JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation.
PUBLISHED: 01-14-2011
FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI.
Authors: Michael Boska, Yutong Liu, Mariano Uberti, Balarininvasa R. Sajja, Shantanu Balkundi, JoEllyn McMillan, Howard E. Gendelman.
Published: 12-09-2010
Nanomedications can be carried by blood borne monocyte-macrophages into the reticuloendothelial system (RES; spleen, liver, lymph nodes) and to end organs. The latter include the lung, RES, and brain and are operative during human immunodeficiency virus type one (HIV-1) infection. Macrophage entry into tissues is notable in areas of active HIV-1 replication and sites of inflammation. In order to assess the potential of macrophages as nanocarriers, superparamagnetic iron-oxide and/or drug laden particles coated with surfactants were parenterally injected into HIV-1 encephalitic mice. This was done to quantitatively assess particle and drug biodistribution. Magnetic resonance imaging (MRI) test results were validated by histological coregistration and enhanced image processing. End organ disease as typified by altered brain histology were assessed by MRI. The demonstration of robust migration of nanoformulations into areas of focal encephalitis provides '"proof of concept" for the use of advanced bioimaging techniques to monitor macrophage migration. Importantly, histopathological aberrations in brain correlate with bioimaging parameters making the general utility of MRI in studies of cell distribution in disease feasible. We posit that using such methods can provide a real time index of disease burden and therapeutic efficacy with translational potential to humans.
25 Related JoVE Articles!
Play Button
Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages
Authors: Wei Ying, Patali S. Cheruku, Fuller W. Bazer, Stephen H. Safe, Beiyan Zhou.
Institutions: Texas A&M University, Texas A&M University, Texas A&M University.
The article describes a readily easy adaptive in vitro model to investigate macrophage polarization. In the presence of GM-CSF/M-CSF, hematopoietic stem/progenitor cells from the bone marrow are directed into monocytic differentiation, followed by M1 or M2 stimulation. The activation status can be tracked by changes in cell surface antigens, gene expression and cell signaling pathways.
Immunology, Issue 76, Cellular Biology, Molecular Biology, Medicine, Genetics, Biomedical Engineering, biology (general), genetics (animal and plant), immunology, life sciences, Life Sciences (General), macrophage polarization, bone marrow derived macrophage, flow cytometry, PCR, animal model
Play Button
Labeling Stem Cells with Ferumoxytol, an FDA-Approved Iron Oxide Nanoparticle
Authors: Rosalinda T. Castaneda, Aman Khurana, Ramsha Khan, Heike E. Daldrup-Link.
Institutions: Molecular Imaging Program at Stanford (MIPS) , Stanford University .
Stem cell based therapies offer significant potential for the field of regenerative medicine. However, much remains to be understood regarding the in vivo kinetics of transplanted cells. A non-invasive method to repetitively monitor transplanted stem cells in vivo would allow investigators to directly monitor stem cell transplants and identify successful or unsuccessful engraftment outcomes. A wide range of stem cells continues to be investigated for countless applications. This protocol focuses on 3 different stem cell populations: human embryonic kidney 293 (HEK293) cells, human mesenchymal stem cells (hMSC) and induced pluripotent stem (iPS) cells. HEK 293 cells are derived from human embryonic kidney cells grown in culture with sheared adenovirus 5 DNA. These cells are widely used in research because they are easily cultured, grow quickly and are easily transfected. hMSCs are found in adult marrow. These cells can be replicated as undifferentiated cells while maintaining multipotency or the potential to differentiate into a limited number of cell fates. hMSCs can differentiate to lineages of mesenchymal tissues, including osteoblasts, adipocytes, chondrocytes, tendon, muscle, and marrow stroma. iPS cells are genetically reprogrammed adult cells that have been modified to express genes and factors similar to defining properties of embryonic stem cells. These cells are pluripotent meaning they have the capacity to differentiate into all cell lineages 1. Both hMSCs and iPS cells have demonstrated tissue regenerative capacity in-vivo. Magnetic resonance (MR) imaging together with the use of superparamagnetic iron oxide (SPIO) nanoparticle cell labels have proven effective for in vivo tracking of stem cells due to the near microscopic anatomical resolution, a longer blood half-life that permits longitudinal imaging and the high sensitivity for cell detection provided by MR imaging of SPIO nanoparticles 2-4. In addition, MR imaging with the use of SPIOs is clinically translatable. SPIOs are composed of an iron oxide core with a dextran, carboxydextran or starch surface coat that serves to contain the bioreactive iron core from plasma components. These agents create local magnetic field inhomogeneities that lead to a decreased signal on T2-weighted MR images 5. Unfortunately, SPIOs are no longer being manufactured. Second generation, ultrasmall SPIOs (USPIO), however, offer a viable alternative. Ferumoxytol (FerahemeTM) is one USPIO composed of a non-stoichiometric magnetite core surrounded by a polyglucose sorbitol carboxymethylether coat. The colloidal, particle size of ferumoxytol is 17-30 nm as determined by light scattering. The molecular weight is 750 kDa, and the relaxivity constant at 2T MRI field is 58.609 mM-1 sec-1 strength4. Ferumoxytol was recently FDA-approved as an iron supplement for treatment of iron deficiency in patients with renal failure 6. Our group has applied this agent in an “off label” use for cell labeling applications. Our technique demonstrates efficient labeling of stem cells with ferumoxytol that leads to significant MR signal effects of labeled cells on MR images. This technique may be applied for non-invasive monitoring of stem cell therapies in pre-clinical and clinical settings.
