JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Identification of a key amino acid of LuxS involved in AI-2 production in Campylobacter jejuni.
PLoS ONE
PUBLISHED: 01-11-2011
Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2(-) variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ?100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter.
ABSTRACT
The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions1. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells.
22 Related JoVE Articles!
Play Button
Bridging the Bio-Electronic Interface with Biofabrication
Authors: Tanya Gordonov, Benjamin Liba, Jessica L. Terrell, Yi Cheng, Xiaolong Luo, Gregory F. Payne, William E. Bentley.
Institutions: University of Maryland , University of Maryland , University of Maryland .
Advancements in lab-on-a-chip technology promise to revolutionize both research and medicine through lower costs, better sensitivity, portability, and higher throughput. The incorporation of biological components onto biological microelectromechanical systems (bioMEMS) has shown great potential for achieving these goals. Microfabricated electronic chips allow for micrometer-scale features as well as an electrical connection for sensing and actuation. Functional biological components give the system the capacity for specific detection of analytes, enzymatic functions, and whole-cell capabilities. Standard microfabrication processes and bio-analytical techniques have been successfully utilized for decades in the computer and biological industries, respectively. Their combination and interfacing in a lab-on-a-chip environment, however, brings forth new challenges. There is a call for techniques that can build an interface between the electrode and biological component that is mild and is easy to fabricate and pattern. Biofabrication, described here, is one such approach that has shown great promise for its easy-to-assemble incorporation of biological components with versatility in the on-chip functions that are enabled. Biofabrication uses biological materials and biological mechanisms (self-assembly, enzymatic assembly) for bottom-up hierarchical assembly. While our labs have demonstrated these concepts in many formats 1,2,3, here we demonstrate the assembly process based on electrodeposition followed by multiple applications of signal-based interactions. The assembly process consists of the electrodeposition of biocompatible stimuli-responsive polymer films on electrodes and their subsequent functionalization with biological components such as DNA, enzymes, or live cells 4,5. Electrodeposition takes advantage of the pH gradient created at the surface of a biased electrode from the electrolysis of water 6,7,. Chitosan and alginate are stimuli-responsive biological polymers that can be triggered to self-assemble into hydrogel films in response to imposed electrical signals 8. The thickness of these hydrogels is determined by the extent to which the pH gradient extends from the electrode. This can be modified using varying current densities and deposition times 6,7. This protocol will describe how chitosan films are deposited and functionalized by covalently attaching biological components to the abundant primary amine groups present on the film through either enzymatic or electrochemical methods 9,10. Alginate films and their entrapment of live cells will also be addressed 11. Finally, the utility of biofabrication is demonstrated through examples of signal-based interaction, including chemical-to-electrical, cell-to-cell, and also enzyme-to-cell signal transmission. Both the electrodeposition and functionalization can be performed under near-physiological conditions without the need for reagents and thus spare labile biological components from harsh conditions. Additionally, both chitosan and alginate have long been used for biologically-relevant purposes 12,13. Overall, biofabrication, a rapid technique that can be simply performed on a benchtop, can be used for creating micron scale patterns of functional biological components on electrodes and can be used for a variety of lab-on-a-chip applications.
Bioengineering, Issue 64, Biomedical Engineering, electrodeposition, biofabrication, chitosan, alginate, lab-on-a-chip, microfluidic, DTRA
4231
Play Button
Homemade Site Directed Mutagenesis of Whole Plasmids
Authors: Mark Laible, Kajohn Boonrod.
Institutions: Johannes Gutenberg-University Mainz, Germany, Neustadt an der Weinstrasse, Germany.
Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensive. Applying this protocol can reduce the total cost of a reaction to an eighth of what it costs using some of the commercial kits. In this video we also comment on critical steps during the process and give detailed instructions on how to design the mutagenic primers.
Basic Protocols, Issue 27, Site directed Mutagenesis, Mutagenesis, Mutation, Plasmid, Thermocycling, PCR, Pfu-Polymerase, Dpn1, cost saving
1135
Play Button
A New Screening Method for the Directed Evolution of Thermostable Bacteriolytic Enzymes
Authors: Ryan D. Heselpoth, Daniel C. Nelson.
