JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
On the origin of Tibetans and their genetic basis in adapting high-altitude environments.
PLoS ONE
PUBLISHED: 01-11-2011
Since their arrival in the Tibetan Plateau during the Neolithic Age, Tibetans have been well-adapted to extreme environmental conditions and possess genetic variation that reflect their living environment and migratory history. To investigate the origin of Tibetans and the genetic basis of adaptation in a rigorous environment, we genotyped 30 Tibetan individuals with more than one million SNP markers. Our findings suggested that Tibetans, together with the Yi people, were descendants of Tibeto-Burmans who diverged from ancient settlers of East Asia. The valleys of the Hengduan Mountain range may be a major migration route. We also identified a set of positively-selected genes that belong to functional classes of the embryonic, female gonad, and blood vessel developments, as well as response to hypoxia. Most of these genes were highly correlated with population-specific and beneficial phenotypes, such as high infant survival rate and the absence of chronic mountain sickness.
Authors: Kathleen S. Tatem, James L. Quinn, Aditi Phadke, Qing Yu, Heather Gordish-Dressman, Kanneboyina Nagaraju.
Published: 09-29-2014
ABSTRACT
The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.
28 Related JoVE Articles!
Play Button
An Allele-specific Gene Expression Assay to Test the Functional Basis of Genetic Associations
Authors: Silvia Paracchini, Anthony P. Monaco, Julian C. Knight.
Institutions: University of Oxford.
The number of significant genetic associations with common complex traits is constantly increasing. However, most of these associations have not been understood at molecular level. One of the mechanisms mediating the effect of DNA variants on phenotypes is gene expression, which has been shown to be particularly relevant for complex traits1. This method tests in a cellular context the effect of specific DNA sequences on gene expression. The principle is to measure the relative abundance of transcripts arising from the two alleles of a gene, analysing cells which carry one copy of the DNA sequences associated with disease (the risk variants)2,3. Therefore, the cells used for this method should meet two fundamental genotypic requirements: they have to be heterozygous both for DNA risk variants and for DNA markers, typically coding polymorphisms, which can distinguish transcripts based on their chromosomal origin (Figure 1). DNA risk variants and DNA markers do not need to have the same allele frequency but the phase (haplotypic) relationship of the genetic markers needs to be understood. It is also important to choose cell types which express the gene of interest. This protocol refers specifically to the procedure adopted to extract nucleic acids from fibroblasts but the method is equally applicable to other cells types including primary cells. DNA and RNA are extracted from the selected cell lines and cDNA is generated. DNA and cDNA are analysed with a primer extension assay, designed to target the coding DNA markers4. The primer extension assay is carried out using the MassARRAY (Sequenom)5 platform according to the manufacturer's specifications. Primer extension products are then analysed by matrix-assisted laser desorption/ionization time of-flight mass spectrometry (MALDI-TOF/MS). Because the selected markers are heterozygous they will generate two peaks on the MS profiles. The area of each peak is proportional to the transcript abundance and can be measured with a function of the MassARRAY Typer software to generate an allelic ratio (allele 1: allele 2) calculation. The allelic ratio obtained for cDNA is normalized using that measured from genomic DNA, where the allelic ratio is expected to be 1:1 to correct for technical artifacts. Markers with a normalised allelic ratio significantly different to 1 indicate that the amount of transcript generated from the two chromosomes in the same cell is different, suggesting that the DNA variants associated with the phenotype have an effect on gene expression. Experimental controls should be used to confirm the results.
Cellular Biology, Issue 45, Gene expression, regulatory variant, haplotype, association study, primer extension, MALDI-TOF mass spectrometry, single nucleotide polymorphism, allele-specific
2279
Play Button
P50 Sensory Gating in Infants
Authors: Anne Spencer Ross, Sharon Kay Hunter, Mark A Groth, Randal Glenn Ross.
Institutions: University of Colorado School of Medicine, Colorado State University.