Medicine, Issue 57, USPIO, cell labeling, MR imaging, MRI, molecular imaging, iron oxides, ferumoxytol, cellular imaging, nanoparticles
Play Button
Evaluation of Nanoparticle Uptake in Tumors in Real Time Using Intravital Imaging
Authors: Choi-Fong Cho, Amber Ablack, Hon-Sing Leong, Andries Zijlstra, John Lewis.
Institutions: University of Western Ontario, London Health Science Centre, Vanderbilt University , London Health Science Centre.
Current technologies for tumor imaging, such as ultrasound, MRI, PET and CT, are unable to yield high-resolution images for the assessment of nanoparticle uptake in tumors at the microscopic level1,2,3, highlighting the utility of a suitable xenograft model in which to perform detailed uptake analyses. Here, we use high-resolution intravital imaging to evaluate nanoparticle uptake in human tumor xenografts in a modified, shell-less chicken embryo model. The chicken embryo model is particularly well-suited for these in vivo analyses because it supports the growth of human tumors, is relatively inexpensive and does not require anesthetization or surgery 4,5. Tumor cells form fully vascularized xenografts within 7 days when implanted into the chorioallantoic membrane (CAM) 6. The resulting tumors are visualized by non-invasive real-time, high-resolution imaging that can be maintained for up to 72 hours with little impact on either the host or tumor systems. Nanoparticles with a wide range of sizes and formulations administered distal to the tumor can be visualized and quantified as they flow through the bloodstream, extravasate from leaky tumor vasculature, and accumulate at the tumor site. We describe here the analysis of nanoparticles derived from Cowpea mosaic virus (CPMV) decorated with near-infrared fluorescent dyes and/or polyethylene glycol polymers (PEG) 7, 8, 9,10,11. Upon intravenous administration, these viral nanoparticles are rapidly internalized by endothelial cells, resulting in global labeling of the vasculature both outside and within the tumor7,12. PEGylation of the viral nanoparticles increases their plasma half-life, extends their time in the circulation, and ultimately enhances their accumulation in tumors via the enhanced permeability and retention (EPR) effect 7, 10,11. The rate and extent of accumulation of nanoparticles in a tumor is measured over time using image analysis software. This technique provides a method to both visualize and quantify nanoparticle dynamics in human tumors.
Medicine, Issue 52, Nanoparticles, tumors, intravital imaging, avian embryo, confocal microscopy
Play Button
Live-cell Video Microscopy of Fungal Pathogen Phagocytosis
Authors: Leanne E. Lewis, Judith M. Bain, Blessing Okai, Neil A.R. Gow, Lars Peter Erwig.
Institutions: University of Aberdeen, University of Aberdeen.
Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a broad range of dynamic processes, including cell migration, replication and vesicular trafficking. Here we describe in detail how to prepare host and fungal cells, and to conduct the video microscopy experiments. These methods can provide a user-guide for future studies with other phagocytes and microorganisms.
Infection, Issue 71, Immunology, Microbiology, Medicine, Cellular Biology, Molecular Biology, Infectious Diseases, Mycoses, Candidiasis, Bacterial Infections and Mycoses, Immune System Diseases, Live-cell imaging, phagocytosis, Candida albicans, host-pathogen interaction, pathogen, pathogen-associated molecular patterns, pattern recognition receptors, macrophage, fungus
Play Button
Compact Quantum Dots for Single-molecule Imaging
Authors: Andrew M. Smith, Shuming Nie.
Institutions: Emory University, Georgia Institute of Technology .
Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology 1-4. To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation 5. Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large 4,6,7. Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past 8,9. The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an insulating CdyZn1-yS shell, further coated with a multidentate polymer ligand modified with short polyethylene glycol (PEG) chains (Figure 1). Compared with conventional CdSe nanocrystals, HgxCd1-xSe alloys offer greater quantum yields of fluorescence, fluorescence at red and near-infrared wavelengths for enhanced signal-to-noise in cells, and excitation at non-cytotoxic visible wavelengths. Multidentate polymer coatings bind to the nanocrystal surface in a closed and flat conformation to minimize hydrodynamic size, and PEG neutralizes the surface charge to minimize nonspecific binding to cells and biomolecules. The end result is a brightly fluorescent nanocrystal with emission between 550-800 nm and a total hydrodynamic size near 12 nm. This is in the same size range as many soluble globular proteins in cells, and substantially smaller than conventional PEGylated QDs (25-35 nm).
Physics, Issue 68, Biomedical Engineering, Chemistry, Nanotechnology, Nanoparticle, nanocrystal, synthesis, fluorescence, microscopy, imaging, conjugation, dynamics, intracellular, receptor
Play Button
Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals
Authors: Karthish Manthiram, Brandon J. Beberwyck, Dmitri V. Talapin, A. Paul Alivisatos.
