivery of equal quantities of spirochetes in a cohort of ticks. This is particularly important as the generation of B. burgdorferi infected ticks by the natural feeding process using mice fails to ensure 100% infection rate and potentially results in variation of pathogen burden amongst fed ticks. Furthermore, microinjection can be used to infect ticks with B. burgdorferi isolates in cases where an attenuated strain is unable to establish infection in mice and thus can not be naturally acquired by ticks 5. This technique can also be used to deliver a variety of other biological materials into ticks, for example, specific antibodies or double stranded RNA 6. In this article, we will demonstrate the microinjection of nymphal ticks with in vitro-grown B. burgdorferi. We will also describe a method for localization of Lyme disease pathogens in the tick gut using confocal immunofluorescence microscopy.
Infection, Issue 48, Lyme disease, tick, microinjection, Borrelia burgdorferi, immunofluorescence microscopy
Play Button
Trichuris muris Infection: A Model of Type 2 Immunity and Inflammation in the Gut
Authors: Frann Antignano, Sarah C. Mullaly, Kyle Burrows, Colby Zaph.
Institutions: University of British Columbia, University of British Columbia.
Trichuris muris is a natural pathogen of mice and is biologically and antigenically similar to species of Trichuris that infect humans and livestock1. Infective eggs are given by oral gavage, hatch in the distal small intestine, invade the intestinal epithelial cells (IECs) that line the crypts of the cecum and proximal colon and upon maturation the worms release eggs into the environment1. This model is a powerful tool to examine factors that control CD4+ T helper (Th) cell activation as well as changes in the intestinal epithelium. The immune response that occurs in resistant inbred strains, such as C57BL/6 and BALB/c, is characterized by Th2 polarized cytokines (IL-4, IL-5 and IL-13) and expulsion of worms while Th1-associated cytokines (IL-12, IL-18, IFN-γ) promote chronic infections in genetically susceptible AKR/J mice2-6. Th2 cytokines promote physiological changes in the intestinal microenvironment including rapid turnover of IECs, goblet cell differentiation, recruitment and changes in epithelial permeability and smooth muscle contraction, all of which have been implicated in worm expulsion7-15. Here we detail a protocol for propagating Trichuris muris eggs which can be used in subsequent experiments. We also provide a sample experimental harvest with suggestions for post-infection analysis. Overall, this protocol will provide researchers with the basic tools to perform a Trichuris muris mouse infection model which can be used to address questions pertaining to Th proclivity in the gastrointestinal tract as well as immune effector functions of IECs.
Infection, Issue 51, Trichuris muris, mouse, Th2, intestine, inflammation
Play Button
Visualizing Bacteria in Nematodes using Fluorescent Microscopy
Authors: Kristen E. Murfin, John Chaston, Heidi Goodrich-Blair.
Institutions: University of Wisconsin-Madison.
Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic 1-3. One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis 4. Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects 5. For transmission between insect hosts, the bacteria colonize the intestine of the nematode's infective juvenile stage 6-8. Recently, several other nematode species have been shown to utilize bacteria to kill insects 9-13, and investigations have begun examining the interactions between the nematodes and bacteria in these systems 9. We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila 14. Similar methods have been used to investigate other nematode-bacterium associations 9,15-18and the approach therefore is generally applicable. The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization 14,16,19. Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues 14,16,19-21. This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication 22or grinding 23, which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes 21,24. Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization 17,18, and is less laborious than other methods, including sonication 22,25-27and individual nematode dissection 28,29.
Microbiology, Issue 68, Molecular Biology, Bacteriology, Developmental Biology, Colonization, Xenorhabdus, Steinernema, symbiosis, nematode, bacteria, fluorescence microscopy
Play Button
Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers
Authors: Rasa Ghaffarian, Silvia Muro.
Institutions: University of Maryland, University of Maryland.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Bioengineering, Issue 80, Antigens, Enzymes, Biological Therapy, bioengineering (general), Pharmaceutical Preparations, Macromolecular Substances, Therapeutics, Digestive System and Oral Physiological Phenomena, Biological Phenomena, Cell Physiological Phenomena, drug delivery systems, targeted nanocarriers, transcellular transport, epithelial cells, tight junctions, transepithelial electrical resistance, endocytosis, transcytosis, radioisotope tracing, immunostaining
Play Button
A Parasite Rescue and Transformation Assay for Antileishmanial Screening Against Intracellular Leishmania donovani Amastigotes in THP1 Human Acute Monocytic Leukemia Cell Line
Authors: Surendra K. Jain, Rajnish Sahu, Larry A. Walker, Babu L. Tekwani.
Institutions: University of Mississippi, University of Mississippi.