Attentional deficits are common in a variety of neuropsychiatric disorders including attention deficit-hyperactivity disorder, autism, bipolar mood disorder, and schizophrenia. There has been increasing interest in the neurodevelopmental components of these attentional deficits; neurodevelopmental meaning that while the deficits become clinically prominent in childhood or adulthood, the deficits are the results of problems in brain development that begin in infancy or even prenatally. Despite this interest, there are few methods for assessing attention very early in infancy. This report focuses on one method, infant auditory P50 sensory gating. Attention has several components. One of the earliest components of attention, termed sensory gating, allows the brain to tune out repetitive, noninformative sensory information. Auditory P50 sensory gating refers to one task designed to measure sensory gating using changes in EEG. When identical auditory stimuli are presented 500 ms apart, the evoked response (change in the EEG associated with the processing of the click) to the second stimulus is generally reduced relative to the response to the first stimulus (i.e. the response is "gated"). When response to the second stimulus is not reduced, this is considered a poor sensory gating, is reflective of impaired cerebral inhibition, and is correlated with attentional deficits. Because the auditory P50 sensory gating task is passive, it is of potential utility in the study of young infants and may provide a window into the developmental time course of attentional deficits in a variety of neuropsychiatric disorders. The goal of this presentation is to describe the methodology for assessing infant auditory P50 sensory gating, a methodology adapted from those used in studies of adult populations.
Behavior, Issue 82, Child Development, Psychophysiology, Attention Deficit and Disruptive Behavior Disorders, Evoked Potentials, Auditory, auditory evoked potential, sensory gating, infant, attention, electrophysiology, infants, sensory gating, endophenotype, attention, P50
50065
Play Button
Induction and Testing of Hypoxia in Cell Culture
Authors: Danli Wu, Patricia Yotnda.
Institutions: Baylor College of Medicine.
Hypoxia is defined as the reduction or lack of oxygen in organs, tissues, or cells. This decrease of oxygen tension can be due to a reduced supply in oxygen (causes include insufficient blood vessel network, defective blood vessel, and anemia) or to an increased consumption of oxygen relative to the supply (caused by a sudden higher cell proliferation rate). Hypoxia can be physiologic or pathologic such as in solid cancers 1-3, rheumatoid arthritis, atherosclerosis etc… Each tissues and cells have a different ability to adapt to this new condition. During hypoxia, hypoxia inducible factor alpha (HIF) is stabilized and regulates various genes such as those involved in angiogenesis or transport of oxygen 4. The stabilization of this protein is a hallmark of hypoxia, therefore detecting HIF is routinely used to screen for hypoxia 5-7. In this article, we propose two simple methods to induce hypoxia in mammalian cell cultures and simple tests to evaluate the hypoxic status of these cells.
Cell Biology, Issue 54, mammalian cell, hypoxia, anoxia, hypoxia inducible factor (HIF), reoxygenation, normoxia
2899
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
51047
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
51961
Play Button
The Use of Chemostats in Microbial Systems Biology
Authors: Naomi Ziv, Nathan J. Brandt, David Gresham.
Institutions: New York University .
Cells regulate their rate of growth in response to signals from the external world. As the cell grows, diverse cellular processes must be coordinated including macromolecular synthesis, metabolism and ultimately, commitment to the cell division cycle. The chemostat, a method of experimentally controlling cell growth rate, provides a powerful means of systematically studying how growth rate impacts cellular processes - including gene expression and metabolism - and the regulatory networks that control the rate of cell growth. When maintained for hundreds of generations chemostats can be used to study adaptive evolution of microbes in environmental conditions that limit cell growth. We describe the principle of chemostat cultures, demonstrate their operation and provide examples of their various applications. Following a period of disuse after their introduction in the middle of the twentieth century, the convergence of genome-scale methodologies with a renewed interest in the regulation of cell growth and the molecular basis of adaptive evolution is stimulating a renaissance in the use of chemostats in biological research.
Environmental Sciences, Issue 80, Saccharomyces cerevisiae, Molecular Biology, Computational Biology, Systems Biology, Cell Biology, Genetics, Environmental Microbiology, Biochemistry, Chemostat, growth-rate, steady state, nutrient limitation, adaptive evolution
50168
Play Button
Multiplex PCR Assay for Typing of Staphylococcal Cassette Chromosome Mec Types I to V in Methicillin-resistant Staphylococcus aureus
Authors: Jo-Ann McClure-Warnier, John M. Conly, Kunyan Zhang.
Institutions: Alberta Health Services / Calgary Laboratory Services / University of Calgary, University of Calgary, University of Calgary, University of Calgary, University of Calgary.
