JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Inhibition of hedgehog signaling decreases proliferation and clonogenicity of human mesenchymal stem cells.
PUBLISHED: 01-11-2011
Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology.
Authors: Dongsheng Gu, Qipeng Fan, Jingwu Xie.
Published: 08-21-2013
Cancer development is a multiple-step process involving many cell types including cancer precursor cells, immune cells, fibroblasts and endothelial cells. Each type of cells undergoes signaling and functional changes during carcinogenesis. The current challenge for many cancer researchers is to dissect these changes in each cell type during the multiple-step process in vivo. In the last few years, the authors have developed a set of procedures to isolate different cell populations during skin cancer development using K14creER/R26-SmoM2YFP mice. The procedure is divided into 6 parts: 1) generating appropriate mice for the study (K14creER+ and R26-SmoM2YFP+ mice in this protocol); 2) inducing SmoM2YFP expression in mouse skin; 3) preparing mouse skin biopsies; 4) isolating epidermis from skin; 5) preparing single cells from epidermis; 6) labeling single cell populations for flow cytometry analysis. Generation of sufficient number of mice with the right genotype is the limiting step in this protocol, which may take up to two months. The rest of steps take a few hours to a few days. Within this protocol, we also include a section for troubleshooting. Although we focus on skin cancer, this protocol may be modified to apply for other animal models of human diseases.
24 Related JoVE Articles!
Play Button
Isolation, Enrichment, and Maintenance of Medulloblastoma Stem Cells
Authors: Xi Huang, Tatiana Ketova, Ying LItingtung, Chin Chiang.
Institutions: Vanderbilt University.
Brain tumors have been suggested to possess a small population of stem cells that are the root cause of tumorigenesis. Neurosphere assays have been generally adopted to study the nature of neural stem cells, including those derived from normal and tumorous tissues. However, appreciable amounts of differentiation and cell death are common in cultured neurospheres likely due to sub-optimal condition such as accessibility of all cells within sphere aggregates to culture medium. Medulloblastoma, the most common pediatric CNS tumor, is characterized by its rapid progression and tendency to spread along the entire brain-spinal axis with dismal clinical outcome. Medulloblastoma is a neuroepithelial tumor of the cerebellum, accounting for 20% and 40% of intracranial and posterior fossa tumor in childhood, respectively1. It is now well established that Shh signaling stimulates proliferation of cerebellar granule neuron precursors (CGNPs) during cerebellar development 2-4. Numerous studies using mouse models, in which the Shh pathway is constitutively activated, have linked Shh signaling with medulloblastoma 5-9. A recent report has shown that a subset of medulloblastoma cells derived from Patched1LacZ/+ mice are cancer stem cells, which are capable of initiating and propogating tumors 10. Here we describe an efficient method to isolate, enrich and maintain tumor stem cells derived from several mouse models of medulloblastoma, with constitutively activated Shh pathway due to a mutation in Smoothened (11, hereon referred as SmoM2), a GPCR that is critical for Shh pathway activation. In every isolated medulloblastoma tissue, we were able to establish numerous highly proliferative colonies. These cells robustly expressed several neural stem cell markers such as Nestin and Sox2, can undergo serial passages (greater than 20) and were clonogenic. While these cultured tumor stem cells were relatively small, often bipoar with high nuclear to cytoplasmic ratio when cultured under conditions favoring stem cell growth, they dramatically altered their morphology, extended multiple cellular processes, flattened and withdrew from the cell cycle upon switching to a cell culture medium supplemented with 10% fetal bovine serum. More importantly, these tumor stem cells differentiated into Tuj1+ or NeuN+ neurons, GFAP+ astrocytes and CNPase+ oligodendrocytes, thus highlighting their multi-potency. Furthermore, these cells were capable of propagating secondary medulloblastomas when orthotopically transplanted into host mice.
Medicine, Issue 43, medulloblastoma, stem cells, isolation, in vitro culture
Play Button
Efficient Differentiation of Mouse Embryonic Stem Cells into Motor Neurons
Authors: Chia-Yen Wu, Dosh Whye, Robert W. Mason, Wenlan Wang.
Institutions: Alfred I. duPont Hospital for Children.