Institutions: University of Maryland .
Directed evolution is defined as a method to harness natural selection in order to engineer proteins to acquire particular properties that are not associated with the protein in nature. Literature has provided numerous examples regarding the implementation of directed evolution to successfully alter molecular specificity and catalysis1. The primary advantage of utilizing directed evolution instead of more rational-based approaches for molecular engineering relates to the volume and diversity of variants that can be screened2. One possible application of directed evolution involves improving structural stability of bacteriolytic enzymes, such as endolysins. Bacteriophage encode and express endolysins to hydrolyze a critical covalent bond in the peptidoglycan (i.e. cell wall) of bacteria, resulting in host cell lysis and liberation of progeny virions. Notably, these enzymes possess the ability to extrinsically induce lysis to susceptible bacteria in the absence of phage and furthermore have been validated both in vitro and in vivo for their therapeutic potential3-5. The subject of our directed evolution study involves the PlyC endolysin, which is composed of PlyCA and PlyCB subunits6. When purified and added extrinsically, the PlyC holoenzyme lyses group A streptococci (GAS) as well as other streptococcal groups in a matter of seconds and furthermore has been validated in vivo against GAS7. Significantly, monitoring residual enzyme kinetics after elevated temperature incubation provides distinct evidence that PlyC loses lytic activity abruptly at 45 °C, suggesting a short therapeutic shelf life, which may limit additional development of this enzyme. Further studies reveal the lack of thermal stability is only observed for the PlyCA subunit, whereas the PlyCB subunit is stable up to ~90 °C (unpublished observation). In addition to PlyC, there are several examples in literature that describe the thermolabile nature of endolysins. For example, the Staphylococcus aureus endolysin LysK and Streptococcus pneumoniae endolysins Cpl-1 and Pal lose activity spontaneously at 42 °C, 43.5 °C and 50.2 °C, respectively8-10. According to the Arrhenius equation, which relates the rate of a chemical reaction to the temperature present in the particular system, an increase in thermostability will correlate with an increase in shelf life expectancy11. Toward this end, directed evolution has been shown to be a useful tool for altering the thermal activity of various molecules in nature, but never has this particular technology been exploited successfully for the study of bacteriolytic enzymes. Likewise, successful accounts of progressing the structural stability of this particular class of antimicrobials altogether are nonexistent. In this video, we employ a novel methodology that uses an error-prone DNA polymerase followed by an optimized screening process using a 96 well microtiter plate format to identify mutations to the PlyCA subunit of the PlyC streptococcal endolysin that correlate to an increase in enzyme kinetic stability (Figure 1). Results after just one round of random mutagenesis suggest the methodology is generating PlyC variants that retain more than twice the residual activity when compared to wild-type (WT) PlyC after elevated temperature treatment.
Immunology, Issue 69, Molecular Biology, Genetics, Microbiology, directed evolution, thermal behavior, thermostability, endolysin, enzybiotic, bacteriolytic, antimicrobial, therapeutic, PlyC
4216
Play Button
Live-cell Video Microscopy of Fungal Pathogen Phagocytosis
Authors: Leanne E. Lewis, Judith M. Bain, Blessing Okai, Neil A.R. Gow, Lars Peter Erwig.
Institutions: University of Aberdeen, University of Aberdeen.