Staphylococcal Cassette Chromosome mec (SCCmec) typing is a very important molecular tool for understanding the epidemiology and clonal strain relatedness of methicillin-resistant Staphylococcus aureus (MRSA), particularly with the emerging outbreaks of community-associated MRSA (CA-MRSA) occurring on a worldwide basis. Traditional PCR typing schemes classify SCCmec by targeting and identifying the individual mec and ccr gene complex types, but require the use of many primer sets and multiple individual PCR experiments. We designed and published a simple multiplex PCR assay for quick-screening of major SCCmec types and subtypes I to V, and later updated it as new sequence information became available. This simple assay targets individual SCCmec types in a single reaction, is easy to interpret and has been extensively used worldwide. However, due to the sophisticated nature of the assay and the large number of primers present in the reaction, there is the potential for difficulties while adapting this assay to individual laboratories. To facilitate the process of establishing a MRSA SCCmec assay, here we demonstrate how to set up our multiplex PCR assay, and discuss some of the vital steps and procedural nuances that make it successful.
Infection, Issue 79, Microbiology, Genetics, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Bacteria, Bacterial Infections and Mycoses, Life Sciences (General), Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcal cassette chromosome mec (SCCmec), SCCmec typing, Multiplex PCR, PCR, sequencing
50779
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
51580
Play Button
A Molecular Readout of Long-term Olfactory Adaptation in C. elegans
Authors: Chao He, Jin I. Lee, Noelle L'Etoile, Damien O'Halloran.
Institutions: George Washington University, Fred Hutchinson Cancer Research Center, University of California San Francisco .
During sustained stimulation most sensory neurons will adapt their response by decreasing their sensitivity to the signal. The adaptation response helps shape attention and also protects cells from over-stimulation. Adaptation within the olfactory circuit of C. elegans was first described by Colbert and Bargmann1,2. Here, the authors defined parameters of the olfactory adaptation paradigm, which they used to design a genetic screen to isolate mutants defective in their ability to adapt to volatile odors sensed by the Amphid Wing cells type C (AWC) sensory neurons. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor3 for 30 min they will adapt their responsiveness to the odor and will then ignore the adapting odor in a chemotaxis behavioral assay for ~1 hr. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor for ~1 hr they will then ignore the adapting odor in a chemotaxis behavioral assay for ~3 hr. These two phases of olfactory adaptation in C. elegans were described as short-term olfactory adaptation (induced after 30 min odor exposure), and long-term olfactory adaptation (induced after 60 min odor exposure). Later work from L'Etoile et al.,4 uncovered a Protein Kinase G (PKG) called EGL-4 that is required for both the short-term and long-term olfactory adaptation in AWC neurons. The EGL-4 protein contains a nuclear localization sequence that is necessary for long-term olfactory adaptation responses but dispensable for short-term olfactory adaptation responses in the AWC4. By tagging EGL-4 with a green fluorescent protein, it was possible to visualize the localization of EGL-4 in the AWC during prolonged odor exposure. Using this fully functional GFP-tagged EGL-4 (GFP::EGL-4) molecule we have been able to develop a molecular readout of long-term olfactory adaptation in the AWC5. Using this molecular readout of olfactory adaptation we have been able to perform both forward and reverse genetic screens to identify mutant animals that exhibit defective subcellular localization patterns of GFP::EGL-4 in the AWC6,7. Here we describe: 1) the construction of GFP::EGL-4 expressing animals; 2) the protocol for cultivation of animals for long-term odor-induced nuclear translocation assays; and 3) the scoring of the long-term odor-induced nuclear translocation event and recovery (re-sensitization) from the nuclear GFP::EGL-4 state.
Developmental Biology, Issue 70, Neuroscience, Molecular Biology, Cellular Biology, Olfactory adaptation, C. elegans, EGL-4, nuclear translocation, olfaction, animal model
4443
Play Button
Using Click Chemistry to Measure the Effect of Viral Infection on Host-Cell RNA Synthesis
Authors: Birte Kalveram, Olga Lihoradova, Sabarish V. Indran, Jennifer A. Head, Tetsuro Ikegami.
Institutions: University of Texas Medical Branch.
