JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development.
PUBLISHED: 01-10-2011
Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1(-/-) mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p
Authors: Anne-Sophie Delmarcelle, Mylah Villacorte, Anne-Christine Hick, Christophe E. Pierreux.
Published: 06-06-2014
The thyroid is a bilobated endocrine gland localized at the base of the neck, producing the thyroid hormones T3, T4, and calcitonin. T3 and T4 are produced by differentiated thyrocytes, organized in closed spheres called follicles, while calcitonin is synthesized by C-cells, interspersed in between the follicles and a dense network of blood capillaries. Although adult thyroid architecture and functions have been extensively described and studied, the formation of the “angio-follicular” units, the distribution of C-cells in the parenchyma and the paracrine communications between epithelial and endothelial cells is far from being understood. This method describes the sequential steps of mouse embryonic thyroid anlagen dissection and its culture on semiporous filters or on microscopy plastic slides. Within a period of four days, this culture system faithfully recapitulates in vivo thyroid development. Indeed, (i) bilobation of the organ occurs (for e12.5 explants), (ii) thyrocytes precursors organize into follicles and polarize, (iii) thyrocytes and C-cells differentiate, and (iv) endothelial cells present in the microdissected tissue proliferate, migrate into the thyroid lobes, and closely associate with the epithelial cells, as they do in vivo. Thyroid tissues can be obtained from wild type, knockout or fluorescent transgenic embryos. Moreover, explants culture can be manipulated by addition of inhibitors, blocking antibodies, growth factors, or even cells or conditioned medium. Ex vivo development can be analyzed in real-time, or at any time of the culture by immunostaining and RT-qPCR. In conclusion, thyroid explant culture combined with downstream whole-mount or on sections imaging and gene expression profiling provides a powerful system for manipulating and studying morphogenetic and differentiation events of thyroid organogenesis.
23 Related JoVE Articles!
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization
Authors: Christina N. Cheng, Yue Li, Amanda N. Marra, Valerie Verdun, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Developmental Biology, Issue 89, animals, vertebrates, fishes, zebrafish, growth and development, morphogenesis, embryonic and fetal development, organogenesis, natural science disciplines, embryo, whole mount in situ hybridization, flat mount, deyolking, imaging
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors
Authors: Chiara Greggio, Filippo De Franceschi, Manuel Figueiredo-Larsen, Anne Grapin-Botton.
Institutions: Swiss Institute for Experimental Cancer Research, University of Copenhagen.
The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells 1. The whole embryonic organ can be cultured at multiple stages of development 2-4. These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens. We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.
Developmental Biology, Issue 89, Pancreas, Progenitors, Branching Epithelium, Development, Organ Culture, 3D Culture, Diabetes, Differentiation, Morphogenesis, Cell organization, Beta Cell.
Play Button
Substernal Thyroid Biopsy Using Endobronchial Ultrasound-guided Transbronchial Needle Aspiration
Authors: Abhishek Kumar, Arjun Mohan, Samjot S. Dhillon, Kassem Harris.
Institutions: State University of New York, Buffalo, Roswell Park Cancer Institute, State University of New York, Buffalo.
Substernal thyroid goiter (STG) represents about 5.8% of all mediastinal lesions1. There is a wide variation in the published incidence rates due to the lack of a standardized definition for STG. Biopsy is often required to differentiate benign from malignant lesions. Unlike cervical thyroid, the overlying sternum precludes ultrasound-guided percutaneous fine needle aspiration of STG. Consequently, surgical mediastinoscopy is performed in the majority of cases, causing significant procedure related morbidity and cost to healthcare. Endobronchial Ultrasound-guided Transbronchial Needle Aspiration (EBUS-TBNA) is a frequently used procedure for diagnosis and staging of non-small cell lung cancer (NSCLC). Minimally invasive needle biopsy for lesions adjacent to the airways can be performed under real-time ultrasound guidance using EBUS. Its safety and efficacy is well established with over 90% sensitivity and specificity. The ability to perform EBUS as an outpatient procedure with same-day discharges offers distinct morbidity and financial advantages over surgery. As physicians performing EBUS gained procedural expertise, they have attempted to diversify its role in the diagnosis of non-lymph node thoracic pathologies. We propose here a role for EBUS-TBNA in the diagnosis of substernal thyroid lesions, along with a step-by-step protocol for the procedure.