Phagocytic clearance of fungal pathogens, and microorganisms more generally, may be considered to consist of four distinct stages: (i) migration of phagocytes to the site where pathogens are located; (ii) recognition of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs); (iii) engulfment of microorganisms bound to the phagocyte cell membrane, and (iv) processing of engulfed cells within maturing phagosomes and digestion of the ingested particle. Studies that assess phagocytosis in its entirety are informative1, 2, 3, 4, 5 but are limited in that they do not normally break the process down into migration, engulfment and phagosome maturation, which may be affected differentially. Furthermore, such studies assess uptake as a single event, rather than as a continuous dynamic process. We have recently developed advanced live-cell imaging technologies, and have combined these with genetic functional analysis of both pathogen and host cells to create a cross-disciplinary platform for the analysis of innate immune cell function and fungal pathogenesis. These studies have revealed novel aspects of phagocytosis that could only be observed using systematic temporal analysis of the molecular and cellular interactions between human phagocytes and fungal pathogens and infectious microorganisms more generally. For example, we have begun to define the following: (a) the components of the cell surface required for each stage of the process of recognition, engulfment and killing of fungal cells1, 6, 7, 8; (b) how surface geometry influences the efficiency of macrophage uptake and killing of yeast and hyphal cells7; and (c) how engulfment leads to alteration of the cell cycle and behavior of macrophages 9, 10. In contrast to single time point snapshots, live-cell video microscopy enables a wide variety of host cells and pathogens to be studied as continuous sequences over lengthy time periods, providing spatial and temporal information on a broad range of dynamic processes, including cell migration, replication and vesicular trafficking. Here we describe in detail how to prepare host and fungal cells, and to conduct the video microscopy experiments. These methods can provide a user-guide for future studies with other phagocytes and microorganisms.
Infection, Issue 71, Immunology, Microbiology, Medicine, Cellular Biology, Molecular Biology, Infectious Diseases, Mycoses, Candidiasis, Bacterial Infections and Mycoses, Immune System Diseases, Live-cell imaging, phagocytosis, Candida albicans, host-pathogen interaction, pathogen, pathogen-associated molecular patterns, pattern recognition receptors, macrophage, fungus
50196
Play Button
Peptide-based Identification of Functional Motifs and their Binding Partners
Authors: Martin N. Shelton, Ming Bo Huang, Syed Ali, Kateena Johnson, William Roth, Michael Powell, Vincent Bond.
Institutions: Morehouse School of Medicine, Institute for Systems Biology, Universiti Sains Malaysia.
Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.
Virology, Issue 76, Biochemistry, Immunology, Infection, Infectious Diseases, Molecular Biology, Medicine, Genetics, Microbiology, Genomics, Proteins, Exosomes, HIV, Peptides, Exocytosis, protein trafficking, secretion, HIV-1, Nef, Secretion Modification Region, SMR, peptide, AIDS, assay
50362
Play Button
Generation of Enterobacter sp. YSU Auxotrophs Using Transposon Mutagenesis
Authors: Jonathan James Caguiat.
Institutions: Youngstown State University.
Prototrophic bacteria grow on M-9 minimal salts medium supplemented with glucose (M-9 medium), which is used as a carbon and energy source. Auxotrophs can be generated using a transposome. The commercially available, Tn5-derived transposome used in this protocol consists of a linear segment of DNA containing an R6Kγ replication origin, a gene for kanamycin resistance and two mosaic sequence ends, which serve as transposase binding sites. The transposome, provided as a DNA/transposase protein complex, is introduced by electroporation into the prototrophic strain, Enterobacter sp. YSU, and randomly incorporates itself into this host’s genome. Transformants are replica plated onto Luria-Bertani agar plates containing kanamycin, (LB-kan) and onto M-9 medium agar plates containing kanamycin (M-9-kan). The transformants that grow on LB-kan plates but not on M-9-kan plates are considered to be auxotrophs. Purified genomic DNA from an auxotroph is partially digested, ligated and transformed into a pir+ Escherichia coli (E. coli) strain. The R6Kγ replication origin allows the plasmid to replicate in pir+ E. coli strains, and the kanamycin resistance marker allows for plasmid selection. Each transformant possesses a new plasmid containing the transposon flanked by the interrupted chromosomal region. Sanger sequencing and the Basic Local Alignment Search Tool (BLAST) suggest a putative identity of the interrupted gene. There are three advantages to using this transposome mutagenesis strategy. First, it does not rely on the expression of a transposase gene by the host. Second, the transposome is introduced into the target host by electroporation, rather than by conjugation or by transduction and therefore is more efficient. Third, the R6Kγ replication origin makes it easy to identify the mutated gene which is partially recovered in a recombinant plasmid. This technique can be used to investigate the genes involved in other characteristics of Enterobacter sp. YSU or of a wider variety of bacterial strains.