Many RNA viruses have evolved the ability to inhibit host cell transcription as a means to circumvent cellular defenses. For the study of these viruses, it is therefore important to have a quick and reliable way of measuring transcriptional activity in infected cells. Traditionally, transcription has been measured either by incorporation of radioactive nucleosides such as 3H-uridine followed by detection via autoradiography or scintillation counting, or incorporation of halogenated uridine analogs such as 5-bromouridine (BrU) followed by detection via immunostaining. The use of radioactive isotopes, however, requires specialized equipment and is not feasible in a number of laboratory settings, while the detection of BrU can be cumbersome and may suffer from low sensitivity. The recently developed click chemistry, which involves a copper-catalyzed triazole formation from an azide and an alkyne, now provides a rapid and highly sensitive alternative to these two methods. Click chemistry is a two step process in which nascent RNA is first labeled by incorporation of the uridine analog 5-ethynyluridine (EU), followed by detection of the label with a fluorescent azide. These azides are available as several different fluorophores, allowing for a wide range of options for visualization. This protocol describes a method to measure transcriptional suppression in cells infected with the Rift Valley fever virus (RVFV) strain MP-12 using click chemistry. Concurrently, expression of viral proteins in these cells is determined by classical intracellular immunostaining. Steps 1 through 4 detail a method to visualize transcriptional suppression via fluorescence microscopy, while steps 5 through 8 detail a method to quantify transcriptional suppression via flow cytometry. This protocol is easily adaptable for use with other viruses.
Immunology, Issue 78, Virology, Chemistry, Infectious Diseases, Biochemistry, Genetics, Molecular Biology, Cellular Biology, Medicine, Biomedical Engineering, Arboviruses, Bunyaviridae, RNA, Nuclear, Transcription, Genetic, Rift Valley fever virus, NSs, transcription, click chemistry, MP-12, fluorescence microscopy, flow cytometry, virus, proteins, immunostaining, assay
50809
Play Button
A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
Authors: Caroline J. Ketcham, Eric Hall, Walter R. Bixby, Srikant Vallabhajosula, Stephen E. Folger, Matthew C. Kostek, Paul C. Miller, Kenneth P. Barnes, Kirtida Patel.
Institutions: Elon University, Elon University, Duquesne University, Elon University.
Concussions are occurring at alarming rates in the United States and have become a serious public health concern. The CDC estimates that 1.6 to 3.8 million concussions occur in sports and recreational activities annually. Concussion as defined by the 2013 Concussion Consensus Statement “may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an ‘impulsive’ force transmitted to the head.” Concussions leave the individual with both short- and long-term effects. The short-term effects of sport related concussions may include changes in playing ability, confusion, memory disturbance, the loss of consciousness, slowing of reaction time, loss of coordination, headaches, dizziness, vomiting, changes in sleep patterns and mood changes. These symptoms typically resolve in a matter of days. However, while some individuals recover from a single concussion rather quickly, many experience lingering effects that can last for weeks or months. The factors related to concussion susceptibility and the subsequent recovery times are not well known or understood at this time. Several factors have been suggested and they include the individual’s concussion history, the severity of the initial injury, history of migraines, history of learning disabilities, history of psychiatric comorbidities, and possibly, genetic factors. Many studies have individually investigated certain factors both the short-term and long-term effects of concussions, recovery time course, susceptibility and recovery. What has not been clearly established is an effective multifaceted approach to concussion evaluation that would yield valuable information related to the etiology, functional changes, and recovery. The purpose of this manuscript is to show one such multifaceted approached which examines concussions using computerized neurocognitive testing, event related potentials, somatosensory perceptual responses, balance assessment, gait assessment and genetic testing.
Medicine, Issue 94, Concussions, Student-Athletes, Mild Traumatic Brain Injury, Genetics, Cognitive Function, Balance, Gait, Somatosensory
52046
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
51827
Play Button
Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube
Authors: Elise R. Pfaltzgraff, Nathan A. Mundell, Patricia A. Labosky.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, Vanderbilt University Medical Center.
The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter23. The method presented here is adapted from protocols optimized for the culture of rat NC11,13. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC2,24-28.
Neuroscience, Issue 64, Developmental Biology, neural crest, explant, cell culture, mouse, embryo
4134
Play Button
Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
Authors: Clare L. Protheroe, Henrike (Rianne) J.C. Ravensbergen, Jessica A. Inskip, Victoria E. Claydon.
Institutions: Simon Fraser University .