Institutions: UC Berkeley, UC Berkeley, UC Berkeley, Lawrence Berkeley National Laboratory, University of Chicago, Argonne National Laboratory.
We demonstrate a method for the synthesis of multicomponent nanostructures consisting of CdS and CdSe with rod and tetrapod morphologies. A seeded synthesis strategy is used in which spherical seeds of CdSe are prepared first using a hot-injection technique. By controlling the crystal structure of the seed to be either wurtzite or zinc-blende, the subsequent hot-injection growth of CdS off of the seed results in either a rod-shaped or tetrapod-shaped nanocrystal, respectively. The phase and morphology of the synthesized nanocrystals are confirmed using X-ray diffraction and transmission electron microscopy, demonstrating that the nanocrystals are phase-pure and have a consistent morphology. The extinction coefficient and quantum yield of the synthesized nanocrystals are calculated using UV-Vis absorption spectroscopy and photoluminescence spectroscopy. The rods and tetrapods exhibit extinction coefficients and quantum yields that are higher than that of the bare seeds. This synthesis demonstrates the precise arrangement of materials that can be achieved at the nanoscale by using a seeded synthetic approach.
Chemistry, Issue 82, nanostructures, synthesis, nanocrystals, seeded rods, tetrapods, nanoheterostructures
Play Button
4D Multimodality Imaging of Citrobacter rodentium Infections in Mice
Authors: James William Collins, Jeffrey A Meganck, Chaincy Kuo, Kevin P Francis, Gad Frankel.
Institutions: Imperial College London, Caliper- A PerkinElmer Company.
This protocol outlines the steps required to longitudinally monitor a bioluminescent bacterial infection using composite 3D diffuse light imaging tomography with integrated μCT (DLIT-μCT) and the subsequent use of this data to generate a four dimensional (4D) movie of the infection cycle. To develop the 4D infection movies and to validate the DLIT-μCT imaging for bacterial infection studies using an IVIS Spectrum CT, we used infection with bioluminescent C. rodentium, which causes self-limiting colitis in mice. In this protocol, we outline the infection of mice with bioluminescent C. rodentium and non-invasive monitoring of colonization by daily DLIT-μCT imaging and bacterial enumeration from feces for 8 days. The use of the IVIS Spectrum CT facilitates seamless co-registration of optical and μCT scans using a single imaging platform. The low dose μCT modality enables the imaging of mice at multiple time points during infection, providing detailed anatomical localization of bioluminescent bacterial foci in 3D without causing artifacts from the cumulative radiation. Importantly, the 4D movies of infected mice provide a powerful analytical tool to monitor bacterial colonization dynamics in vivo.
Infection, Issue 78, Immunology, Cellular Biology, Molecular Biology, Microbiology, Genetics, Biophysics, Biomedical Engineering, Medicine, Anatomy, Physiology, Infectious Diseases, Bacterial Infections, Bioluminescence, DLIT-μCT, C. rodentium, 4D imaging, in vivo imaging, multi-modality imaging, CT, imaging, tomography, animal model
Play Button
Real-time Imaging of Heterotypic Platelet-neutrophil Interactions on the Activated Endothelium During Vascular Inflammation and Thrombus Formation in Live Mice
Authors: Kyung Ho Kim, Andrew Barazia, Jaehyung Cho.
Institutions: University of Illinois at Chicago , University of Illinois at Chicago .
Interaction of activated platelets and leukocytes (mainly neutrophils) on the activated endothelium mediates thrombosis and vascular inflammation.1,2 During thrombus formation at the site of arteriolar injury, platelets adherent to the activated endothelium and subendothelial matrix proteins support neutrophil rolling and adhesion.3 Conversely, under venular inflammatory conditions, neutrophils adherent to the activated endothelium can support adhesion and accumulation of circulating platelets. Heterotypic platelet-neutrophil aggregation requires sequential processes by the specific receptor-counter receptor interactions between cells.4 It is known that activated endothelial cells release adhesion molecules such as von Willebrand factor, thereby initiating platelet adhesion and accumulation under high shear conditions.5 Also, activated endothelial cells support neutrophil rolling and adhesion by expressing selectins and intercellular adhesion molecule-1 (ICAM-1), respectively, under low shear conditions.4 Platelet P-selectin interacts with neutrophils through P-selectin glycoprotein ligand-1 (PSGL-1), thereby inducing activation of neutrophil β2 integrins and firm adhesion between two cell types. Despite the advances in in vitro experiments in which heterotypic platelet-neutrophil interactions are determined in whole blood or isolated cells,6,7 those studies cannot manipulate oxidant stress conditions during vascular disease. In this report, using fluorescently-labeled, specific antibodies against a mouse platelet and neutrophil marker, we describe a detailed intravital microscopic protocol to monitor heterotypic interactions of platelets and neutrophils on the activated endothelium during TNF-α-induced inflammation or following laser-induced injury in cremaster muscle microvessels of live mice.
Immunology, Issue 74, Medicine, Cellular Biology, Molecular Biology, Inflammation, Hematology, Neutrophils, Microscopy, Video, Thrombosis, Platelet Activation, Platelet Aggregation, Intravital microscopy, platelet, neutrophil, rolling, adhesion, vascular inflammation, thrombus formation, mice, animal model
Play Button
Universal Hand-held Three-dimensional Optoacoustic Imaging Probe for Deep Tissue Human Angiography and Functional Preclinical Studies in Real Time
Authors: Xosé Deán-Ben, Thomas Felix Fehm, Daniel Razansky.
