JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Biodiversity and ecosystem function in the Gulf of Maine: pattern and role of zooplankton and pelagic nekton.
PUBLISHED: 01-01-2011
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to inter annual climate variation than zoo plankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown" but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources.
Authors: Mayandi Sivaguru, Glenn A. Fried, Carly A. H. Miller, Bruce W. Fouke.
Published: 09-05-2014
An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissues comprising the Caribbean reef building corals Montastraeaannularis and M. faveolata. These approaches include fluorescence microscopy (FM), serial block face imaging (SBFI), and two-photon confocal laser scanning microscopy (TPLSM). SBFI provides deep tissue imaging after physical sectioning; it details the tissue surface texture and 3D visualization to tissue depths of more than 2 mm. Complementary FM and TPLSM yield ultra-high resolution images of tissue cellular structure. Results have: (1) identified previously unreported lobate tissue morphologies on the outer wall of individual coral polyps and (2) created the first surface maps of the 3D distribution and tissue density of chromatophores and algae-like dinoflagellate zooxanthellae endosymbionts. Spectral absorption peaks of 500 nm and 675 nm, respectively, suggest that M. annularis and M. faveolata contain similar types of chlorophyll and chromatophores. However, M. annularis and M. faveolata exhibit significant differences in the tissue density and 3D distribution of these key cellular components. This study focusing on imaging methods indicates that SBFI is extremely useful for analysis of large mm-scale samples of decalcified coral tissues. Complimentary FM and TPLSM reveal subtle submillimeter scale changes in cellular distribution and density in nondecalcified coral tissue samples. The TPLSM technique affords: (1) minimally invasive sample preparation, (2) superior optical sectioning ability, and (3) minimal light absorption and scattering, while still permitting deep tissue imaging.
23 Related JoVE Articles!
Play Button
Establishment of Microbial Eukaryotic Enrichment Cultures from a Chemically Stratified Antarctic Lake and Assessment of Carbon Fixation Potential
Authors: Jenna M. Dolhi, Nicholas Ketchum, Rachael M. Morgan-Kiss.
Institutions: Miami University .
Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low temperatures, extreme shade, hypersalinity, and 24-hour darkness during the winter 1. These extreme environmental conditions limit the biota in Lake Bonney almost exclusively to microorganisms 2. Single-celled microbial eukaryotes (called "protists") are important players in global biogeochemical cycling 3 and play important ecological roles in the cycling of carbon in the dry valley lakes, occupying both primary and tertiary roles in the aquatic food web. In the dry valley aquatic food web, protists that fix inorganic carbon (autotrophy) are the major producers of organic carbon for organotrophic organisms 4, 2. Phagotrophic or heterotrophic protists capable of ingesting bacteria and smaller protists act as the top predators in the food web 5. Last, an unknown proportion of the protist population is capable of combined mixotrophic metabolism 6, 7. Mixotrophy in protists involves the ability to combine photosynthetic capability with phagotrophic ingestion of prey microorganisms. This form of mixotrophy differs from mixotrophic metabolism in bacterial species, which generally involves uptake dissolved carbon molecules. There are currently very few protist isolates from permanently ice-capped polar lakes, and studies of protist diversity and ecology in this extreme environment have been limited 8, 4, 9, 10, 5. A better understanding of protist metabolic versatility in the simple dry valley lake food web will aid in the development of models for the role of protists in the global carbon cycle. We employed an enrichment culture approach to isolate potentially phototrophic and mixotrophic protists from Lake Bonney. Sampling depths in the water column were chosen based on the location of primary production maxima and protist phylogenetic diversity 4, 11, as well as variability in major abiotic factors affecting protist trophic modes: shallow sampling depths are limited for major nutrients, while deeper sampling depths are limited by light availability. In addition, lake water samples were supplemented with multiple types of growth media to promote the growth of a variety of phototrophic organisms. RubisCO catalyzes the rate limiting step in the Calvin Benson Bassham (CBB) cycle, the major pathway by which autotrophic organisms fix inorganic carbon and provide organic carbon for higher trophic levels in aquatic and terrestrial food webs 12. In this study, we applied a radioisotope assay modified for filtered samples 13 to monitor maximum carboxylase activity as a proxy for carbon fixation potential and metabolic versatility in the Lake Bonney enrichment cultures.
