JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Tracking the feeding patterns of tsetse flies (Glossina genus) by analysis of bloodmeals using mitochondrial cytochromes genes.
PUBLISHED: 01-27-2011
Tsetse flies are notoriously difficult to observe in nature, particularly when populations densities are low. It is therefore difficult to observe them on their hosts in nature; hence their vertebrate species can very often only be determined indirectly by analysis of their gut contents. This knowledge is a critical component of the information on which control tactics can be developed. The objective of this study was to determine the sources of tsetse bloodmeals, hence investigate their feeding preferences. We used mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) gene sequences for identification of tsetse fly blood meals, in order to provide a foundation for rational decisions to guide control of trypanosomiasis, and their vectors. Glossina swynnertoni were sampled from Serengeti (Tanzania) and G. pallidipes from Kenya (Nguruman and Busia), and Uganda. Sequences were used to query public databases, and the percentage identities obtained used to identify hosts. An initial assay showed that the feeds were from single sources. Hosts identified from blood fed flies collected in Serengeti ecosystem, included buffaloes (25/40), giraffes (8/40), warthogs (3/40), elephants (3/40) and one spotted hyena. In Nguruman, where G. pallidipes flies were analyzed, the feeds were from elephants (6/13) and warthogs (5/13), while buffaloes and baboons accounted for one bloodmeal each. Only cattle blood was detected in flies caught in Busia and Uganda. Out of four flies tested in Mbita Point, Suba District in western Kenya, one had fed on cattle, the other three on the Nile monitor lizard. These results demonstrate that cattle will form an integral part of a control strategy for trypanosomiasis in Busia and Uganda, while different approaches are required for Serengeti and Nguruman ecosystems, where wildlife abound and are the major component of the tsetse fly food source.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
24 Related JoVE Articles!
Play Button
Isolation of Viable Multicellular Glands from Tissue of the Carnivorous Plant, Nepenthes
Authors: Sandy Rottloff, Axel Mithöfer, Ute Müller, Roland Kilper.
Institutions: Université de Lorraine, Max Planck Institute for Chemical Ecology, aura optik.
Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores. Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands. In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA.
Plant Biology, Issue 82, Plant, Plant Preparations, Plant Physiological Processes, Plant Pathology, micropreparation, mechanical dissection, glands, carnivory, Nepenthes, PCR, RNA
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
Novel Whole-tissue Quantitative Assay of Nitric Oxide Levels in Drosophila Neuroinflammatory Response
Authors: Rami R. Ajjuri, Janis M. O'Donnell.
Institutions: University of Alabama.
Neuroinflammation is a complex innate immune response vital to the healthy function of the central nervous system (CNS). Under normal conditions, an intricate network of inducers, detectors, and activators rapidly responds to neuron damage, infection or other immune infractions. This inflammation of immune cells is intimately associated with the pathology of neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease and ALS. Under compromised disease states, chronic inflammation, intended to minimize neuron damage, may lead to an over-excitation of the immune cells, ultimately resulting in the exacerbation of disease progression. For example, loss of dopaminergic neurons in the midbrain, a hallmark of PD, is accelerated by the excessive activation of the inflammatory response. Though the cause of PD is largely unknown, exposure to environmental toxins has been implicated in the onset of sporadic cases. The herbicide paraquat, for example, has been shown to induce Parkinsonian-like pathology in several animal models, including Drosophila melanogaster. Here, we have used the conserved innate immune response in Drosophila to develop an assay capable of detecting varying levels of nitric oxide, a cell-signaling molecule critical to the activation of the inflammatory response cascade and targeted neuron death. Using paraquat-induced neuronal damage, we assess the impact of these immune insults on neuroinflammatory stimulation through the use of a novel, quantitative assay. Whole brains are fully extracted from flies either exposed to neurotoxins or of genotypes that elevate susceptibility to neurodegeneration then incubated in cell-culture media. Then, using the principles of the Griess reagent reaction, we are able to detect minor changes in the secretion of nitric oxide into cell-culture media, essentially creating a primary live-tissue model in a simple procedure. The utility of this model is amplified by the robust genetic and molecular complexity of Drosophila melanogaster, and this assay can be modified to be applicable to other Drosophila tissues or even other small, whole-organism inflammation models.
Immunology, Issue 82, biology (general), environmental effects (biological, animal and plant), immunology, animal models, Immune System Diseases, Pathological Conditions, Signs and Symptoms, Life Sciences (General), Neuroinflammation, inflammation, nitric oxide, nitric oxide synthase, Drosophila, neurodegeneration, brain, Griess assay, nitrite detection, innate immunity, Parkinson disease, tissue culture
Play Button
A Low-cost Method for Analyzing Seizure-like Activity and Movement in Drosophila
Authors: Bryan Stone, Brian Burke, Joseph Pathakamuri, John Coleman, Daniel Kuebler.