Institutions: Helmholtz Zentrum München, Technische Universität München.
The exclusive combination of high optical contrast and excellent spatial resolution makes optoacoustics (photoacoustics) ideal for simultaneously attaining anatomical, functional and molecular contrast in deep optically opaque tissues. While enormous potential has been recently demonstrated in the application of optoacoustics for small animal research, vast efforts have also been undertaken in translating this imaging technology into clinical practice. We present here a newly developed optoacoustic tomography approach capable of delivering high resolution and spectrally enriched volumetric images of tissue morphology and function in real time. A detailed description of the experimental protocol for operating with the imaging system in both hand-held and stationary modes is provided and showcased for different potential scenarios involving functional and molecular studies in murine models and humans. The possibility for real time visualization in three dimensions along with the versatile handheld design of the imaging probe make the newly developed approach unique among the pantheon of imaging modalities used in today’s preclinical research and clinical practice.
Physiology, Issue 93, Optoacoustic tomography, photoacoustic imaging, hand-held probe, volumetric imaging, real-time tomography, five dimensional imaging, clinical imaging, functional imaging, molecular imaging, preclinical research
Play Button
Harmonic Nanoparticles for Regenerative Research
Authors: Flavio Ronzoni, Thibaud Magouroux, Remi Vernet, Jérôme Extermann, Darragh Crotty, Adriele Prina-Mello, Daniel Ciepielewski, Yuri Volkov, Luigi Bonacina, Jean-Pierre Wolf, Marisa Jaconi.
Institutions: University of Geneva, University of Geneva, École Polytechnique Fédérale de Lausanne, Trinity College Dublin, Trinity College Dublin, Nikon AG Instruments.
In this visualized experiment, protocol details are provided for in vitro labeling of human embryonic stem cells (hESC) with second harmonic generation nanoparticles (HNPs). The latter are a new family of probes recently introduced for labeling biological samples for multi-photon imaging. HNPs are capable of doubling the frequency of excitation light by the nonlinear optical process of second harmonic generation with no restriction on the excitation wavelength. Multi-photon based methodologies for hESC differentiation into cardiac clusters (maintained as long term air-liquid cultures) are presented in detail. In particular, evidence on how to maximize the intense second harmonic (SH) emission of isolated HNPs during 3D monitoring of beating cardiac tissue in 3D is shown. The analysis of the resulting images to retrieve 3D displacement patterns is also detailed.
Bioengineering, Issue 87, multi-photon imaging, human embryonic stem cells (ESC), nanoparticles, embryoid bodies (EBs), cardiomyocyte differentiation, cardiac contraction, air-liquid cultures
Play Button
Murine Endoscopy for In Vivo Multimodal Imaging of Carcinogenesis and Assessment of Intestinal Wound Healing and Inflammation
Authors: Markus Brückner, Philipp Lenz, Tobias M. Nowacki, Friederike Pott, Dirk Foell, Dominik Bettenworth.
Institutions: University Hospital Münster, University Children's Hospital Münster.
Mouse models are widely used to study pathogenesis of human diseases and to evaluate diagnostic procedures as well as therapeutic interventions preclinically. However, valid assessment of pathological alterations often requires histological analysis, and when performed ex vivo, necessitates death of the animal. Therefore in conventional experimental settings, intra-individual follow-up examinations are rarely possible. Thus, development of murine endoscopy in live mice enables investigators for the first time to both directly visualize the gastrointestinal mucosa and also repeat the procedure to monitor for alterations. Numerous applications for in vivo murine endoscopy exist, including studying intestinal inflammation or wound healing, obtaining mucosal biopsies repeatedly, and to locally administer diagnostic or therapeutic agents using miniature injection catheters. Most recently, molecular imaging has extended diagnostic imaging modalities allowing specific detection of distinct target molecules using specific photoprobes. In conclusion, murine endoscopy has emerged as a novel cutting-edge technology for diagnostic experimental in vivo imaging and may significantly impact on preclinical research in various fields.
Medicine, Issue 90, gastroenterology, in vivo imaging, murine endoscopy, diagnostic imaging, carcinogenesis, intestinal wound healing, experimental colitis
Play Button
In vivo Imaging Method to Distinguish Acute and Chronic Inflammation
Authors: Jen-Chieh Tseng, Andrew L. Kung.
Institutions: Harvard Medical School, Columbia University Medical Center.