Microbiology, Issue 62, Antarctic lake, McMurdo Dry Valleys, Enrichment cultivation, Microbial eukaryotes, RubisCO
Play Button
Separation of Single-stranded DNA, Double-stranded DNA and RNA from an Environmental Viral Community Using Hydroxyapatite Chromatography
Authors: Douglas W. Fadrosh, Cynthia Andrews-Pfannkoch, Shannon J. Williamson.
Institutions: The J. Craig Venter Institute, The J. Craig Venter Institute.
Viruses, particularly bacteriophages (phages), are the most numerous biological entities on Earth1,2. Viruses modulate host cell abundance and diversity, contribute to the cycling of nutrients, alter host cell phenotype, and influence the evolution of both host cell and viral communities through the lateral transfer of genes 3. Numerous studies have highlighted the staggering genetic diversity of viruses and their functional potential in a variety of natural environments. Metagenomic techniques have been used to study the taxonomic diversity and functional potential of complex viral assemblages whose members contain single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and RNA genotypes 4-9. Current library construction protocols used to study environmental DNA-containing or RNA-containing viruses require an initial nuclease treatment in order to remove nontargeted templates 10. However, a comprehensive understanding of the collective gene complement of the virus community and virus diversity requires knowledge of all members regardless of genome composition. Fractionation of purified nucleic acid subtypes provides an effective mechanism by which to study viral assemblages without sacrificing a subset of the community’s genetic signature. Hydroxyapatite, a crystalline form of calcium phosphate, has been employed in the separation of nucleic acids, as well as proteins and microbes, since the 1960s11. By exploiting the charge interaction between the positively-charged Ca2+ ions of the hydroxyapatite and the negatively charged phosphate backbone of the nucleic acid subtypes, it is possible to preferentially elute each nucleic acid subtype independent of the others. We recently employed this strategy to independently fractionate the genomes of ssDNA, dsDNA and RNA-containing viruses in preparation of DNA sequencing 12. Here, we present a method for the fractionation and recovery of ssDNA, dsDNA and RNA viral nucleic acids from mixed viral assemblages using hydroxyapatite chromotography.
Immunology, Issue 55, Hydroxyapatite, single-stranded DNA, double-stranded DNA, RNA, DNA, chromatography, viral ecology, virus, bacteriophage
Play Button
Soil Sampling and Isolation of Entomopathogenic Nematodes (Steinernematidae, Heterorhabditidae)
Authors: Rousel A. Orozco, Ming-Min Lee, S. Patricia Stock.
Institutions: University of Arizona.
Entomopathogenic nematodes (a.k.a. EPN) represent a group of soil-inhabiting nematodes that parasitize a wide range of insects. These nematodes belong to two families: Steinernematidae and Heterorhabditidae. Until now, more than 70 species have been described in the Steinernematidae and there are about 20 species in the Heterorhabditidae. The nematodes have a mutualistic partnership with Enterobacteriaceae bacteria and together they act as a potent insecticidal complex that kills a wide range of insect species. Herein, we focus on the most common techniques considered for collecting EPN from soil. The second part of this presentation focuses on the insect-baiting technique, a widely used approach for the isolation of EPN from soil samples, and the modified White trap technique which is used for the recovery of these nematodes from infected insects. These methods and techniques are key steps for the successful establishment of EPN cultures in the laboratory and also form the basis for other bioassays that consider these nematodes as model organisms for research in other biological disciplines. The techniques shown in this presentation correspond to those performed and/or designed by members of S. P. Stock laboratory as well as those described by various authors.
Environmental Sciences, Issue 89, Entomology, Nematology, Steinernema, Heterorhabditis, nematodes, soil sampling, insect-bait, modified White-trap
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Linking Predation Risk, Herbivore Physiological Stress and Microbial Decomposition of Plant Litter
Authors: Oswald J. Schmitz, Mark A. Bradford, Michael S. Strickland, Dror Hawlena.
Institutions: Yale University, Virginia Tech, The Hebrew University of Jerusalem.