Medicine, Issue 93, substernal thyroid, retrosternal thyroid, intra-thoracic thyroid, goiter, endobronchial ultrasound, EBUS, transbronchial needle aspiration, TBNA, biopsy, needle biopsy
Play Button
Manipulating the Murine Lacrimal Gland
Authors: Jennifer K. Finley, D'Juan Farmer, Elaine Emmerson, Noel Cruz Pacheco, Sarah M. Knox.
Institutions: University of California San Francisco.
The lacrimal gland (LG) secretes aqueous tears necessary for maintaining the structure and function of the cornea, a transparent tissue essential for vision. In the human a single LG resides in the orbit above the lateral end of each eye delivering tears to the ocular surface through 3 - 5 ducts. The mouse has three pairs of major ocular glands, the most studied of which is the exorbital lacrimal gland (LG) located anterior and ventral to the ear. Similar to other glandular organs, the LG develops through the process of epithelial branching morphogenesis in which a single epithelial bud within a condensed mesenchyme undergoes multiple rounds of bud and duct formation to form an intricate interconnected network of secretory acini and ducts. This elaborate process has been well documented in many other epithelial organs such as the pancreas and salivary gland. However, the LG has been much less explored and the mechanisms controlling morphogenesis are poorly understood. We suspect that this under-representation as a model system is a consequence of the difficulties associated with finding, dissecting and culturing the LG. Thus, here we describe dissection techniques for harvesting embryonic and post-natal LG and methods for ex vivo culture of the tissue.
Developmental Biology, Issue 93, lacrimal gland, ex vivo, branching morphogenesis, organ culture, embryogenesis
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Quantification of Orofacial Phenotypes in Xenopus
Authors: Allyson E. Kennedy, Amanda J. Dickinson.
Institutions: Virginia Commonwealth University.
Xenopus has become an important tool for dissecting the mechanisms governing craniofacial development and defects. A method to quantify orofacial development will allow for more rigorous analysis of orofacial phenotypes upon abrogation with substances that can genetically or molecularly manipulate gene expression or protein function. Using two dimensional images of the embryonic heads, traditional size dimensions-such as orofacial width, height and area- are measured. In addition, a roundness measure of the embryonic mouth opening is used to describe the shape of the mouth. Geometric morphometrics of these two dimensional images is also performed to provide a more sophisticated view of changes in the shape of the orofacial region. Landmarks are assigned to specific points in the orofacial region and coordinates are created. A principle component analysis is used to reduce landmark coordinates to principle components that then discriminate the treatment groups. These results are displayed as a scatter plot in which individuals with similar orofacial shapes cluster together. It is also useful to perform a discriminant function analysis, which statistically compares the positions of the landmarks between two treatment groups. This analysis is displayed on a transformation grid where changes in landmark position are viewed as vectors. A grid is superimposed on these vectors so that a warping pattern is displayed to show where significant landmark positions have changed. Shape changes in the discriminant function analysis are based on a statistical measure, and therefore can be evaluated by a p-value. This analysis is simple and accessible, requiring only a stereoscope and freeware software, and thus will be a valuable research and teaching resource.
Developmental Biology, Issue 93, Orofacial quantification, geometric morphometrics, Xenopus, orofacial development, orofacial defects, shape changes, facial dimensions
Play Button
Generation of Dispersed Presomitic Mesoderm Cell Cultures for Imaging of the Zebrafish Segmentation Clock in Single Cells
Authors: Alexis B. Webb, Daniele Soroldoni, Annelie Oswald, Johannes Schindelin, Andrew C. Oates.
Institutions: Max Planck Institute of Molecular Cell Biology and Genetics.