Inflammation is a fundamental aspect of many human diseases. In this video report, we demonstrate non-invasive bioluminescence imaging techniques that distinguish acute and chronic inflammation in mouse models. With tissue damage or pathogen invasion, neutrophils are the first line of defense, playing a major role in mediating the acute inflammatory response. As the inflammatory reaction progresses, circulating monocytes gradually migrate into the site of injury and differentiate into mature macrophages, which mediate chronic inflammation and promote tissue repair by removing tissue debris and producing anti-inflammatory cytokines. Intraperitoneal injection of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione, sodium salt) enables detection of acute inflammation largely mediated by tissue-infiltrating neutrophils. Luminol specifically reacts with the superoxide generated within the phagosomes of neutrophils since bioluminescence results from a myeloperoxidase (MPO) mediated reaction. Lucigenin (bis-N-methylacridinium nitrate) also reacts with superoxide in order to generate bioluminescence. However, lucigenin bioluminescence is independent of MPO and it solely relies on phagocyte NADPH oxidase (Phox) in macrophages during chronic inflammation. Together, luminol and lucigenin allow non-invasive visualization and longitudinal assessment of different phagocyte populations across both acute and chronic inflammatory phases. Given the important role of inflammation in a variety of human diseases, we believe this non-invasive imaging method can help investigate the differential roles of neutrophils and macrophages in a variety of pathological conditions.
Immunology, Issue 78, Infection, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Stem Cell Biology, Inflammation, Phagocytes, Phagocyte, Superoxides, Molecular Imaging, chemiluminescence, in vivo imaging, superoxide, bioluminescence, chronic inflammation, acute inflammation, phagocytes, cells, imaging, animal model
Play Button
In vivo Near Infrared Fluorescence (NIRF) Intravascular Molecular Imaging of Inflammatory Plaque, a Multimodal Approach to Imaging of Atherosclerosis
Authors: Marcella A. Calfon, Amir Rosenthal, Georgios Mallas, Adam Mauskapf, R. Nika Nudelman, Vasilis Ntziachristos, Farouc A. Jaffer.
Institutions: Harvard Medical School, Helmholtz Zentrum München und Technische Universität München, Northeastern University.
The vascular response to injury is a well-orchestrated inflammatory response triggered by the accumulation of macrophages within the vessel wall leading to an accumulation of lipid-laden intra-luminal plaque, smooth muscle cell proliferation and progressive narrowing of the vessel lumen. The formation of such vulnerable plaques prone to rupture underlies the majority of cases of acute myocardial infarction. The complex molecular and cellular inflammatory cascade is orchestrated by the recruitment of T lymphocytes and macrophages and their paracrine effects on endothelial and smooth muscle cells.1 Molecular imaging in atherosclerosis has evolved into an important clinical and research tool that allows in vivo visualization of inflammation and other biological processes. Several recent examples demonstrate the ability to detect high-risk plaques in patients, and assess the effects of pharmacotherapeutics in atherosclerosis.4 While a number of molecular imaging approaches (in particular MRI and PET) can image biological aspects of large vessels such as the carotid arteries, scant options exist for imaging of coronary arteries.2 The advent of high-resolution optical imaging strategies, in particular near-infrared fluorescence (NIRF), coupled with activatable fluorescent probes, have enhanced sensitivity and led to the development of new intravascular strategies to improve biological imaging of human coronary atherosclerosis. Near infrared fluorescence (NIRF) molecular imaging utilizes excitation light with a defined band width (650-900 nm) as a source of photons that, when delivered to an optical contrast agent or fluorescent probe, emits fluorescence in the NIR window that can be detected using an appropriate emission filter and a high sensitivity charge-coupled camera. As opposed to visible light, NIR light penetrates deeply into tissue, is markedly less attenuated by endogenous photon absorbers such as hemoglobin, lipid and water, and enables high target-to-background ratios due to reduced autofluorescence in the NIR window. Imaging within the NIR 'window' can substantially improve the potential for in vivo imaging.2,5 Inflammatory cysteine proteases have been well studied using activatable NIRF probes10, and play important roles in atherogenesis. Via degradation of the extracellular matrix, cysteine proteases contribute importantly to the progression and complications of atherosclerosis8. In particular, the cysteine protease, cathepsin B, is highly expressed and colocalizes with macrophages in experimental murine, rabbit, and human atheromata.3,6,7 In addition, cathepsin B activity in plaques can be sensed in vivo utilizing a previously described 1-D intravascular near-infrared fluorescence technology6, in conjunction with an injectable nanosensor agent that consists of a poly-lysine polymer backbone derivatized with multiple NIR fluorochromes (VM110/Prosense750, ex/em 750/780nm, VisEn Medical, Woburn, MA) that results in strong intramolecular quenching at baseline.10 Following targeted enzymatic cleavage by cysteine proteases such as cathepsin B (known to colocalize with plaque macrophages), the fluorochromes separate, resulting in substantial amplification of the NIRF signal. Intravascular detection of NIR fluorescence signal by the utilized novel 2D intravascular NIRF catheter now enables high-resolution, geometrically accurate in vivo detection of cathepsin B activity in inflamed plaque. In vivo molecular imaging of atherosclerosis using catheter-based 2D NIRF imaging, as opposed to a prior 1-D spectroscopic approach,6 is a novel and promising tool that utilizes augmented protease activity in macrophage-rich plaque to detect vascular inflammation.11,12 The following research protocol describes the use of an intravascular 2-dimensional NIRF catheter to image and characterize plaque structure utilizing key aspects of plaque biology. It is a translatable platform that when integrated with existing clinical imaging technologies including angiography and intravascular ultrasound (IVUS), offers a unique and novel integrated multimodal molecular imaging technique that distinguishes inflammatory atheromata, and allows detection of intravascular NIRF signals in human-sized coronary arteries.