The quantity and quality of detritus entering the soil determines the rate of decomposition by microbial communities as well as recycle rates of nitrogen (N) and carbon (C) sequestration1,2. Plant litter comprises the majority of detritus3, and so it is assumed that decomposition is only marginally influenced by biomass inputs from animals such as herbivores and carnivores4,5. However, carnivores may influence microbial decomposition of plant litter via a chain of interactions in which predation risk alters the physiology of their herbivore prey that in turn alters soil microbial functioning when the herbivore carcasses are decomposed6. A physiological stress response by herbivores to the risk of predation can change the C:N elemental composition of herbivore biomass7,8,9 because stress from predation risk increases herbivore basal energy demands that in nutrient-limited systems forces herbivores to shift their consumption from N-rich resources to support growth and reproduction to C-rich carbohydrate resources to support heightened metabolism6. Herbivores have limited ability to store excess nutrients, so stressed herbivores excrete N as they increase carbohydrate-C consumption7. Ultimately, prey stressed by predation risk increase their body C:N ratio7,10, making them poorer quality resources for the soil microbial pool likely due to lower availability of labile N for microbial enzyme production6. Thus, decomposition of carcasses of stressed herbivores has a priming effect on the functioning of microbial communities that decreases subsequent ability to of microbes to decompose plant litter6,10,11. We present the methodology to evaluate linkages between predation risk and litter decomposition by soil microbes. We describe how to: induce stress in herbivores from predation risk; measure those stress responses, and measure the consequences on microbial decomposition. We use insights from a model grassland ecosystem comprising the hunting spider predator (Pisuarina mira), a dominant grasshopper herbivore (Melanoplus femurrubrum),and a variety of grass and forb plants9.
Environmental Sciences, Issue 73, Microbiology, Plant Biology, Entomology, Organisms, Investigative Techniques, Biological Phenomena, Chemical Phenomena, Metabolic Phenomena, Microbiological Phenomena, Earth Resources and Remote Sensing, Life Sciences (General), Litter Decomposition, Ecological Stoichiometry, Physiological Stress and Ecosystem Function, Predation Risk, Soil Respiration, Carbon Sequestration, Soil Science, respiration, spider, grasshoper, model system
Play Button
Quantification of the Respiratory Burst Response as an Indicator of Innate Immune Health in Zebrafish
Authors: Michelle F. Goody, Eric Peterman, Con Sullivan, Carol H. Kim.
Institutions: University of Maine.
The phagocyte respiratory burst is part of the innate immune response to pathogen infection and involves the production of reactive oxygen species (ROS). ROS are toxic and function to kill phagocytized microorganisms. In vivo quantification of phagocyte-derived ROS provides information regarding an organism's ability to mount a robust innate immune response. Here we describe a protocol to quantify and compare ROS in whole zebrafish embryos upon chemical induction of the phagocyte respiratory burst. This method makes use of a non-fluorescent compound that becomes fluorescent upon oxidation by ROS. Individual zebrafish embryos are pipetted into the wells of a microplate and incubated in this fluorogenic substrate with or without a chemical inducer of the respiratory burst. Fluorescence in each well is quantified at desired time points using a microplate reader. Fluorescence readings are adjusted to eliminate background fluorescence and then compared using an unpaired t-test. This method allows for comparison of the respiratory burst potential of zebrafish embryos at different developmental stages and in response to experimental manipulations such as protein knockdown, overexpression, or treatment with pharmacological agents. This method can also be used to monitor the respiratory burst response in whole dissected kidneys or cell preparations from kidneys of adult zebrafish and some other fish species. We believe that the relative simplicity and adaptability of this protocol will complement existing protocols and will be of interest to researchers who seek to better understand the innate immune response.
Immunology, Issue 79, Phagocytes, Immune System, Zebrafish, Reactive Oxygen Species, Immune System Processes, Host-Pathogen Interactions, Respiratory Burst, Immune System Phenomena, innate immunity, bacteria, virus, infection]
Play Button
Analyzing the Movement of the Nauplius 'Artemia salina' by Optical Tracking of Plasmonic Nanoparticles
Authors: Silke R. Kirchner, Michael Fedoruk, Theobald Lohmüller, Jochen Feldmann.
Institutions: Ludwig-Maximilians-Universität.
We demonstrate how optical tweezers may provide a sensitive tool to analyze the fluidic vibrations generated by the movement of small aquatic organisms. A single gold nanoparticle held by an optical tweezer is used as a sensor to quantify the rhythmic motion of a Nauplius larva (Artemia salina) in a water sample. This is achieved by monitoring the time dependent displacement of the trapped nanoparticle as a consequence of the Nauplius activity. A Fourier analysis of the nanoparticle's position then yields a frequency spectrum that is characteristic to the motion of the observed species. This experiment demonstrates the capability of this method to measure and characterize the activity of small aquatic larvae without the requirement to observe them directly and to gain information about the position of the larvae with respect to the trapped particle. Overall, this approach could give an insight on the vitality of certain species found in an aquatic ecosystem and could expand the range of conventional methods for analyzing water samples.