Orthostatic tolerance (OT) refers to the ability to maintain cardiovascular stability when upright, against the hydrostatic effects of gravity, and hence to maintain cerebral perfusion and prevent syncope (fainting). Various techniques are available to assess OT and the effects of gravitational stress upon the circulation, typically by reproducing a presyncopal event (near-fainting episode) in a controlled laboratory environment. The time and/or degree of stress required to provoke this response provides the measure of OT. Any technique used to determine OT should: enable distinction between patients with orthostatic intolerance (of various causes) and asymptomatic control subjects; be highly reproducible, enabling evaluation of therapeutic interventions; avoid invasive procedures, which are known to impair OT1. In the late 1980s head-upright tilt testing was first utilized for diagnosing syncope2. Since then it has been used to assess OT in patients with syncope of unknown cause, as well as in healthy subjects to study postural cardiovascular reflexes2-6. Tilting protocols comprise three categories: passive tilt; passive tilt accompanied by pharmacological provocation; and passive tilt with combined lower body negative pressure (LBNP). However, the effects of tilt testing (and other orthostatic stress testing modalities) are often poorly reproducible, with low sensitivity and specificity to diagnose orthostatic intolerance7. Typically, a passive tilt includes 20-60 min of orthostatic stress continued until the onset of presyncope in patients2-6. However, the main drawback of this procedure is its inability to invoke presyncope in all individuals undergoing the test, and corresponding low sensitivity8,9. Thus, different methods were explored to increase the orthostatic stress and improve sensitivity. Pharmacological provocation has been used to increase the orthostatic challenge, for example using isoprenaline4,7,10,11 or sublingual nitrate12,13. However, the main drawback of these approaches are increases in sensitivity at the cost of unacceptable decreases in specificity10,14, with a high positive response rate immediately after administration15. Furthermore, invasive procedures associated with some pharmacological provocations greatly increase the false positive rate1. Another approach is to combine passive tilt testing with LBNP, providing a stronger orthostatic stress without invasive procedures or drug side-effects, using the technique pioneered by Professor Roger Hainsworth in the 1990s16-18. This approach provokes presyncope in almost all subjects (allowing for symptom recognition in patients with syncope), while discriminating between patients with syncope and healthy controls, with a specificity of 92%, sensitivity of 85%, and repeatability of 1.1±0.6 min16,17. This allows not only diagnosis and pathophysiological assessment19-22, but also the evaluation of treatments for orthostatic intolerance due to its high repeatability23-30. For these reasons, we argue this should be the "gold standard" for orthostatic stress testing, and accordingly this will be the method described in this paper.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Neurobiology, Kinesiology, Cardiology, tilt test, lower body negative pressure, orthostatic stress, syncope, orthostatic tolerance, fainting, gravitational stress, head upright, stroke, clinical techniques
4315
Play Button
A Rapid Protocol for Integrating Extrachromosomal Arrays With High Transmission Rate into the C. elegans Genome
Authors: Marie-Christine Mariol, Ludivine Walter, Stéphanie Bellemin, Kathrin Gieseler.
Institutions: Université Claude Bernard Lyon, CNRS UMR 5534.
Microinjecting DNA into the cytoplasm of the syncytial gonad of Caenorhabditis elegans is the main technique used to establish transgenic lines that exhibit partial and variable transmission rates of extrachromosomal arrays to the next generation. In addition, transgenic animals are mosaic and express the transgene in a variable number of cells. Extrachromosomal arrays can be integrated into the C. elegans genome using UV irradiation to establish nonmosaic transgenic strains with 100% transmission rate of the transgene. To that extent, F1 progenies of UV irradiated transgenic animals are screened for animals carrying a heterozygous integration of the transgene, which leads to a 75% Mendelian transmission rate to the F2 progeny. One of the challenges of this method is to distinguish between the percentage of transgene transmission in a population before (X% transgenic animals) and after integration (≥75% transgenic F2 animals). Thus, this method requires choosing a nonintegrated transgenic line with a percentage of transgenic animals that is significantly lower than the Mendelian segregation of 75%. Consequently, nonintegrated transgenic lines with an extrachromosomal array transmission rate to the next generation ≤60% are usually preferred for integration, and transgene integration in highly transmitting strains is difficult. Here we show that the efficiency of extrachromosomal arrays integration into the genome is increased when using highly transmitting transgenic lines (≥80%). The described protocol allows for easy selection of several independent lines with homozygous transgene integration into the genome after UV irradiation of transgenic worms exhibiting a high rate of extrachromosomal array transmission. Furthermore, this method is quite fast and low material consuming. The possibility of rapidly generating different lines that express a particular integrated transgene is of great interest for studies focusing on gene expression pattern and regulation, protein localization, and overexpression, as well as for the development of subcellular markers.
Basic Protocol, Issue 82, Caenorhabditis elegans, UV-mediated transgene integration, transgenic worms, irradiation, extrachromosomal, fluorescent
50773
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Ablation of a Single Cell From Eight-cell Embryos of the Amphipod Crustacean Parhyale hawaiensis
Authors: Anastasia R. Nast, Cassandra G. Extavour.