Leishmaniasis is one of the world's most neglected diseases, largely affecting the poorest of the poor, mainly in developing countries. Over 350 million people are considered at risk of contracting leishmaniasis, and approximately 2 million new cases occur yearly1. Leishmania donovani is the causative agent for visceral leishmaniasis (VL), the most fatal form of the disease. The choice of drugs available to treat leishmaniasis is limited 2;current treatments provide limited efficacy and many are toxic at therapeutic doses. In addition, most of the first line treatment drugs have already lost their utility due to increasing multiple drug resistance 3. The current pipeline of anti-leishmanial drugs is also severely depleted. Sustained efforts are needed to enrich a new anti-leishmanial drug discovery pipeline, and this endeavor relies on the availability of suitable in vitro screening models. In vitro promastigotes 4 and axenic amastigotes assays5 are primarily used for anti-leishmanial drug screening however, may not be appropriate due to significant cellular, physiological, biochemical and molecular differences in comparison to intracellular amastigotes. Assays with macrophage-amastigotes models are considered closest to the pathophysiological conditions of leishmaniasis, and are therefore the most appropriate for in vitro screening. Differentiated, non-dividing human acute monocytic leukemia cells (THP1) (make an attractive) alternative to isolated primary macrophages and can be used for assaying anti-leishmanial activity of different compounds against intracellular amastigotes. Here, we present a parasite-rescue and transformation assay with differentiated THP1 cells infected in vitro with Leishmania donovani for screening pure compounds and natural products extracts and determining the efficacy against the intracellular Leishmania amastigotes. The assay involves the following steps: (1) differentiation of THP1 cells to non-dividing macrophages, (2) infection of macrophages with L. donovani metacyclic promastigotes, (3) treatment of infected cells with test drugs, (4) controlled lysis of infected macrophages, (5) release/rescue of amastigotes and (6) transformation of live amastigotes to promastigotes. The assay was optimized using detergent treatment for controlled lysis of Leishmania-infected THP1 cells to achieve almost complete rescue of viable intracellular amastigotes with minimal effect on their ability to transform to promastigotes. Different macrophage:promastigotes ratios were tested to achieve maximum infection. Quantification of the infection was performed through transformation of live, rescued Leishmania amastigotes to promastigotes and evaluation of their growth by an alamarBlue fluorometric assay in 96-well microplates. This assay is comparable to the currently-used microscopic, transgenic reporter gene and digital-image analysis assays. This assay is robust and measures only the live intracellular amastigotes compared to reporter gene and image analysis assays, which may not differentiate between live and dead amastigotes. Also, the assay has been validated with a current panel of anti-leishmanial drugs and has been successfully applied to large-scale screening of pure compounds and a library of natural products fractions (Tekwani et al. unpublished).
Infection, Issue 70, Immunology, Infectious Diseases, Molecular Biology, Cellular Biology, Pharmacology, Leishmania donovani, Visceral Leishmaniasis, THP1 cells, Drug Screening, Amastigotes, Antileishmanial drug assay
Play Button
Saliva, Salivary Gland, and Hemolymph Collection from Ixodes scapularis Ticks
Authors: Toni G. Patton, Gabrielle Dietrich, Kevin Brandt, Marc C. Dolan, Joseph Piesman, Robert D. Gilmore Jr..
Institutions: Centers for Disease Control and Prevention, Centers for Disease Control and Prevention.
Ticks are found worldwide and afflict humans with many tick-borne illnesses. Ticks are vectors for pathogens that cause Lyme disease and tick-borne relapsing fever (Borrelia spp.), Rocky Mountain Spotted fever (Rickettsia rickettsii), ehrlichiosis (Ehrlichia chaffeensis and E. equi), anaplasmosis (Anaplasma phagocytophilum), encephalitis (tick-borne encephalitis virus), babesiosis (Babesia spp.), Colorado tick fever (Coltivirus), and tularemia (Francisella tularensis) 1-8. To be properly transmitted into the host these infectious agents differentially regulate gene expression, interact with tick proteins, and migrate through the tick 3,9-13. For example, the Lyme disease agent, Borrelia burgdorferi, adapts through differential gene expression to the feast and famine stages of the tick's enzootic cycle 14,15. Furthermore, as an Ixodes tick consumes a bloodmeal Borrelia replicate and migrate from the midgut into the hemocoel, where they travel to the salivary glands and are transmitted into the host with the expelled saliva 9,16-19. As a tick feeds the host typically responds with a strong hemostatic and innate immune response 11,13,20-22. Despite these host responses, I. scapularis can feed for several days because tick saliva contains proteins that are immunomodulatory, lytic agents, anticoagulants, and fibrinolysins to aid the tick feeding 3,11,20,21,23. The immunomodulatory activities possessed by tick saliva or salivary gland extract (SGE) facilitate transmission, proliferation, and dissemination of numerous tick-borne pathogens 3,20,24-27. To further understand how tick-borne infectious agents cause disease it is essential to dissect actively feeding ticks and collect tick saliva. This video protocol demonstrates dissection techniques for the collection of hemolymph and the removal of salivary glands from actively feeding I. scapularis nymphs after 48 and 72 hours post mouse placement. We also demonstrate saliva collection from an adult female I. scapularis tick.