Institutions: Franciscan University of Steubenville, Franciscan University of Steubenville.
Video tracking systems have been used widely to analyze Drosophila melanogaster movement and detect various abnormalities in locomotive behavior. While these systems can provide a wealth of behavioral information, the cost and complexity of these systems can be prohibitive for many labs. We have developed a low-cost assay for measuring locomotive behavior and seizure movement in D. melanogaster. The system uses a web-cam to capture images that can be processed using a combination of inexpensive and free software to track the distance moved, the average velocity of movement and the duration of movement during a specified time-span. To demonstrate the utility of this system, we examined a group of D. melanogaster mutants, the Bang-sensitive (BS) paralytics, which are 3-10 times more susceptible to seizure-like activity (SLA) than wild type flies. Using this novel system, we were able to detect that the BS mutant bang senseless (bss) exhibits lower levels of exploratory locomotion in a novel environment than wild type flies. In addition, the system was used to identify that the drug metformin, which is commonly used to treat type II diabetes, reduces the intensity of SLA in the BS mutants.
Neuroscience, Issue 84, Drosophila melanogaster, movement tracking, seizures, video analysis, locomotion, metformin, behavior, seizure-like activity
Play Button
Optogenetic Stimulation of Escape Behavior in Drosophila melanogaster
Authors: Saskia E.J. de Vries, Tom Clandinin.
Institutions: Stanford University .
A growing number of genetically encoded tools are becoming available that allow non-invasive manipulation of the neural activity of specific neurons in Drosophila melanogaster1. Chief among these are optogenetic tools, which enable the activation or silencing of specific neurons in the intact and freely moving animal using bright light. Channelrhodopsin (ChR2) is a light-activated cation channel that, when activated by blue light, causes depolarization of neurons that express it. ChR2 has been effective for identifying neurons critical for specific behaviors, such as CO2 avoidance, proboscis extension and giant-fiber mediated startle response2-4. However, as the intense light sources used to stimulate ChR2 also stimulate photoreceptors, these optogenetic techniques have not previously been used in the visual system. Here, we combine an optogenetic approach with a mutation that impairs phototransduction to demonstrate that activation of a cluster of loom-sensitive neurons in the fly's optic lobe, Foma-1 neurons, can drive an escape behavior used to avoid collision. We used a null allele of a critical component of the phototransduction cascade, phospholipase C-β, encoded by the norpA gene, to render the flies blind and also use the Gal4-UAS transcriptional activator system to drive expression of ChR2 in the Foma-1 neurons. Individual flies are placed on a small platform surrounded by blue LEDs. When the LEDs are illuminated, the flies quickly take-off into flight, in a manner similar to visually driven loom-escape behavior. We believe that this technique can be easily adapted to examine other behaviors in freely moving flies.
Neurobiology, Issue 71, Neuroscience, Genetics, Anatomy, Physiology, Molecular Biology, Cellular Biology, Behavior, optogenetics, channelrhodopsin, ChR2, escape behavior, neurons, fruit fly, Drosophila melanogaster, animal model
Play Button
Neurocircuit Assays for Seizures in Epilepsy Mutants of Drosophila
Authors: Iris C. Howlett, Mark A. Tanouye.
Institutions: University of California, Berkeley, University of California, Berkeley.
Drosophila melanogaster is a useful tool for studying seizure like activity. A variety of mutants in which seizures can be induced through either physical shock or electrical stimulation is available for study of various aspects of seizure activity and behavior. All flies, including wild-type, will undergo seizure-like activity if stimulated at a high enough voltage. Seizure like activity is an all-or-nothing response and each genotype has a specific seizure threshold. The seizure threshold of a specific genotype of fly can be altered either by treatment with a drug or by genetic suppression or enhancement. The threshold is easily measured by electrophysiology. Seizure-like activity can be induced via high frequency electrical stimulation delivered directly to the brain and recorded through the dorsal longitudinal muscles (DLMs) in the thorax. The DLMs are innervated by part of the giant fiber system. Starting with low voltage, high frequency stimulation, and subsequently raising the voltage in small increments, the seizure threshold for a single fly can be measured.
Neuroscience, Issue 26, elecrophysiology, Drosophila, seizures, epilepsy, giant fiber
Play Button
Identifying Protein-protein Interaction in Drosophila Adult Heads by Tandem Affinity Purification (TAP)
Authors: Xiaolin Tian, Mingwei Zhu, Long Li, Chunlai Wu.
Institutions: Louisiana State University Health Sciences Center.
Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond.
Biochemistry, Issue 82, Drosophila, GAL4/UAS system, transgenic, Tandem Affinity Purification, protein-protein interaction, proteomics
Play Button
An Introduction to Parasitic Wasps of Drosophila and the Antiparasite Immune Response
Authors: Chiyedza Small, Indira Paddibhatla, Roma Rajwani, Shubha Govind.