Biophysics, Issue 89, optical tweezers, particle tracking, plasmonic nanoparticles, Nauplius, bioindicator, water sample analysis
Play Button
Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling
Authors: Jennifer L Soong, Dan Reuss, Colin Pinney, Ty Boyack, Michelle L Haddix, Catherine E Stewart, M. Francesca Cotrufo.
Institutions: Colorado State University, USDA-ARS, Colorado State University.
Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components, respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight 13C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling.
Environmental Sciences, Issue 83, 13C, 15N, plant, stable isotope labeling, Andropogon gerardii, metabolic compounds, structural compounds, hot water extraction
Play Button
Seawater Sampling and Collection
Authors: Elena Zaikova, Alyse Hawley, David A. Walsh, Steven J. Hallam.
Institutions: University of British Columbia - UBC.
This video documents methods for collecting coastal marine water samples and processing them for various downstream applications including biomass concentration, nucleic acid purification, cell abundance, nutrient and trace gas analyses. For today's demonstration samples were collected from the deck of the HMS John Strickland operating in Saanich Inlet. An A-frame derrick, with a multi-purpose winch and cable system, is used in combination with Niskin or Go-Flo water sampling bottles. Conductivity, Temperature, and Depth (CTD) sensors are also used to sample the underlying water mass. To minimize outgassing, trace gas samples are collected first. Then, nutrients, water chemistry, and cell counts are determined. Finally, waters are collected for biomass filtration. The set-up and collection time for a single cast is ~1.5 hours at a maximum depth of 215 meters. Therefore, a total of 6 hours is generally needed to complete the collection series described here.
Molecular Biology, Issue 28, microbial biomass, nucleic acids, nutrients, trace gas, ammonia, sulfide, seawater, fjord, hypoxic, Saanich Inlet
Play Button
Modeling Mucosal Candidiasis in Larval Zebrafish by Swimbladder Injection
Authors: Remi L. Gratacap, Audrey C. Bergeron, Robert T. Wheeler.
Institutions: University of Maine, University of Maine.
Early defense against mucosal pathogens consists of both an epithelial barrier and innate immune cells. The immunocompetency of both, and their intercommunication, are paramount for the protection against infections. The interactions of epithelial and innate immune cells with a pathogen are best investigated in vivo, where complex behavior unfolds over time and space. However, existing models do not allow for easy spatio-temporal imaging of the battle with pathogens at the mucosal level. The model developed here creates a mucosal infection by direct injection of the fungal pathogen, Candida albicans, into the swimbladder of juvenile zebrafish. The resulting infection enables high-resolution imaging of epithelial and innate immune cell behavior throughout the development of mucosal disease. The versatility of this method allows for interrogation of the host to probe the detailed sequence of immune events leading to phagocyte recruitment and to examine the roles of particular cell types and molecular pathways in protection. In addition, the behavior of the pathogen as a function of immune attack can be imaged simultaneously by using fluorescent protein-expressing C. albicans. Increased spatial resolution of the host-pathogen interaction is also possible using the described rapid swimbladder dissection technique. The mucosal infection model described here is straightforward and highly reproducible, making it a valuable tool for the study of mucosal candidiasis. This system may also be broadly translatable to other mucosal pathogens such as mycobacterial, bacterial or viral microbes that normally infect through epithelial surfaces.
Immunology, Issue 93, Zebrafish, mucosal candidiasis, mucosal infection, epithelial barrier, epithelial cells, innate immunity, swimbladder, Candida albicans, in vivo.
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples
Authors: Michael J. Rothrock Jr., Kelli L. Hiett, John Gamble, Andrew C. Caudill, Kellie M. Cicconi-Hogan, J. Gregory Caporaso.
Institutions: USDA-Agricultural Research Service, USDA-Agricultural Research Service, Oregon State University, University of Georgia, Northern Arizona University.
The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.
Molecular Biology, Issue 94, DNA extraction, poultry, environmental, feces, litter, semi-automated, microbiomics, qPCR
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
Laboratory-determined Phosphorus Flux from Lake Sediments as a Measure of Internal Phosphorus Loading
Authors: Mary E. Ogdahl, Alan D. Steinman, Maggie E. Weinert.