Medicine, Issue 54, Atherosclerosis, inflammation, imaging, near infrared fluorescence, plaque, intravascular, catheter
Play Button
In vivo Macrophage Imaging Using MR Targeted Contrast Agent for Longitudinal Evaluation of Septic Arthritis
Authors: Guillaume Bierry, Sophie Lefevre, Jean-Louis Dietemann, François Jehl.
Institutions: University Hospital of Strasbourg, University of Strasbourg, University Hospital of Strasbourg.
Macrophages are key-cells in the initiation, the development and the regulation of the inflammatory response to bacterial infection. Macrophages are intensively and increasingly recruited in septic joints from the early phases of infection and the infiltration is supposed to regress once efficient removal of the pathogens is obtained. The ability to identify in vivo macrophage activity in an infected joint can therefore provide two main applications: early detection of acute synovitis and monitoring of therapy. In vivo noninvasive detection of macrophages can be performed with magnetic resonance imaging using iron nanoparticles such as ultrasmall superparamagnetic iron oxide (USPIO). After intravascular or intraarticular administration, USPIO are specifically phagocytized by activated macrophages, and, due to their magnetic properties, induce signal changes in tissues presenting macrophage infiltration. A quantitative evaluation of the infiltrate is feasible, as the area with signal loss (number of dark pixels) observed on gradient echo MR images after particles injection is correlated with the amount of iron within the tissue and therefore reflects the number of USPIO-loaded cells. We present here a protocol to perform macrophage imaging using USPIO-enhanced MR imaging in an animal model of septic arthritis, allowing an initial and longitudinal in vivo noninvasive evaluation of macrophages infiltration and an assessment of therapy action.
Medicine, Issue 80, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Diagnostic Imaging, Musculoskeletal System, Bacterial Infections and Mycoses, Macrophage, MR imaging, infection, arthritis, USPIO, imaging, clinical techniques
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
Authors: Nehal N. Mehta, Drew A. Torigian, Joel M. Gelfand, Babak Saboury, Abass Alavi.
Institutions: University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine.
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC)1 and carotid intimal medial thickness (C-IMT)2 provide information about the burden of disease. However, despite multiple validation studies of CAC3-5, and C-IMT2,6, these modalities do not accurately assess plaque characteristics7,8, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events9-13. [18F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism14,15. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity16, an important source of cellular inflammation in vessel walls. More recently, we17,18 and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries9,16,19,20. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors21,22 and is also highly associated with overall burden of atherosclerosis23. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy24 as well as longer term therapeutic lifestyle changes (16 months)25. The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability26. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.9,20,27,28
Medicine, Issue 63, FDG-PET/CT, atherosclerosis, vascular inflammation, quantitative radiology, imaging
Play Button
Synthesis and Functionalization of Nitrogen-doped Carbon Nanotube Cups with Gold Nanoparticles as Cork Stoppers
Authors: Yong Zhao, Yifan Tang, Alexander Star.
Institutions: University of Pittsburgh.
Nitrogen-doped carbon nanotubes consist of many cup-shaped graphitic compartments termed as nitrogen-doped carbon nanotube cups (NCNCs). These as-synthesized graphitic nanocups from chemical vapor deposition (CVD) method were stacked in a head-to-tail fashion held only through noncovalent interactions. Individual NCNCs can be isolated out of their stacking structure through a series of chemical and physical separation processes. First, as-synthesized NCNCs were oxidized in a mixture of strong acids to introduce oxygen-containing defects on the graphitic walls. The oxidized NCNCs were then processed using high-intensity probe-tip sonication which effectively separated the stacked NCNCs into individual graphitic nanocups. Owing to their abundant oxygen and nitrogen surface functionalities, the resulted individual NCNCs are highly hydrophilic and can be effectively functionalized with gold nanoparticles (GNPs), which preferentially fit in the opening of the cups as cork stoppers. These graphitic nanocups corked with GNPs may find promising applications as nanoscale containers and drug carriers.
Physics, Issue 75, Chemistry, Chemical Engineering, Materials Science, Physical Chemistry, Nanotechnology, Metal Nanoparticles, carbon nanotubes (synthesis and properties), carbon nanotubes, chemical vapor deposition, CVD, gold nanoparticles, probe-tip sonication, nitrogen-doped carbon nanotube cups, nanotubes, nanoparticles, nanomaterial, synthesis
Play Button
Live Imaging of Drug Responses in the Tumor Microenvironment in Mouse Models of Breast Cancer
Authors: Elizabeth S. Nakasone, Hanne A. Askautrud, Mikala Egeblad.
Institutions: Watson School of Biological Sciences, Cold Spring Harbor Laboratory, University of Oslo and Oslo University Hospital.