Microbiology, Issue 92, Auxotroph, transposome, transposon, mutagenesis, replica plating, glucose minimal medium, complex medium, Enterobacter
51934
Play Button
Conducting Miller-Urey Experiments
Authors: Eric T. Parker, James H. Cleaves, Aaron S. Burton, Daniel P. Glavin, Jason P. Dworkin, Manshui Zhou, Jeffrey L. Bada, Facundo M. Fernández.
Institutions: Georgia Institute of Technology, Tokyo Institute of Technology, Institute for Advanced Study, NASA Johnson Space Center, NASA Goddard Space Flight Center, University of California at San Diego.
In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.
Chemistry, Issue 83, Geosciences (General), Exobiology, Miller-Urey, Prebiotic chemistry, amino acids, spark discharge
51039
Play Button
Expression, Isolation, and Purification of Soluble and Insoluble Biotinylated Proteins for Nerve Tissue Regeneration
Authors: Aleesha M. McCormick, Natalie A. Jarmusik, Elizabeth J. Endrizzi, Nic D. Leipzig.
Institutions: University of Akron.
Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing  a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification.
Bioengineering, Issue 83, protein engineering, recombinant protein production, AviTag, BirA, biotinylation, pET vector system, E. coli, inclusion bodies, Ni-NTA, size exclusion chromatography
51295
Play Button
Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology
Authors: Zachary Z. Sun, Clarmyra A. Hayes, Jonghyeon Shin, Filippo Caschera, Richard M. Murray, Vincent Noireaux.
Institutions: California Institute of Technology, California Institute of Technology, Massachusetts Institute of Technology, University of Minnesota.
Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform.1 This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology.2,3 To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems.4,5 The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted.7 The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters.6,8 Accompanying mathematical models are available.9,10 The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."
Cellular Biology, Issue 79, Bioengineering, Synthetic Biology, Chemistry Techniques, Synthetic, Molecular Biology, control theory, TX-TL, cell-free expression, in vitro, transcription-translation, cell-free protein synthesis, synthetic biology, systems biology, Escherichia coli cell extract, biological circuits, biomolecular breadboard
50762
Play Button
Development of a Negative Selectable Marker for Entamoeba histolytica
Authors: Mayuresh M Abhyankar, Sarah M Haviland, Carol A Gilchrist, William A Petri, Jr..
Institutions: University of Virginia Health System.
Entamoeba histolytica is the causative agent of amebiasis and infects up to 10% of the world's population. The molecular techniques that have enabled the up- and down-regulation of gene expression rely on the transfection of stably maintained plasmids. While these have increased our understanding of Entamoeba virulence factors, the capacity to integrate exogenous DNA into genome, which would allow reverse genetics experiments, would be a significant advantage in the study of this parasite. The challenges presented by this organism include inability to select for homologous recombination events and difficulty to cure episomal plasmid DNA from transfected trophozoites. The later results in a high background of exogenous DNA, a major problem in the identification of trophozoites in which a bona fide genomic integration event has occurred. We report the development of a negative selection system based upon transgenic expression of a yeast cytosine deaminase and uracil phosphoribosyl transferase chimera (FCU1) and selection with prodrug 5-fluorocytosine (5-FC). The FCU1 enzyme converts non-toxic 5-FC into toxic 5-fluorouracil and 5-fluorouridine-5'-monophosphate. E. histolytica lines expressing FCU1 were found to be 30 fold more sensitive to the prodrug compared to the control strain.
Infectious Disease, Issue 46, Entamoeba, negative selectable marker, 5-fluorocytosine, gene knockout, Cytosine deaminase, UPRT CMFDA.
2410
Play Button
Split-and-pool Synthesis and Characterization of Peptide Tertiary Amide Library
Authors: Yu Gao, Thomas Kodadek.
Institutions: The Scripps Research Institute.