Segmentation is a periodic and sequential morphogenetic process in vertebrates. This rhythmic formation of blocks of tissue called somites along the body axis is evidence of a genetic oscillator patterning the developing embryo. In zebrafish, the intracellular clock driving segmentation is comprised of members of the Her/Hes transcription factor family organized into negative feedback loops. We have recently generated transgenic fluorescent reporter lines for the cyclic gene her1 that recapitulate the spatio-temporal pattern of oscillations in the presomitic mesoderm (PSM). Using these lines, we developed an in vitro culture system that allows real-time analysis of segmentation clock oscillations within single, isolated PSM cells. By removing PSM tissue from transgenic embryos and then dispersing cells from oscillating regions onto glass-bottom dishes, we generated cultures suitable for time-lapse imaging of fluorescence signal from individual clock cells. This approach provides an experimental and conceptual framework for direct manipulation of the segmentation clock with unprecedented single-cell resolution, allowing its cell-autonomous and tissue-level properties to be distinguished and dissected.
Developmental Biology, Issue 89, Zebrafish, Primary Cell Culture, Biological Clocks, Somitogenesis, Oscillator, In Vitro, Time-lapse Imaging, Primary Culture, Fluorescence
Play Button
An Orthotopic Mouse Model of Anaplastic Thyroid Carcinoma
Authors: Will Sewell, Ashley Reeb, Reigh-Yi Lin.
Institutions: Saint Louis University School of Medicine.
Several types of animal models of human thyroid carcinomas have been established, including subcutaneous xenograft and orthotopic implantation of cancer cells into immunodeficient mice. Subcutaneous xenograft models have been valuable for preclinical screening and evaluation of new therapeutic treatments. There are a number of advantages to using a subcutaneous model; 1) rapid, 2) reproducible, and 3) tumor establishment, growth, and response to therapeutic agents may be monitored by visual inspection. However, substantial evidence has shed light on the short-comings of subcutaneous xenograft models1-3. For instance, medicinal treatments demonstrating curative properties in subcutaneous xenograft models often have no notable impact on the human disease. The microenvironment of the site of xenographic transplantation or injection lies at the heart of this dissimilarity. Orthotopic tumor xenograft models provide a more biologically relevant context in which to study the disease. The advantages of implanting diseased cells or tissue into their anatomical origin equivalent within a host animal includes a suitable site for tumor-host interactions, development of disease-related metastases and the ability to examine site-specific influence on investigational therapeutic remedies. Therefore, orthotopic xenograft models harbor far more clinical value because they closely reproduce human disease. For these reasons, a number of groups have taken advantage of an orthotopic thyroid cancer model as a research tool4-7. Here, we describe an approach that establishes an orthotopic model for the study of anaplastic thyroid carcinoma (ATC), which is highly invasive, resists treatment, and is virtually fatal in all diagnosed patients. Cultured ATC cells are prepared as a dissociated cellular suspension in a solution containing a basement membrane matrix. A small volume is slowly injected into the right thyroid gland. Overall appearance and health of the mice are monitored to ensure minimal post-operative complications and to gauge pathological penetrance of the cancer. Mice are sacrificed at 4 weeks, and tissue is collected for histological analysis. Animals may be taken at later time-points to examine more advance progression of the disease. Production of this orthotopic mouse model establishes a platform that accomplishes two objectives: 1) further our understanding of ATC pathology, and 2) screen current and future therapeutic agents for efficacy in combating ATC.
Cancer Biology, Issue 74, Medicine, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Tissues, Cells, Animal Structures, Endocrine System, Endocrine System Diseases, Orthotopic, mouse, anaplastic, thyroid, carcinoma, cancer, animal model
Play Button
A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation from Carotid Endothelium
Authors: Douglas Nam, Chih-Wen Ni, Amir Rezvan, Jin Suo, Klaudia Budzyn, Alexander Llanos, David G. Harrison, Don P. Giddens, Hanjoong Jo.
Institutions: Emory University, Georgia Tech and Emory University, Ewha Womans University.
Despite the well-known close association, direct evidence linking disturbed flow to atherogenesis has been lacking. We have recently used a modified version of carotid partial ligation methods [1,2] to show that it acutely induces low and oscillatory flow conditions, two key characteristics of disturbed flow, in the mouse common carotid artery. Using this model, we have provided direct evidence that disturbed flow indeed leads to rapid and robust atherosclerosis development in Apolipoprotein E knockout mouse [3]. We also developed a method of endothelial RNA preparation with high purity from the mouse carotid intima [3]. Using this mouse model and method, we found that partial ligation causes endothelial dysfunction in a week, followed by robust and rapid atheroma formation in two weeks in a hyperlipidemic mouse model along with features of complex lesion formation such as intraplaque neovascularization by four weeks. This rapid in vivo model and the endothelial RNA preparation method could be used to determine molecular mechanisms underlying flow-dependent regulation of vascular biology and diseases. Also, it could be used to test various therapeutic interventions targeting endothelial dysfunction and atherosclerosis in considerably reduced study duration.