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons1-4. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol5 that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning6. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity7-9. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb91. Using this robust protocol, we achieved 51±0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test)5. Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.
Stem Cell Biology, Issue 64, Molecular Biology, Developmental Biology, Mouse embryonic stem cells, motor neurons, spinal cord, Hb9, neurosciences, retinoic acid, sonic hedgehog, Islet-1, choline acetyltransferase
Play Button
Labeling Stem Cells with Fluorescent Dyes for non-invasive Detection with Optical Imaging
Authors: Sophie Boddington, Tobias D. Henning, Elizabeth J. Sutton, Heike E. Daldrup-Link.
Institutions: Contrast Agent Research Group at the Center for Molecular and Functional Imaging, Department of Radiology, University of California San Francisco.
Optical imaging (OI) is an easy, fast and inexpensive tool for in vivo monitoring of new stem cell based therapies. The technique is based on ex vivo labeling of stem cells with a fluorescent dye, subsequent intravenous injection of the labeled cells and visualization of their accumulation in specific target organs or pathologies. The presented technique demonstrates how we label human mesenchymal stem cells (hMSC) by simple incubation with the lipophilic fluorescent dye DiD (C67H103CIN2O3S) and how we label human embryonic stem cells (hESC) with the FDA approved fluorescent dye Indocyanine Green (ICG). The uptake mechanism is via adherence and diffusion of the lypophilic dye across the phospholipid cell membrane bilayer. The labeling efficiency is usually improved if the cells are incubated with the dye in serum-free media as opposed to incubation in serum-containing media. Furthermore, the addition of the transfection agent Protamine Sulfate significantly improves contrast agent uptake.
Cell Biology, Issue 14, stem cells, mesenchymal cells, contrast agent, optical imaging, cell tracking,
Play Button
Directed Cellular Self-Assembly to Fabricate Cell-Derived Tissue Rings for Biomechanical Analysis and Tissue Engineering
Authors: Tracy A. Gwyther, Jason Z. Hu, Kristen L. Billiar, Marsha W. Rolle.
Institutions: Worcester Polytechnic Institute.
Each year, hundreds of thousands of patients undergo coronary artery bypass surgery in the United States.1 Approximately one third of these patients do not have suitable autologous donor vessels due to disease progression or previous harvest. The aim of vascular tissue engineering is to develop a suitable alternative source for these bypass grafts. In addition, engineered vascular tissue may prove valuable as living vascular models to study cardiovascular diseases. Several promising approaches to engineering blood vessels have been explored, with many recent studies focusing on development and analysis of cell-based methods.2-5 Herein, we present a method to rapidly self-assemble cells into 3D tissue rings that can be used in vitro to model vascular tissues. To do this, suspensions of smooth muscle cells are seeded into round-bottomed annular agarose wells. The non-adhesive properties of the agarose allow the cells to settle, aggregate and contract around a post at the center of the well to form a cohesive tissue ring.6,7 These rings can be cultured for several days prior to harvesting for mechanical, physiological, biochemical, or histological analysis. We have shown that these cell-derived tissue rings yield at 100-500 kPa ultimate tensile strength8 which exceeds the value reported for other tissue engineered vascular constructs cultured for similar durations (<30 kPa).9,10 Our results demonstrate that robust cell-derived vascular tissue ring generation can be achieved within a short time period, and offers the opportunity for direct and quantitative assessment of the contributions of cells and cell-derived matrix (CDM) to vascular tissue structure and function.
Bioengineering, Issue 57, Cell-derived matrix, vascular tissue engineering, smooth muscle cells, cellular self-assembly, tissue biomechanics
Play Button
Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells
Authors: Nadja Zeltner, Fabien G. Lafaille, Faranak Fattahi, Lorenz Studer.
Institutions: Sloan-Kettering Institute for Cancer Research, The Rockefeller University.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Neuroscience, Issue 87, Embryonic Stem Cells (ESCs), Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Neural Crest, Peripheral Nervous System (PNS), pluripotent stem cells, neural crest cells, in vitro differentiation, disease modeling, differentiation protocol, human embryonic stem cells, human pluripotent stem cells
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
Play Button
The Specification of Telencephalic Glutamatergic Neurons from Human Pluripotent Stem Cells
Authors: Erin M. Boisvert, Kyle Denton, Ling Lei, Xue-Jun Li.