Immunology, Issue 60, Ixodes scapularis, Lyme disease, Borrelia burgdorferi, salivary glands, hemolymph, tick dissection, saliva, tick
Play Button
Use of Galleria mellonella as a Model Organism to Study Legionella pneumophila Infection
Authors: Clare R. Harding, Gunnar N. Schroeder, James W. Collins, Gad Frankel.
Institutions: Imperial College London.
Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae's immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.
Infection, Issue 81, Bacterial Infections, Infection, Disease Models, Animal, Bacterial Infections and Mycoses, Galleria mellonella, Legionella pneumophila, insect model, bacterial infection, Legionnaires' disease, haemocytes
Play Button
Discovery of New Intracellular Pathogens by Amoebal Coculture and Amoebal Enrichment Approaches
Authors: Nicolas Jacquier, Sébastien Aeby, Julia Lienard, Gilbert Greub.
Institutions: University Hospital Center and University of Lausanne.
Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.
Immunology, Issue 80, Environmental Microbiology, Soil Microbiology, Water Microbiology, Amoebae, microorganisms, coculture, obligate intracellular bacteria
Play Button
Feeding of Ticks on Animals for Transmission and Xenodiagnosis in Lyme Disease Research
Authors: Monica E. Embers, Britton J. Grasperge, Mary B. Jacobs, Mario T. Philipp.
Institutions: Tulane University Health Sciences Center.
Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.
Infection, Issue 78, Medicine, Immunology, Infectious Diseases, Biomedical Engineering, Primates, Muridae, Ticks, Borrelia, Borrelia Infections, Ixodes, ticks, Lyme disease, xenodiagnosis, Borrelia, burgdorferi, mice, nonhuman primates, animal model
Play Button
Tractable Mammalian Cell Infections with Protozoan-primed Bacteria
Authors: Samuel L. Drennan, Amrita Lama, Ben Doron, Eric D. Cambronne.
Institutions: Oregon Health & Science University.
Many intracellular bacterial pathogens use freshwater protozoans as a natural reservoir for proliferation in the environment. Legionella pneumophila, the causative agent of Legionnaires' pneumonia, gains a pathogenic advantage over in vitro cultured bacteria when first harvested from protozoan cells prior to infection of mammalian macrophages. This suggests that important virulence factors may not be properly expressed in vitro. We have developed a tractable system for priming L. pneumophila through its natural protozoan host Acanthamoeba castellanii prior to mammalian cell infection. The contribution of any virulence factor can be examined by comparing intracellular growth of a mutant strain to wild-type bacteria after protozoan priming. GFP-expressing wild-type and mutant L. pneumophila strains are used to infect protozoan monolayers in a priming step and allowed to reach late stages of intracellular growth. Fluorescent bacteria are then harvested from these infected cells and normalized by spectrophotometry to generate comparable numbers of bacteria for a subsequent infection into mammalian macrophages. For quantification, live bacteria are monitored after infection using fluorescence microscopy, flow cytometry, and by colony plating. This technique highlights and relies on the contribution of host cell-dependent gene expression by mimicking the environment that would be encountered in a natural acquisition route. This approach can be modified to accommodate any bacterium that uses an intermediary host as a means for gaining a pathogenic advantage.
Infection, Issue 74, Immunology, Microbiology, Infectious Diseases, Medicine, Cellular Biology, Bacteria, Bacterial Infections, Mycoses, Legionella, amoeba, macrophage, priming, intracellular pathogen, fluorescence microscopy, flow cytometry, cell
Play Button
Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Authors: Maria J. Mazon Moya, Emma Colucci-Guyon, Serge Mostowy.
Institutions: Imperial College London, Institut Pasteur, Unité Macrophages et Développement de l'Immunité.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
Infection, Issue 91, ATG8/LC3, autophagy, cytoskeleton, HeLa cells, p62, septin, Shigella, zebrafish
Play Button
A Microscopic Phenotypic Assay for the Quantification of Intracellular Mycobacteria Adapted for High-throughput/High-content Screening
Authors: Christophe. J Queval, Ok-Ryul Song, Vincent Delorme, Raffaella Iantomasi, Romain Veyron-Churlet, Nathalie Deboosère, Valérie Landry, Alain Baulard, Priscille Brodin.