JoVE Medicine, Issue 40, atherosclerosis, disturbed flow, shear stress, carotid, partial ligation, endothelial RNA
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
Play Button
RNAi Interference by dsRNA Injection into Drosophila Embryos
Authors: Ekaterini Iordanou, Rachana R. Chandran, Nicholas Blackstone, Lan Jiang.
Institutions: Oakland University.
Genetic screening is one of the most powerful methods available for gaining insights into complex biological process 1. Over the years many improvements and tools for genetic manipulation have become available in Drosophila 2. Soon after the initial discovery by Frie and Mello 3 that double stranded RNA can be used to knockdown the activity of individual genes in Caenorhabditis elegans, RNA interference (RNAi) was shown to provide a powerful reverse genetic approach to analyze gene functions in Drosophila organ development 4, 5. Many organs, including lung, kidney, liver, and vascular system, are composed of branched tubular networks that transport vital fluids or gases 6, 7. The analysis of Drosophila tracheal formation provides an excellent model system to study the morphogenesis of other tubular organs 8. The Berkeley Drosophila genome project has revealed hundreds of genes that are expressed in the tracheal system. To study the molecular and cellular mechanism of tube formation, the challenge is to understand the roles of these genes in tracheal development. Here, we described a detailed method of dsRNA injection into Drosophila embryo to knockdown individual gene expression. We successfully knocked down endogenous dysfusion(dys) gene expression by dsRNA injection. Dys is a bHLH-PAS protein expressed in tracheal fusion cells, and it is required for tracheal branch fusion 9, 10. dys-RNAi completely eliminated dys expression and resulted in tracheal fusion defect. This relatively simple method provides a tool to identify genes requried for tissure and organ development in Drosophila.
Developmental Biology, Issue 50, RNAi, dsRNA, Injection, Trachea, Development, Drosophila, Tubular
Play Button
Evaluation of Mammary Gland Development and Function in Mouse Models
Authors: Isabelle Plante, Michael K.G. Stewart, Dale W. Laird.
Institutions: University of Western Ontario.
The human mammary gland is composed of 15-20 lobes that secrete milk into a branching duct system opening at the nipple. Those lobes are themselves composed of a number of terminal duct lobular units made of secretory alveoli and converging ducts1. In mice, a similar architecture is observed at pregnancy in which ducts and alveoli are interspersed within the connective tissue stroma. The mouse mammary gland epithelium is a tree like system of ducts composed of two layers of cells, an inner layer of luminal cells surrounded by an outer layer of myoepithelial cells denoted by the confines of a basement membrane2. At birth, only a rudimental ductal tree is present, composed of a primary duct and 15-20 branches. Branch elongation and amplification start at the beginning of puberty, around 4 weeks old, under the influence of hormones3,4,5. At 10 weeks, most of the stroma is invaded by a complex system of ducts that will undergo cycles of branching and regression in each estrous cycle until pregnancy2. At the onset of pregnancy, a second phase of development begins, with the proliferation and differentiation of the epithelium to form grape-shaped milk secretory structures called alveoli6,7. Following parturition and throughout lactation, milk is produced by luminal secretory cells and stored within the lumen of alveoli. Oxytocin release, stimulated by a neural reflex induced by suckling of pups, induces synchronized contractions of the myoepithelial cells around the alveoli and along the ducts, allowing milk to be transported through the ducts to the nipple where it becomes available to the pups 8. Mammary gland development, differentiation and function are tightly orchestrated and require, not only interactions between the stroma and the epithelium, but also between myoepithelial and luminal cells within the epithelium9,10,11. Thereby, mutations in many genes implicated in these interactions may impair either ductal elongation during puberty or alveoli formation during early pregnancy, differentiation during late pregnancy and secretory activation leading to lactation12,13. In this article, we describe how to dissect mouse mammary glands and assess their development using whole mounts. We also demonstrate how to evaluate myoepithelial contractions and milk ejection using an ex-vivo oxytocin-based functional assay. The effect of a gene mutation on mammary gland development and function can thus be determined in situ by performing these two techniques in mutant and wild-type control mice.