Institutions: The University of Connecticut Health Center, The University of Connecticut Health Center, The University of Connecticut Health Center.
Here, a stepwise procedure for efficiently generating telencephalic glutamatergic neurons from human pluripotent stem cells (PSCs) has been described. The differentiation process is initiated by breaking the human PSCs into clumps which round up to form aggregates when the cells are placed in a suspension culture. The aggregates are then grown in hESC medium from days 1-4 to allow for spontaneous differentiation. During this time, the cells have the capacity to become any of the three germ layers. From days 5-8, the cells are placed in a neural induction medium to push them into the neural lineage. Around day 8, the cells are allowed to attach onto 6 well plates and differentiate during which time the neuroepithelial cells form. These neuroepithelial cells can be isolated at day 17. The cells can then be kept as neurospheres until they are ready to be plated onto coverslips. Using a basic medium without any caudalizing factors, neuroepithelial cells are specified into telencephalic precursors, which can then be further differentiated into dorsal telencephalic progenitors and glutamatergic neurons efficiently. Overall, our system provides a tool to generate human glutamatergic neurons for researchers to study the development of these neurons and the diseases which affect them.
Stem Cell Biology, Issue 74, Neuroscience, Neurobiology, Developmental Biology, Cellular Biology, Molecular Biology, Stem Cells, Embryonic Stem Cells, ESCs, Pluripotent Stem Cells, Induced Pluripotent Stem Cells, iPSC, neural differentiation, forebrain, glutamatergic neuron, neural patterning, development, neurons
Play Button
A Novel Light Damage Paradigm for Use in Retinal Regeneration Studies in Adult Zebrafish
Authors: Jennifer L. Thomas, Ryan Thummel.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
Neuroscience, Issue 80, Zebrafish, Retinal Degeneration, Retina, Photoreceptor, Müller glia, Light damage
Play Button
Primary Orthotopic Glioma Xenografts Recapitulate Infiltrative Growth and Isocitrate Dehydrogenase I Mutation
Authors: J. Geraldo Valadez, Anuraag Sarangi, Christopher J. Lundberg, Michael K. Cooper.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, Veteran Affairs TVHS.
Malignant gliomas constitute a heterogeneous group of highly infiltrative glial neoplasms with distinct clinical and molecular features. Primary orthotopic xenografts recapitulate the histopathological and molecular features of malignant glioma subtypes in preclinical animal models. To model WHO grades III and IV malignant gliomas in transplantation assays, human tumor cells are xenografted into an orthotopic site, the brain, of immunocompromised mice. In contrast to secondary xenografts that utilize cultured tumor cells, human glioma cells are dissociated from resected specimens and transplanted without prior passage in tissue culture to generate primary xenografts. The procedure in this report details tumor sample preparation, intracranial transplantation into immunocompromised mice, monitoring for tumor engraftment and tumor harvesting for subsequent passage into recipient animals or analysis. Tumor cell preparation requires 2 hr and surgical procedure requires 20 min/animal.
Medicine, Issue 83, Glioma, Malignant glioma, primary orthotopic xenograft, isocitrate dehydrogenase
Play Button
Labeling hESCs and hMSCs with Iron Oxide Nanoparticles for Non-Invasive in vivo Tracking with MR Imaging
Authors: Tobias D. Henning, Sophie Boddington, Heike E. Daldrup-Link.
Institutions: Contrast Agent Research Group at the Center for Molecular and Functional Imaging, Department of Radiology, University of California San Francisco.
In recent years, stem cell research has led to a better understanding of developmental biology, various diseases and its potential impact on regenerative medicine. A non-invasive method to monitor the transplanted stem cells repeatedly in vivo would greatly enhance our ability to understand the mechanisms that control stem cell death and identify trophic factors and signaling pathways that improve stem cell engraftment. MR imaging has been proven to be an effective tool for the in vivo depiction of stem cells with near microscopic anatomical resolution. In order to detect stem cells with MR, the cells have to be labeled with cell specific MR contrast agents. For this purpose, iron oxide nanoparticles, such as superparamagnetic iron oxide particles (SPIO), are applied, because of their high sensitivity for cell detection and their excellent biocompatibility. SPIO particles are composed of an iron oxide core and a dextran, carboxydextran or starch coat, and function by creating local field inhomogeneities, that cause a decreased signal on T2-weighted MR images. This presentation will demonstrate techniques for labeling of stem cells with clinically applicable MR contrast agents for subsequent non-invasive in vivo tracking of the labeled cells with MR imaging.