Institutions: Université de Lille.
Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.
Infection, Issue 83, Mycobacterium tuberculosis, High-content/High-throughput screening, chemogenomics, Drug Discovery, siRNA library, automated confocal microscopy, image-based analysis
Play Button
Purification of Pathogen Vacuoles from Legionella-infected Phagocytes
Authors: Christine Hoffmann, Ivo Finsel, Hubert Hilbi.
Institutions: Ludwig-Maximilians-Universität.
The opportunistic pathogen Legionella pneumophila is an amoeba-resistant bacterium, which also replicates in alveolar macrophages thus causing the severe pneumonia "Legionnaires' disease"1. In protozoan and mammalian phagocytes, L. pneumophila employs a conserved mechanism to form a specific, replication-permissive compartment, the "Legionella-containing vacuole" (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system (T4SS), which translocates as many as 275 "effector" proteins into host cells. The effectors manipulate host proteins as well as lipids and communicate with secretory, endosomal and mitochondrial organelles2-4. The formation of LCVs represents a complex, robust and redundant process, which is difficult to grasp in a reductionist manner. An integrative approach is required to comprehensively understand LCV formation, including a global analysis of pathogen-host factor interactions and their temporal and spatial dynamics. As a first step towards this goal, intact LCVs are purified and analyzed by proteomics and lipidomics. The composition and formation of pathogen-containing vacuoles has been investigated by proteomic analysis using liquid chromatography or 2-D gel electrophoresis coupled to mass-spectrometry. Vacuoles isolated from either the social soil amoeba Dictyostelium discoideum or mammalian phagocytes harboured Leishmania5, Listeria6, Mycobacterium7, Rhodococcus8, Salmonella9 or Legionella spp.10. However, the purification protocols employed in these studies are time-consuming and tedious, as they require e.g. electron microscopy to analyse LCV morphology, integrity and purity. Additionally, these protocols do not exploit specific features of the pathogen vacuole for enrichment. The method presented here overcomes these limitations by employing D. discoideum producing a fluorescent LCV marker and by targeting the bacterial effector protein SidC, which selectively anchors to the LCV membrane by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P)3,11 . LCVs are enriched in a first step by immuno-magnetic separation using an affinity-purified primary antibody against SidC and a secondary antibody coupled to magnetic beads, followed in a second step by a classical Histodenz density gradient centrifugation12,13 (Fig. 1). A proteome study of isolated LCVs from D. discoideum revealed more than 560 host cell proteins, including proteins associated with phagocytic vesicles, mitochondria, ER and Golgi, as well as several GTPases, which have not been implicated in LCV formation before13. LCVs enriched and purified with the protocol outlined here can be further analyzed by microscopy (immunofluorescence, electron microscopy), biochemical methods (Western blot) and proteomic or lipidomic approaches.
Infection, Issue 64, Immunology, amoeba, Dictyostelium discoideum, density gradient centrifugation, effector protein, Icm/Dot type IV secretion system, immuno-magnetic separation, Legionella pneumophila, macrophage, pathogen vacuole
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
Play Button
Protocols for Oral Infection of Lepidopteran Larvae with Baculovirus
Authors: Wendy Sparks, Huarong Li, Bryony Bonning.
Institutions: Iowa State University.
Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. This video shows how lepidopteran larvae can be infected with polyhedra by droplet feeding and diet plug-based bioassays. This accompanying Springer Protocols section provides an overview of the baculovirus lifecycle and use of baculoviruses as insecticidal agents, including discussion of the pros and cons for use of baculoviruses as insecticides, and progress made in genetic enhancement of baculoviruses for improved insecticidal efficacy.
Plant Biology, Issue 19, Springer Protocols, Baculovirus insecticides, recombinant baculovirus, insect pest management
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Protocols for Microapplicator-assisted Infection of Lepidopteran Larvae with Baculovirus
Authors: Huarong Li, Wendy Sparks, Bryony Bonning.
Institutions: Iowa State University.
Baculoviruses are widely used both as protein expression vectors and as insect pest control agents. . This video shows how lepidopteran larvae can be infected with microapplicator techniques in the gut with baculovirus polyhedra and in the hemolymph with budded virus. This accompanying Springer Protocols section provides an overview of the baculovirus lifecycle and use of baculoviruses as insecticidal agents. Formulation and application of baculoviruses for pest control purposes are described elsewhere.
Plant Biology, Issue 18, Springer Protocols, Baculovirus insecticides, recombinant baculovirus, insect pest management
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.