Developmental Biology, Issue 53, mammary gland, whole mount, mouse model, mammary gland development, milk ejection
Play Button
Mouse in Utero Electroporation: Controlled Spatiotemporal Gene Transfection
Authors: Asuka Matsui, Aya C. Yoshida, Mayumi Kubota, Masaharu Ogawa, Tomomi Shimogori.
Institutions: RIKEN Brain Science Institute.
In order to understand the function of genes expressed in specific region of the developing brain, including signaling molecules and axon guidance molecules, local gene transfer or knock- out is required. Gene targeting knock-in or knock-out into local regions is possible to perform with combination with a specific CRE line, which is laborious, costly, and time consuming. Therefore, a simple transfection method, an in utero electroporation technique, which can be performed with short time, will be handy to test the possible function of candidate genes prior to the generation of transgenic animals 1,2. In addition to this, in utero electroporation targets areas of the brain where no specific CRE line exists, and will limit embryonic lethality 3,4. Here, we present a method of in utero electroporation combining two different types of electrodes for simple and convenient gene transfer into target areas of the developing brain. First, a unique holding method of embryos using an optic fiber optic light cable will make small embryos (from E9.5) visible for targeted DNA solution injection into ventricles and needle type electrodes insertion to the targeted brain area 5,6. The patterning of the brain such as cortical area occur at early embryonic stage, therefore, these early electroporation from E9.5 make a big contribution to understand entire area patterning event. Second, the precise shape of a capillary prevents uterine damage by making holes by insertion of the capillary. Furthermore, the precise shape of the needle electrodes are created with tungsten and platinum wire and sharpened using sand paper and insulated with nail polish 7, a method which is described in great detail in this protocol. This unique technique allows transfection of plasmid DNA into restricted areas of the brain and will enable small embryos to be electroporated. This will help to, open a new window for many scientists who are working on cell differentiation, cell migration, axon guidance in very early embryonic stage. Moreover, this technique will allow scientists to transfect plasmid DNA into deep parts of the developing brain such as thalamus and hypothalamus, where not many region-specific CRE lines exist for gain of function (GOF) or loss of function (LOF) analyses.
Neuroscience, Issue 54, In utero, electroporation, transfection, CNS, gene expression, gain of function, loss of function, neuron, axon
Play Button
In vitro Electroporation of the Lower Rhombic Lip of Midgestation Mouse Embryos
Authors: Patrick J. Holland, Angela M. George, Leslie T.C. Worrell, Rebecca L. Landsberg.
Institutions: University of Illinois at Springfield.
The rhombic lip is an embryonic neuroepithelium located in the hindbrain at the junction between the neural tube and the roofplate of the fourth ventricle (reviewed in 1). The rhombic lip can be subdivided into the upper rhombic lip (URL) which encompasses rhombomere 1 (r1) and generates neurons of the cerebellum and the lower rhombic lip (LRL) which gives rise to diverse neuronal brainstem lineages 2-4. LRL derivatives include the auditory neurons of the cochlear nuclei and those of the precerebellar nuclei that are involved in regulating balance and motor control 5-8. Neurogenesis from the LRL occurs over a large temporal window that encompasses embryonic days (E) 9.5-16.55, 9. Different neuronal lineages emerge from the LRL as postmitotic cells (or are born) during distinct developmental days during this neurogenic window. Electroporation of gene expression constructs can be used to manipulate gene expression in LRL progenitors and can potentially change the fate of the neurons produced from this region 10-12. Altering gene expression of LRL progenitors in the mouse via in utero electroporation has been highly successful for manipulating lineages born on embryonic day E12.5 or later 10, 12-14. In utero electroporations prior to E12.5 have been unsuccessful primarily due to the lethality associated with puncturing the fourth ventricle roofplate, a necessary step in delivering exogenous DNA that is electroporated into the LRL. However, many LRL derived lineages arise from the LRL earlier than E12.5 9. These earlier born lineages include the neurons that comprise the lateral reticular, external cuneate, and inferior olivary nuclei of the precerebellar system which function to connect inputs from the spinal cord and cortex to the cerebellum 5. In order to manipulate expression in the LRL of embryos younger than E12.5, we developed an in vitro system in which embryos are placed into culture following electroporation. This study presents an efficient and effective method for manipulating the gene expression of LRL progenitors at E11.5. Embryos electroporated with green fluorescent protein (GFP) driven from the broadly active CAG promoter reproducibly expressed GFP after 24 hours of culture. A critical aspect of this assay is that gene expression is only altered because of the expression of the exogenous gene and not because of secondary effects that result from the electroporation and culturing techniques. It was determined that the endogenous gene expression patterns remain undisturbed in electroporated and cultured embryos. This assay can be utilized to alter the fate of cells emerging from the LRL of embryos younger than E12.5 through the introduction of plasmids for overexpression or knock down (through RNAi) of different pro-neural transcription factors.