Cell Biology, Issue 13, cell labeling, stem cell, MR imaging, cell tracking, iron oxide, contrast agents, mesenchymal stem cells
Play Button
Labeling Stem Cells with Ferumoxytol, an FDA-Approved Iron Oxide Nanoparticle
Authors: Rosalinda T. Castaneda, Aman Khurana, Ramsha Khan, Heike E. Daldrup-Link.
Institutions: Molecular Imaging Program at Stanford (MIPS) , Stanford University .
Stem cell based therapies offer significant potential for the field of regenerative medicine. However, much remains to be understood regarding the in vivo kinetics of transplanted cells. A non-invasive method to repetitively monitor transplanted stem cells in vivo would allow investigators to directly monitor stem cell transplants and identify successful or unsuccessful engraftment outcomes. A wide range of stem cells continues to be investigated for countless applications. This protocol focuses on 3 different stem cell populations: human embryonic kidney 293 (HEK293) cells, human mesenchymal stem cells (hMSC) and induced pluripotent stem (iPS) cells. HEK 293 cells are derived from human embryonic kidney cells grown in culture with sheared adenovirus 5 DNA. These cells are widely used in research because they are easily cultured, grow quickly and are easily transfected. hMSCs are found in adult marrow. These cells can be replicated as undifferentiated cells while maintaining multipotency or the potential to differentiate into a limited number of cell fates. hMSCs can differentiate to lineages of mesenchymal tissues, including osteoblasts, adipocytes, chondrocytes, tendon, muscle, and marrow stroma. iPS cells are genetically reprogrammed adult cells that have been modified to express genes and factors similar to defining properties of embryonic stem cells. These cells are pluripotent meaning they have the capacity to differentiate into all cell lineages 1. Both hMSCs and iPS cells have demonstrated tissue regenerative capacity in-vivo. Magnetic resonance (MR) imaging together with the use of superparamagnetic iron oxide (SPIO) nanoparticle cell labels have proven effective for in vivo tracking of stem cells due to the near microscopic anatomical resolution, a longer blood half-life that permits longitudinal imaging and the high sensitivity for cell detection provided by MR imaging of SPIO nanoparticles 2-4. In addition, MR imaging with the use of SPIOs is clinically translatable. SPIOs are composed of an iron oxide core with a dextran, carboxydextran or starch surface coat that serves to contain the bioreactive iron core from plasma components. These agents create local magnetic field inhomogeneities that lead to a decreased signal on T2-weighted MR images 5. Unfortunately, SPIOs are no longer being manufactured. Second generation, ultrasmall SPIOs (USPIO), however, offer a viable alternative. Ferumoxytol (FerahemeTM) is one USPIO composed of a non-stoichiometric magnetite core surrounded by a polyglucose sorbitol carboxymethylether coat. The colloidal, particle size of ferumoxytol is 17-30 nm as determined by light scattering. The molecular weight is 750 kDa, and the relaxivity constant at 2T MRI field is 58.609 mM-1 sec-1 strength4. Ferumoxytol was recently FDA-approved as an iron supplement for treatment of iron deficiency in patients with renal failure 6. Our group has applied this agent in an “off label” use for cell labeling applications. Our technique demonstrates efficient labeling of stem cells with ferumoxytol that leads to significant MR signal effects of labeled cells on MR images. This technique may be applied for non-invasive monitoring of stem cell therapies in pre-clinical and clinical settings.
Medicine, Issue 57, USPIO, cell labeling, MR imaging, MRI, molecular imaging, iron oxides, ferumoxytol, cellular imaging, nanoparticles
Play Button
Analysis of Cell Cycle Position in Mammalian Cells
Authors: Matthew J. Cecchini, Mehdi Amiri, Frederick A. Dick.