Peptidomimetics are great sources of protein ligands. The oligomeric nature of these compounds enables us to access large synthetic libraries on solid phase by using combinatorial chemistry. One of the most well studied classes of peptidomimetics is peptoids. Peptoids are easy to synthesize and have been shown to be proteolysis-resistant and cell-permeable. Over the past decade, many useful protein ligands have been identified through screening of peptoid libraries. However, most of the ligands identified from peptoid libraries do not display high affinity, with rare exceptions. This may be due, in part, to the lack of chiral centers and conformational constraints in peptoid molecules. Recently, we described a new synthetic route to access peptide tertiary amides (PTAs). PTAs are a superfamily of peptidomimetics that include but are not limited to peptides, peptoids and N-methylated peptides. With side chains on both α-carbon and main chain nitrogen atoms, the conformation of these molecules are greatly constrained by sterical hindrance and allylic 1,3 strain. (Figure 1) Our study suggests that these PTA molecules are highly structured in solution and can be used to identify protein ligands. We believe that these molecules can be a future source of high-affinity protein ligands. Here we describe the synthetic method combining the power of both split-and-pool and sub-monomer strategies to synthesize a sample one-bead one-compound (OBOC) library of PTAs.
Chemistry, Issue 88, Split-and-pool synthesis, peptide tertiary amide, PTA, peptoid, high-throughput screening, combinatorial library, solid phase, triphosgene (BTC), one-bead one-compound, OBOC
51299
Play Button
Identifying the Effects of BRCA1 Mutations on Homologous Recombination using Cells that Express Endogenous Wild-type BRCA1
Authors: Jeffrey Parvin, Natsuko Chiba, Derek Ransburgh.
Institutions: The Ohio State University, Tohoku University.
The functional analysis of missense mutations can be complicated by the presence in the cell of the endogenous protein. Structure-function analyses of the BRCA1 have been complicated by the lack of a robust assay for the full length BRCA1 protein and the difficulties inherent in working with cell lines that express hypomorphic BRCA1 protein1,2,3,4,5. We developed a system whereby the endogenous BRCA1 protein in a cell was acutely depleted by RNAi targeting the 3'-UTR of the BRCA1 mRNA and replaced by co-transfecting a plasmid expressing a BRCA1 variant. One advantage of this procedure is that the acute silencing of BRCA1 and simultaneous replacement allow the cells to grow without secondary mutations or adaptations that might arise over time to compensate for the loss of BRCA1 function. This depletion and add-back procedure was done in a HeLa-derived cell line that was readily assayed for homologous recombination activity. The homologous recombination assay is based on a previously published method whereby a recombination substrate is integrated into the genome (Figure 1)6,7,8,9. This recombination substrate has the rare-cutting I-SceI restriction enzyme site inside an inactive GFP allele, and downstream is a second inactive GFP allele. Transfection of the plasmid that expresses I-SceI results in a double-stranded break, which may be repaired by homologous recombination, and if homologous recombination does repair the break it creates an active GFP allele that is readily scored by flow cytometry for GFP protein expression. Depletion of endogenous BRCA1 resulted in an 8-10-fold reduction in homologous recombination activity, and add-back of wild-type plasmid fully restored homologous recombination function. When specific point mutants of full length BRCA1 were expressed from co-transfected plasmids, the effect of the specific missense mutant could be scored. As an example, the expression of the BRCA1(M18T) protein, a variant of unknown clinical significance10, was expressed in these cells, it failed to restore BRCA1-dependent homologous recombination. By contrast, expression of another variant, also of unknown significance, BRCA1(I21V) fully restored BRCA1-dependent homologous recombination function. This strategy of testing the function of BRCA1 missense mutations has been applied to another biological system assaying for centrosome function (Kais et al, unpublished observations). Overall, this approach is suitable for the analysis of missense mutants in any gene that must be analyzed recessively.
Cell Biology, Issue 48, BRCA1, homologous recombination, breast cancer, RNA interference, DNA repair
2468
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
2953
Play Button
TransFLP — A Method to Genetically Modify Vibrio cholerae Based on Natural Transformation and FLP-recombination
Authors: Melanie Blokesch.