The tumor microenvironment plays a pivotal role in tumor initiation, progression, metastasis, and the response to anti-cancer therapies. Three-dimensional co-culture systems are frequently used to explicate tumor-stroma interactions, including their role in drug responses. However, many of the interactions that occur in vivo in the intact microenvironment cannot be completely replicated in these in vitro settings. Thus, direct visualization of these processes in real-time has become an important tool in understanding tumor responses to therapies and identifying the interactions between cancer cells and the stroma that can influence these responses. Here we provide a method for using spinning disk confocal microscopy of live, anesthetized mice to directly observe drug distribution, cancer cell responses and changes in tumor-stroma interactions following administration of systemic therapy in breast cancer models. We describe procedures for labeling different tumor components, treatment of animals for observing therapeutic responses, and the surgical procedure for exposing tumor tissues for imaging up to 40 hours. The results obtained from this protocol are time-lapse movies, in which such processes as drug infiltration, cancer cell death and stromal cell migration can be evaluated using image analysis software.
Cancer Biology, Issue 73, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Genetics, Oncology, Pharmacology, Surgery, Tumor Microenvironment, Intravital imaging, chemotherapy, Breast cancer, time-lapse, mouse models, cancer cell death, stromal cell migration, cancer, imaging, transgenic, animal model
Play Button
Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens
Authors: Erica L. Benard, Astrid M. van der Sar, Felix Ellett, Graham J. Lieschke, Herman P. Spaink, Annemarie H. Meijer.
Institutions: Leiden University, VU University Medical Center, Monash University.
Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions 1. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage 2, 3. The site of micro-injection of bacteria into the embryo (Figure 1) determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle 4-6. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection 7. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization 8. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.
Immunology, Issue 61, Zebrafish embryo, innate immunity, macrophages, infection, Salmonella, Mycobacterium, micro-injection, fluorescence imaging, Danio rerio
Play Button
Self-reporting Scaffolds for 3-Dimensional Cell Culture
Authors: Helen Harrington, Felicity R.A.J. Rose, Jonathan W. Aylott, Amir M. Ghaemmaghami.
Institutions: University of Nottingham, University of Nottingham, University of Nottingham.
Culturing cells in 3D on appropriate scaffolds is thought to better mimic the in vivo microenvironment and increase cell-cell interactions. The resulting 3D cellular construct can often be more relevant to studying the molecular events and cell-cell interactions than similar experiments studied in 2D. To create effective 3D cultures with high cell viability throughout the scaffold the culture conditions such as oxygen and pH need to be carefully controlled as gradients in analyte concentration can exist throughout the 3D construct. Here we describe the methods of preparing biocompatible pH responsive sol-gel nanosensors and their incorporation into poly(lactic-co-glycolic acid) (PLGA) electrospun scaffolds along with their subsequent preparation for the culture of mammalian cells. The pH responsive scaffolds can be used as tools to determine microenvironmental pH within a 3D cellular construct. Furthermore, we detail the delivery of pH responsive nanosensors to the intracellular environment of mammalian cells whose growth was supported by electrospun PLGA scaffolds. The cytoplasmic location of the pH responsive nanosensors can be utilized to monitor intracellular pH (pHi) during ongoing experimentation.
Bioengineering, Issue 81, Biocompatible Materials, Nanosensors, scaffold, electrospinning, 3D cell culture, PLGA
Play Button
Monitoring Dendritic Cell Migration using 19F / 1H Magnetic Resonance Imaging
Authors: Helmar Waiczies, Martin Guenther, Julia Skodowski, Stefano Lepore, Andreas Pohlmann, Thoralf Niendorf, Sonia Waiczies.
Institutions: A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Max Delbrück Center for Molecular Medicine.
Continuous advancements in noninvasive imaging modalities such as magnetic resonance imaging (MRI) have greatly improved our ability to study physiological or pathological processes in living organisms. MRI is also proving to be a valuable tool for capturing transplanted cells in vivo. Initial cell labeling strategies for MRI made use of contrast agents that influence the MR relaxation times (T1, T2, T2*) and lead to an enhancement (T1) or depletion (T2*) of signal where labeled cells are present. T2* enhancement agents such as ultrasmall iron oxide agents (USPIO) have been employed to study cell migration and some have also been approved by the FDA for clinical application. A drawback of T2* agents is the difficulty to distinguish the signal extinction created by the labeled cells from other artifacts such as blood clots, micro bleeds or air bubbles. In this article, we describe an emerging technique for tracking cells in vivo that is based on labeling the cells with fluorine (19F)-rich particles. These particles are prepared by emulsifying perfluorocarbon (PFC) compounds and then used to label cells, which subsequently can be imaged by 19F MRI. Important advantages of PFCs for cell tracking in vivo include (i) the absence of carbon-bound 19F in vivo, which then yields background-free images and complete cell selectivityand(ii) the possibility to quantify the cell signal by 19F MR spectroscopy.
Molecular Biology, Issue 73, Immunology, Cellular Biology, Physiology, Anatomy, Biomedical Engineering, Hematology, nuclear magnetic resonance, NMR, Fluorine, dendritic cells, migration, lymph nodes, magnetic resonance imaging, MRI, magnetic resonance spectroscopy, MRS, spectroscopy, imaging, cell tracking, clinical techniques
Play Button
Assessing Anti-fungal Activity of Isolated Alveolar Macrophages by Confocal Microscopy
Authors: Melissa J. Grimm, Anthony C. D'Auria, Brahm H. Segal.
Institutions: Roswell Park Cancer Institute, University of Buffalo.
The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy.