Institutions: University of Western Ontario, University of Western Ontario.
The regulation of cell proliferation is central to tissue morphogenesis during the development of multicellular organisms. Furthermore, loss of control of cell proliferation underlies the pathology of diseases like cancer. As such there is great need to be able to investigate cell proliferation and quantitate the proportion of cells in each phase of the cell cycle. It is also of vital importance to indistinguishably identify cells that are replicating their DNA within a larger population. Since a cell′s decision to proliferate is made in the G1 phase immediately before initiating DNA synthesis and progressing through the rest of the cell cycle, detection of DNA synthesis at this stage allows for an unambiguous determination of the status of growth regulation in cell culture experiments. DNA content in cells can be readily quantitated by flow cytometry of cells stained with propidium iodide, a fluorescent DNA intercalating dye. Similarly, active DNA synthesis can be quantitated by culturing cells in the presence of radioactive thymidine, harvesting the cells, and measuring the incorporation of radioactivity into an acid insoluble fraction. We have considerable expertise with cell cycle analysis and recommend a different approach. We Investigate cell proliferation using bromodeoxyuridine/fluorodeoxyuridine (abbreviated simply as BrdU) staining that detects the incorporation of these thymine analogs into recently synthesized DNA. Labeling and staining cells with BrdU, combined with total DNA staining by propidium iodide and analysis by flow cytometry1 offers the most accurate measure of cells in the various stages of the cell cycle. It is our preferred method because it combines the detection of active DNA synthesis, through antibody based staining of BrdU, with total DNA content from propidium iodide. This allows for the clear separation of cells in G1 from early S phase, or late S phase from G2/M. Furthermore, this approach can be utilized to investigate the effects of many different cell stimuli and pharmacologic agents on the regulation of progression through these different cell cycle phases. In this report we describe methods for labeling and staining cultured cells, as well as their analysis by flow cytometry. We also include experimental examples of how this method can be used to measure the effects of growth inhibiting signals from cytokines such as TGF-β1, and proliferative inhibitors such as the cyclin dependent kinase inhibitor, p27KIP1. We also include an alternate protocol that allows for the analysis of cell cycle position in a sub-population of cells within a larger culture5. In this case, we demonstrate how to detect a cell cycle arrest in cells transfected with the retinoblastoma gene even when greatly outnumbered by untransfected cells in the same culture. These examples illustrate the many ways that DNA staining and flow cytometry can be utilized and adapted to investigate fundamental questions of mammalian cell cycle control.
Molecular Biology, Issue 59, cell cycle, proliferation, flow cytometry, DNA synthesis, fluorescence
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Mouse Fetal Whole Intestine Culture System for Ex Vivo Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development
Authors: Katherine D. Walton, Åsa Kolterud.
Institutions: University of Michigan, Karolinska Instituet Novum.
Most morphogenetic processes in the fetal intestine have been inferred from thin sections of fixed tissues, providing snapshots of changes over developmental stages. Three-dimensional information from thin serial sections can be challenging to interpret because of the difficulty of reconstructing serial sections perfectly and maintaining proper orientation of the tissue over serial sections. Recent findings by Grosse et al., 2011 highlight the importance of three- dimensional information in understanding morphogenesis of the developing villi of the intestine1. Three-dimensional reconstruction of singly labeled intestinal cells demonstrated that the majority of the intestinal epithelial cells contact both the apical and basal surfaces. Furthermore, three-dimensional reconstruction of the actin cytoskeleton at the apical surface of the epithelium demonstrated that the intestinal lumen is continuous and that secondary lumens are an artifact of sectioning. Those two points, along with the demonstration of interkinetic nuclear migration in the intestinal epithelium, defined the developing intestinal epithelium as a pseudostratified epithelium and not stratified as previously thought1. The ability to observe the epithelium three-dimensionally was seminal to demonstrating this point and redefining epithelial morphogenesis in the fetal intestine. With the evolution of multi-photon imaging technology and three-dimensional reconstruction software, the ability to visualize intact, developing organs is rapidly improving. Two-photon excitation allows less damaging penetration deeper into tissues with high resolution. Two-photon imaging and 3D reconstruction of the whole fetal mouse intestines in Walton et al., 2012 helped to define the pattern of villus outgrowth2. Here we describe a whole organ culture system that allows ex vivo development of villi and extensions of that culture system to allow the intestines to be three-dimensionally imaged during their development.