Neuroscience, Issue 66, Developmental Biology, Physiology, mouse, hindbrain, electroporation, lower rhombic lip
Play Button
Intraductal Injection of LPS as a Mouse Model of Mastitis: Signaling Visualized via an NF-κB Reporter Transgenic
Authors: Whitney Barham, Taylor Sherrill, Linda Connelly, Timothy S. Blackwell, Fiona E. Yull.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, University of Hawaii at Hilo College of Pharmacy.
Animal models of human disease are necessary in order to rigorously study stages of disease progression and associated mechanisms, and ultimately, as pre-clinical models to test interventions. In these methods, we describe a technique in which lipopolysaccharide (LPS) is injected into the lactating mouse mammary gland via the nipple, effectively modeling mastitis, or inflammation, of the gland. This simulated infection results in increased nuclear factor kappa B (NF-κB) signaling, as visualized through bioluminescent imaging of an NF-κB luciferase reporter mouse1. Our ultimate goal in developing these methods was to study the inflammation associated with mastitis in the lactating gland, which often includes redness, swelling, and immune cell infiltration2,3. Therefore, we were keenly aware that incision or any type of wounding of the skin, the nipple, or the gland in order to introduce the LPS could not be utilized in our methods since the approach would likely confound the read-out of inflammation. We also desired a straight-forward method that did not require specially made hand-drawn pipettes or the use of micromanipulators to hold these specialized tools in place. Thus, we determined to use a commercially available insulin syringe and to inject the agent into the mammary duct of an intact nipple. This method was successful and allowed us to study the inflammation associated with LPS injection without any additional effects overlaid by the process of injection. In addition, this method also utilized an NF-κB luciferase reporter transgenic mouse and bioluminescent imaging technology to visually and quantitatively show increased NF-κB signaling within the LPS-injected gland4. These methods are of interest to researchers of many disciplines who wish to model disease within the lactating mammary gland, as ultimately, the technique described here could be utilized for injection of a number of substances, and is not limited to only LPS.
Medicine, Issue 67, mastitis, intraductal injection, NF-kappaB, reporter transgenic, LPS, bioluminescent imaging, lactation
Play Button
Genetic Modification and Recombination of Salivary Gland Organ Cultures
Authors: Sharon J. Sequeira, Elise M. Gervais, Shayoni Ray, Melinda Larsen.
Institutions: University at Albany, SUNY.