Institutions: Grand Valley State University.
Eutrophication is a water quality issue in lakes worldwide, and there is a critical need to identify and control nutrient sources. Internal phosphorus (P) loading from lake sediments can account for a substantial portion of the total P load in eutrophic, and some mesotrophic, lakes. Laboratory determination of P release rates from sediment cores is one approach for determining the role of internal P loading and guiding management decisions. Two principal alternatives to experimental determination of sediment P release exist for estimating internal load: in situ measurements of changes in hypolimnetic P over time and P mass balance. The experimental approach using laboratory-based sediment incubations to quantify internal P load is a direct method, making it a valuable tool for lake management and restoration. Laboratory incubations of sediment cores can help determine the relative importance of internal vs. external P loads, as well as be used to answer a variety of lake management and research questions. We illustrate the use of sediment core incubations to assess the effectiveness of an aluminum sulfate (alum) treatment for reducing sediment P release. Other research questions that can be investigated using this approach include the effects of sediment resuspension and bioturbation on P release. The approach also has limitations. Assumptions must be made with respect to: extrapolating results from sediment cores to the entire lake; deciding over what time periods to measure nutrient release; and addressing possible core tube artifacts. A comprehensive dissolved oxygen monitoring strategy to assess temporal and spatial redox status in the lake provides greater confidence in annual P loads estimated from sediment core incubations.
Environmental Sciences, Issue 85, Limnology, internal loading, eutrophication, nutrient flux, sediment coring, phosphorus, lakes
Play Button
Large Volume (20L+) Filtration of Coastal Seawater Samples
Authors: David A. Walsh, Elena Zaikova, Steven J. Hallam.
Institutions: University of British Columbia - UBC.
The workflow begins with the collection of coastal marine waters for downstream microbial community, nutrient and trace gas analyses. For this method, samples were collected from the deck of the HMS John Strickland operating in Saanich Inlet. This video documents large volume (≥20 L) filtration of microbial biomass, ranging between 0.22μm and 2.7μm in diameter, from the water column. Two 20L samples can be filtered simultaneously using a single pump unit equipped with four rotating heads. Filtration is done in the field on extended trips, or immediately upon return for day trips. It is important to record the amount of water passing through each sterivex filter unit. To prevent biofilm formation between sampling trips, all filtration equipment must be rinsed with dilute HCl and deionized water and autoclaved immediately after use. This procedure will take approximately 5 hours plus an additional hour for clean up.
Molecular Biology, Issue 28, microbial biomass, filtration, sterivex, GF/D, nucleic acids, seawater, fjord, hypoxic, Saanich Inlet
Play Button
Small Volume (1-3L) Filtration of Coastal Seawater Samples
Authors: David A. Walsh, Elena Zaikova, Steven J. Hallam.
Institutions: University of British Columbia - UBC.
The workflow begins with the collection of coastal marine waters for downstream microbial community, nutrient and trace gas analyses. For today s demonstration samples were collected from the deck of the HMS John Strickland operating in Saanich Inlet. This video documents small volume (~1 L) filtration of microbial biomass from the water column. The protocol is an extension of the large volume sampling protocol described earlier, with one major difference: here, there is no pre-filtration step, so all size classes of biomass are collected down to the 0.22 μm filter cut-off. Samples collected this way are ideal for nucleic acid analysis. The set-up, filtration, and clean-up steps each take about 20-30 minutes. If using two peristaltic pumps simultaneously, up to 8 samples may be filtered at the same time. To prevent biofilm formation between sampling trips, all filtration equipment must be rinsed with dilute HCl and deionized water and autoclaved immediately after use.
Molecular Biology, Issue 28, microbiology, seawater, filtration, biomass concentration
Play Button
Investigating the Microbial Community in the Termite Hindgut - Interview
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter explains why the termite-gut microbial community is an excellent system for studying the complex interactions between microbes. The symbiotic relationship existing between the host insect and lignocellulose-degrading gut microbes is explained, as well as the industrial uses of these microbes for degrading plant biomass and generating biofuels.
Microbiology, issue 4, microbial community, diversity
Play Button
Layers of Symbiosis - Visualizing the Termite Hindgut Microbial Community
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
Microbiology, issue 4, microbial community, symbiosis, hindgut
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.