Molecular Biology, Issue 91, Developmental Biology, morphogenesis, mouse fetal intestine, whole organ culture, live imaging, cell signaling, three-dimensional reconstruction, two-photon imaging
Play Button
Endothelial Cell Co-culture Mediates Maturation of Human Embryonic Stem Cell to Pancreatic Insulin Producing Cells in a Directed Differentiation Approach
Authors: Maria Jaramillo, Ipsita Banerjee.
Institutions: University of Pittsburgh, University of Pittsburgh.
Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11. The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed differentiation protocol where the human ESCs are first induced towards endoderm by Activin A along with inhibition of PI3K pathway. Pancreatic specification of endoderm cells is achieved by inhibition of sonic hedgehog signaling by Cyclopamine along with retinoid induction by addition of Retinoic Acid. The final stage of maturation is induced by endothelial cell signaling achieved by a co-culture configuration. While several endothelial cells have been tested in the co-culture, herein we present our data with rat heart microvascular endothelial Cells (RHMVEC), primarily for the ease of analysis.
Stem Cell Biology, Issue 61, Human embryonic stem cells, Endothelial cells, Pancreatic differentiation, Co-culture
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
Play Button
Directed Dopaminergic Neuron Differentiation from Human Pluripotent Stem Cells
Authors: Pengbo Zhang, Ninuo Xia, Renee A. Reijo Pera.
Institutions: Stanford University School of Medicine, Stanford University School of Medicine.
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson’s disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development, A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here, we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons, which mimics embryonic DA neuron development. In our protocol, we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method, and then convert the FP cells to A9 DA neurons, which could be maintained in vitro for several months. This efficient, repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients, in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.
Neuroscience, Issue 91, dopaminergic neuron, substantia nigra pars compacta, midbrain, Parkinson’s disease, directed differentiation, human pluripotent stem cells, floor plate
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
Authors: Razieh Karamzadeh, Mohamadreza Baghaban Eslaminejad, Reza Aflatoonian.
Institutions: Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
Developing wisdom teeth are easy-accessible source of stem cells during the adulthood which could be obtained by routine orthodontic treatments. Human pulp-derived stem cells (hDPSCs) possess high proliferation potential with multi-lineage differentiation capacity compare to the ordinary source of adult stem cells1-8; therefore, hDPSCs could be the good candidates for autologous transplantation in tissue engineering and regenerative medicine. Along with these benefits, possessing the mesenchymal stem cells (MSC) features, such as immunolodulatory effect, make hDPSCs more valuable, even in the case of allograft transplantation6,9,10. Therefore, the primary step for using this source of stem cells is to select the best protocol for isolating hDPSCs from pulp tissue. In order to achieve this goal, it is crucial to investigate the effect of various isolation conditions on different cellular behaviors, such as their common surface markers & also their differentiation capacity. Thus, here we separate human pulp tissue from impacted third molar teeth, and then used both existing protocols based on literature, for isolating hDPSCs,11-13 i.e. enzymatic dissociation of pulp tissue (DPSC-ED) or outgrowth from tissue explants (DPSC-OG). In this regards, we tried to facilitate the isolation methods by using dental diamond disk. Then, these cells characterized in terms of stromal-associated Markers (CD73, CD90, CD105 & CD44), hematopoietic/endothelial Markers (CD34, CD45 & CD11b), perivascular marker, like CD146 and also STRO-1. Afterwards, these two protocols were compared based on the differentiation potency into odontoblasts by both quantitative polymerase chain reaction (QPCR) & Alizarin Red Staining. QPCR were used for the assessment of the expression of the mineralization-related genes (alkaline phosphatase; ALP, matrix extracellular phosphoglycoprotein; MEPE & dentin sialophosphoprotein; DSPP).14
Stem Cell Biology, Issue 69, Medicine, Developmental Biology, Cellular Biology, Bioengineering, Dental pulp tissue, Human third molar, Human dental pulp stem cells, hDPSC, Odontoblasts, Outgrown stem cells, MSC, differentiation
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.