Institutions: Ecole Polytechnique Fédérale de Lausanne (EPFL).
Several methods are available to manipulate bacterial chromosomes1-3. Most of these protocols rely on the insertion of conditionally replicative plasmids (e.g. harboring pir-dependent or temperature-sensitive replicons1,2). These plasmids are integrated into bacterial chromosomes based on homology-mediated recombination. Such insertional mutants are often directly used in experimental settings. Alternatively, selection for plasmid excision followed by its loss can be performed, which for Gram-negative bacteria often relies on the counter-selectable levan sucrase enzyme encoded by the sacB gene4. The excision can either restore the pre-insertion genotype or result in an exchange between the chromosome and the plasmid-encoded copy of the modified gene. A disadvantage of this technique is that it is time-consuming. The plasmid has to be cloned first; it requires horizontal transfer into V. cholerae (most notably by mating with an E. coli donor strain) or artificial transformation of the latter; and the excision of the plasmid is random and can either restore the initial genotype or create the desired modification if no positive selection is exerted. Here, we present a method for rapid manipulation of the V. cholerae chromosome(s)5 (Figure 1). This TransFLP method is based on the recently discovered chitin-mediated induction of natural competence in this organism6 and other representative of the genus Vibrio such as V. fischeri7. Natural competence allows the uptake of free DNA including PCR-generated DNA fragments. Once taken up, the DNA recombines with the chromosome given the presence of a minimum of 250-500 bp of flanking homologous region8. Including a selection marker in-between these flanking regions allows easy detection of frequently occurring transformants. This method can be used for different genetic manipulations of V. cholerae and potentially also other naturally competent bacteria. We provide three novel examples on what can be accomplished by this method in addition to our previously published study on single gene deletions and the addition of affinity-tag sequences5. Several optimization steps concerning the initial protocol of chitin-induced natural transformation6 are incorporated in this TransFLP protocol. These include among others the replacement of crab shell fragments by commercially available chitin flakes8, the donation of PCR-derived DNA as transforming material9, and the addition of FLP-recombination target sites (FRT)5. FRT sites allow site-directed excision of the selection marker mediated by the Flp recombinase10.
Immunology, Issue 68, Microbiology, Genetics, natural transformation, DNA uptake, FLP recombination, chitin, Vibrio cholerae
3761
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
51438
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
50863
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
51204
Play Button
Genetic Studies of Human DNA Repair Proteins Using Yeast as a Model System
Authors: Monika Aggarwal, Robert M. Brosh Jr..
Institutions: National Institute on Aging, NIH.
Understanding the roles of human DNA repair proteins in genetic pathways is a formidable challenge to many researchers. Genetic studies in mammalian systems have been limited due to the lack of readily available tools including defined mutant genetic cell lines, regulatory expression systems, and appropriate selectable markers. To circumvent these difficulties, model genetic systems in lower eukaryotes have become an attractive choice for the study of functionally conserved DNA repair proteins and pathways. We have developed a model yeast system to study the poorly defined genetic functions of the Werner syndrome helicase-nuclease (WRN) in nucleic acid metabolism. Cellular phenotypes associated with defined genetic mutant backgrounds can be investigated to clarify the cellular and molecular functions of WRN through its catalytic activities and protein interactions. The human WRN gene and associated variants, cloned into DNA plasmids for expression in yeast, can be placed under the control of a regulatory plasmid element. The expression construct can then be transformed into the appropriate yeast mutant background, and genetic function assayed by a variety of methodologies. Using this approach, we determined that WRN, like its related RecQ family members BLM and Sgs1, operates in a Top3-dependent pathway that is likely to be important for genomic stability. This is described in our recent publication [1] at www.impactaging.com. Detailed methods of specific assays for genetic complementation studies in yeast are provided in this paper.
Microbiology, Issue 37, Werner syndrome, helicase, topoisomerase, RecQ, Bloom's syndrome, Sgs1, genomic instability, genetics, DNA repair, yeast
1639
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
2534
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.