Branching morphogenesis occurs during the development of many organs, and the embryonic mouse submandibular gland (SMG) is a classical model for the study of branching morphogenesis. In the developing SMG, this process involves iterative steps of epithelial bud and duct formation, to ultimately give rise to a complex branched network of acini and ducts, which serve to produce and modify/transport the saliva, respectively, into the oral cavity1-3. The epithelial-associated basement membrane and aspects of the mesenchymal compartment, including the mesenchyme cells, growth factors and the extracellular matrix, produced by these cells, are critical to the branching mechanism, although how the cellular and molecular events are coordinated remains poorly understood 4. The study of the molecular mechanisms driving epithelial morphogenesis advances our understanding of developmental mechanisms and provides insight into possible regenerative medicine approaches. Such studies have been hampered due to the lack of effective methods for genetic manipulation of the salivary epithelium. Currently, adenoviral transduction represents the most effective method for targeting epithelial cells in adult glands in vivo5. However, in embryonic explants, dense mesenchyme and the basement membrane surrounding the epithelial cells impedes viral access to the epithelial cells. If the mesenchyme is removed, the epithelium can be transfected using adenoviruses, and epithelial rudiments can resume branching morphogenesis in the presence of Matrigel or laminin-1116,7. Mesenchyme-free epithelial rudiment growth also requires additional supplementation with soluble growth factors and does not fully recapitulate branching morphogenesis as it occurs in intact glands8. Here we describe a technique which facilitates adenoviral transduction of epithelial cells and culture of the transfected epithelium with associated mesenchyme. Following microdissection of the embryonic SMGs, removal of the mesenchyme, and viral infection of the epithelium with a GFP-containing adenovirus, we show that the epithelium spontaneously recombines with uninfected mesenchyme, recapitulating intact SMG glandular structure and branching morphogenesis. The genetically modified epithelial cell population can be easily monitored using standard fluorescence microscopy methods, if fluorescently-tagged adenoviral constructs are used. The tissue recombination method described here is currently the most effective and accessible method for transfection of epithelial cells with a wild-type or mutant vector within a complex 3D tissue construct that does not require generation of transgenic animals.
Genetics, Issue 71, Molecular Biology, Cellular Biology, Developmental Biology, Virology, Medicine, Adenovirus, Embryonic, Epithelial rudiments, Extracellular matrix, Mesenchyme, Organ culture, Submandibular gland, ex vivo, cell culture, tissue engineering, embryo, mouse, animal model
Play Button
In Utero Intraventricular Injection and Electroporation of E15 Mouse Embryos
Authors: William Walantus, David Castaneda, Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
In-utero in-vivo injection and electroporation of the embryonic mouse neocortex provides a powerful tool for the manipulation of individual progenitors lining the walls of the lateral ventricle. This technique is now widely used to study the processes involved in corticogenesis by over-expressing or knocking down genes and observing the effects on cellular proliferation, migration, and differentiation. In comparison to traditional knockout strategies, in-utero electroporation provides a rapid means to manipulate a population of cells during a specific temporal window. In this video protocol we outline the experimental methodology for preparing mice for surgery, exposing the uterine horns through laporatomy, injecting DNA into the lateral ventricles of the developing embryo, electroporating DNA into the progenitors lining the lateral wall, and caring for animals post-surgery. Our laboratory uses this protocol for surgeries on E13-E16 mice, however, it is most commonly performed at E15, as shown in this video.
Neuroscience, Issue 6, Protocol, electroporation, Injection, Stem Cells, brain, transfection
Play Button
In Utero Intraventricular Injection and Electroporation of E16 Rat Embryos
Authors: William Walantus, Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
In-utero in-vivo injection and electroporation of the embryonic rat neocortex provides a powerful tool for the manipulation of individual progenitors lining the walls of the lateral ventricle. This technique is now widely used to study the processes involved in corticogenesis by over-expressing or knocking down genes and observing the effects on cellular proliferation, migration, and differentiation. In comparison to traditional knockout strategies, in-utero electroporation provides a rapid means to manipulate a population of cells during a specific temporal window. In this video protocol, we outline the experimental methodology for preparing rats for surgery, exposing the uterine horns through laporatomy, injecting DNA into the lateral ventricles of the developing embryo, electroporating DNA into the progenitors lining the lateral wall, and caring for animals post-surgery. Our laboratory uses this protocol for surgeries on E15-E21 rats, however it is most commonly performed at E16 as shown in this video.
Neuroscience, Issue 6, Protocol, Stem Cells, Cerebral Cortex, Brain Development, Electroporation, Intra Uterine Injections, transfection
Play Button
Mouse Dorsal Forebrain Explant Isolation
Authors: Spencer Currle, Aaron Kolski-Andreaco, Edwin S. Monuki.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI), University of California, Irvine (UCI).
Developmental Biology, Issue 2, Developmental Neuroscience, Cerebral Cortex, Forebrain, Tissue Culture, Mouse
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.