Institutions: Harvard University.
The amphipod Parhyale hawaiensis is a small crustacean found in intertidal marine habitats worldwide. Over the past decade, Parhyale has emerged as a promising model organism for laboratory studies of development, providing a useful outgroup comparison to the well studied arthropod model organism Drosophila melanogaster. In contrast to the syncytial cleavages of Drosophila, the early cleavages of Parhyale are holoblastic. Fate mapping using tracer dyes injected into early blastomeres have shown that all three germ layers and the germ line are established by the eight-cell stage. At this stage, three blastomeres are fated to give rise to the ectoderm, three are fated to give rise to the mesoderm, and the remaining two blastomeres are the precursors of the endoderm and germ line respectively. However, blastomere ablation experiments have shown that Parhyale embryos also possess significant regulatory capabilities, such that the fates of blastomeres ablated at the eight-cell stage can be taken over by the descendants of some of the remaining blastomeres. Blastomere ablation has previously been described by one of two methods: injection and subsequent activation of phototoxic dyes or manual ablation. However, photoablation kills blastomeres but does not remove the dead cell body from the embryo. Complete physical removal of specific blastomeres may therefore be a preferred method of ablation for some applications. Here we present a protocol for manual removal of single blastomeres from the eight-cell stage of Parhyale embryos, illustrating the instruments and manual procedures necessary for complete removal of the cell body while keeping the remaining blastomeres alive and intact. This protocol can be applied to any Parhyale cell at the eight-cell stage, or to blastomeres of other early cleavage stages. In addition, in principle this protocol could be applicable to early cleavage stage embryos of other holoblastically cleaving marine invertebrates.
Developmental Biology, Issue 85, Amphipod, experimental embryology, micromere, germ line, ablation, developmental potential, vasa
51073
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
52063
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
51057
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
2534
Play Button
Isolation of Early Hematopoietic Stem Cells from Murine Yolk Sac and AGM
Authors: Kelly Morgan, Michael Kharas, Elaine Dzierzak, D. Gary Gilliland.
Institutions: Brigham and Women's Hospital and Harvard Medical School, Erasmus University Medical Center, Brigham and Women's Hospital and Harvard Medical School.
In the mouse embryo, early hematopoiesis occurs simultaneously in multiple organs, which includes the yolk sac and aorta-gonad-mesonephros region. These regions are crucial in establishing the blood system in the embryos and leads to the eventual movement of stem cells into the fetal liver and then development of adult stem cells in the bonemarrow. Early hematopoietic stem cells can be isolated from these organs through microdissection of the embryo followed by flow cytometric sorting to obtain a more pure population. It remains unclear how these stem cell populations contribute to the fetal and adult stem cell pool. Also, our lab investigates how early stem cells functionally differ from fetal and adult hematopoietic stem cells. Furthermore, our lab sorts different populations of hematopoietic stem cells and test their functional role in the context of a variety of genetic models. In this video, we demonstrate the micro-dissection procedure we commonly use and also show the results of a typical FACS plotfter isolating these rare populations, it is possible to perform a variety of functional assays including: colony assays and bone marrow transplants.
Cell biology, Issue 16, yolk sac, aorta-gonad-mesonephros, AGM, stem cell, dissection, embryo
789
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
225
Play Button
Use of Arabidopsis eceriferum Mutants to Explore Plant Cuticle Biosynthesis
Authors: Lacey Samuels, Allan DeBono, Patricia Lam, Miao Wen, Reinhard Jetter, Ljerka Kunst.
Institutions: University of British Columbia - UBC, University of British Columbia - UBC.
The plant cuticle is a waxy outer covering on plants that has a primary role in water conservation, but is also an important barrier against the entry of pathogenic microorganisms. The cuticle is made up of a tough crosslinked polymer called "cutin" and a protective wax layer that seals the plant surface. The waxy layer of the cuticle is obvious on many plants, appearing as a shiny film on the ivy leaf or as a dusty outer covering on the surface of a grape or a cabbage leaf thanks to light scattering crystals present in the wax. Because the cuticle is an essential adaptation of plants to a terrestrial environment, understanding the genes involved in plant cuticle formation has applications in both agriculture and forestry. Today, we'll show the analysis of plant cuticle mutants identified by forward and reverse genetics approaches.
Plant Biology, Issue 16, Annual Review, Cuticle, Arabidopsis, Eceriferum Mutants, Cryso-SEM, Gas Chromatography
709
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.