Immunology, Issue 89, macrophage, bronchoalveolar lavage, Aspergillus, confocal microscopy, phagocytosis, anti-fungal activity, NADPH oxidase
Play Button
Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry
Authors: Iris Marangon, Nicole Boggetto, Cécilia Ménard-Moyon, Nathalie Luciani, Claire Wilhelm, Alberto Bianco, Florence Gazeau.
Institutions: CNRS/Université Paris Diderot, CNRS/Université Paris Diderot, CNRS/Institut de Biologie Moléculaire et Cellulaire.
Carbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization. This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light.
Bioengineering, Issue 82, bioengineering, imaging flow cytometry, Carbon Nanotubes, bio-nano-interactions, cellular uptake, cell trafficking
Play Button
Synthesis of an In vivo MRI-detectable Apoptosis Probe
Authors: Justin Lam, Paul C. Simpson, Phillip C. Yang, Rajesh Dash.
Institutions: Stanford University Medical Center, University of California, San Francisco , San Francisco VAMC.
Cellular apoptosis is a prominent feature of many diseases, and this programmed cell death typically occurs before clinical manifestations of disease are evident. A means to detect apoptosis in its earliest, reversible stages would afford a pre-clinical 'window' during which preventive or therapeutic measures could be taken to protect the heart from permanent damage. We present herein a simple and robust method to conjugate human Annexin V (ANX), which avidly binds to cells in the earliest, reversible stages of apoptosis, to superparamagnetic iron oxide (SPIO) nanoparticles, which serve as an MRI-detectable contrast agent. The conjugation method begins with an oxidation of the SPIO nanoparticles, which oxidizes carboxyl groups on the polysaccharide shell of SPIO. Purified ANX protein is then added in the setting of a sodium borate solution to facilitate covalent interaction of ANX with SPIO in a reducing buffer. A final reduction step with sodium borohydride is performed to complete the reduction, and then the reaction is quenched. Unconjugated ANX is removed from the mix by microcentrifuge filtration. The size and purity of the ANX-SPIO product is verified by dynamic light scattering (DLS). This method does not require addition to, or modification of, the polysaccharide SPIO shell, as opposed to cross-linked iron oxide particle conjugation methods or biotin-labeled nanoparticles. As a result, this method represents a simple, robust approach that may be extended to conjugation of other proteins of interest.
Molecular Biology, Issue 65, Biomedical Engineering, conjugation, annexin, iron oxide, nanoparticle, MRI, molecular imaging
Play Button
Harvesting Solar Energy by Means of Charge-Separating Nanocrystals and Their Solids
Authors: Geoffrey Diederich, Timothy O'Connor, Pavel Moroz, Erich Kinder, Elena Kohn, Dimuthu Perera, Ryan Lorek, Scott Lambright, Martene Imboden, Mikhail Zamkov.
Institutions: Bowling Green State University, Bowling Green State University, Bowling Green State University.
Conjoining different semiconductor materials in a single nano-composite provides synthetic means for the development of novel optoelectronic materials offering a superior control over the spatial distribution of charge carriers across material interfaces. As this study demonstrates, a combination of donor-acceptor nanocrystal (NC) domains in a single nanoparticle can lead to the realization of efficient photocatalytic1-5 materials, while a layered assembly of donor- and acceptor-like nanocrystals films gives rise to photovoltaic materials. Initially the paper focuses on the synthesis of composite inorganic nanocrystals, comprising linearly stacked ZnSe, CdS, and Pt domains, which jointly promote photoinduced charge separation. These structures are used in aqueous solutions for the photocatalysis of water under solar radiation, resulting in the production of H2 gas. To enhance the photoinduced separation of charges, a nanorod morphology with a linear gradient originating from an intrinsic electric field is used5. The inter-domain energetics are then optimized to drive photogenerated electrons toward the Pt catalytic site while expelling the holes to the surface of ZnSe domains for sacrificial regeneration (via methanol). Here we show that the only efficient way to produce hydrogen is to use electron-donating ligands to passivate the surface states by tuning the energy level alignment at the semiconductor-ligand interface. Stable and efficient reduction of water is allowed by these ligands due to the fact that they fill vacancies in the valence band of the semiconductor domain, preventing energetic holes from degrading it. Specifically, we show that the energy of the hole is transferred to the ligand moiety, leaving the semiconductor domain functional. This enables us to return the entire nanocrystal-ligand system to a functional state, when the ligands are degraded, by simply adding fresh ligands to the system4. To promote a photovoltaic charge separation, we use a composite two-layer solid of PbS and TiO2 films. In this configuration, photoinduced electrons are injected into TiO2 and are subsequently picked up by an FTO electrode, while holes are channeled to a Au electrode via PbS layer6. To develop the latter we introduce a Semiconductor Matrix Encapsulated Nanocrystal Arrays (SMENA) strategy, which allows bonding PbS NCs into the surrounding matrix of CdS semiconductor. As a result, fabricated solids exhibit excellent thermal stability, attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells7.
Physics, Issue 66, Materials Science, Chemical Engineering, Chemistry, Electrical Engineering, Photovoltaics, nanorods, dye-sensitized, solids, titanium dioxide, photocatalysis, quantum dots
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.