Institutions: The City College of New York, CUNY, The City University of New York.
Most known parasitoid wasp species attack the larval or pupal stages of Drosophila. While Trichopria drosophilae infect the pupal stages of the host (Fig. 1A-C), females of the genus Leptopilina (Fig. 1D, 1F, 1G) and Ganaspis (Fig. 1E) attack the larval stages. We use these parasites to study the molecular basis of a biological arms race. Parasitic wasps have tremendous value as biocontrol agents. Most of them carry virulence and other factors that modify host physiology and immunity. Analysis of Drosophila wasps is providing insights into how species-specific interactions shape the genetic structures of natural communities. These studies also serve as a model for understanding the hosts' immune physiology and how coordinated immune reactions are thwarted by this class of parasites. The larval/pupal cuticle serves as the first line of defense. The wasp ovipositor is a sharp needle-like structure that efficiently delivers eggs into the host hemocoel. Oviposition is followed by a wound healing reaction at the cuticle (Fig. 1C, arrowheads). Some wasps can insert two or more eggs into the same host, although the development of only one egg succeeds. Supernumerary eggs or developing larvae are eliminated by a process that is not yet understood. These wasps are therefore referred to as solitary parasitoids. Depending on the fly strain and the wasp species, the wasp egg has one of two fates. It is either encapsulated, so that its development is blocked (host emerges; Fig. 2 left); or the wasp egg hatches, develops, molts, and grows into an adult (wasp emerges; Fig. 2 right). L. heterotoma is one of the best-studied species of Drosophila parasitic wasps. It is a "generalist," which means that it can utilize most Drosophila species as hosts1. L. heterotoma and L. victoriae are sister species and they produce virus-like particles that actively interfere with the encapsulation response2. Unlike L. heterotoma, L. boulardi is a specialist parasite and the range of Drosophila species it utilizes is relatively limited1. Strains of L. boulardi also produce virus-like particles3 although they differ significantly in their ability to succeed on D. melanogaster1. Some of these L. boulardi strains are difficult to grow on D. melanogaster1 as the fly host frequently succeeds in encapsulating their eggs. Thus, it is important to have the knowledge of both partners in specific experimental protocols. In addition to barrier tissues (cuticle, gut and trachea), Drosophila larvae have systemic cellular and humoral immune responses that arise from functions of blood cells and the fat body, respectively. Oviposition by L. boulardi activates both immune arms1,4. Blood cells are found in circulation, in sessile populations under the segmented cuticle, and in the lymph gland. The lymph gland is a small hematopoietic organ on the dorsal side of the larva. Clusters of hematopoietic cells, called lobes, are arranged segmentally in pairs along the dorsal vessel that runs along the anterior-posterior axis of the animal (Fig. 3A). The fat body is a large multifunctional organ (Fig. 3B). It secretes antimicrobial peptides in response to microbial and metazoan infections. Wasp infection activates immune signaling (Fig. 4)4. At the cellular level, it triggers division and differentiation of blood cells. In self defense, aggregates and capsules develop in the hemocoel of infected animals (Fig. 5)5,6. Activated blood cells migrate toward the wasp egg (or wasp larva) and begin to form a capsule around it (Fig. 5A-F). Some blood cells aggregate to form nodules (Fig. 5G-H). Careful analysis reveals that wasp infection induces the anterior-most lymph gland lobes to disperse at their peripheries (Fig. 6C, D). We present representative data with Toll signal transduction pathway components Dorsal and Spätzle (Figs. 4,5,7), and its target Drosomycin (Fig. 6), to illustrate how specific changes in the lymph gland and hemocoel can be studied after wasp infection. The dissection protocols described here also yield the wasp eggs (or developing stages of wasps) from the host hemolymph (Fig. 8).
Immunology, Issue 63, Parasitoid wasps, innate immunity, encapsulation, hematopoiesis, insect, fat body, Toll-NF-kappaB, molecular biology
Play Button
Using Fluorescent Proteins to Monitor Glycosome Dynamics in the African Trypanosome
Authors: Sarah Bauer, Meghan Conlon, Meredith Morris.
Institutions: Clemson University Eukaryotic Pathogens Innovation Center.
Trypanosoma brucei is a kinetoplastid parasite that causes human African trypanosomiasis (HAT), or sleeping sickness, and a wasting disease, nagana, in cattle1. The parasite alternates between the bloodstream of the mammalian host and the tsetse fly vector. The composition of many cellular organelles changes in response to these different extracellular conditions2-5. Glycosomes are highly specialized peroxisomes in which many of the enzymes involved in glycolysis are compartmentalized. Glycosome composition changes in a developmental and environmentally regulated manner4-11. Currently, the most common techniques used to study glycosome dynamics are electron and fluorescence microscopy; techniques that are expensive, time and labor intensive, and not easily adapted to high throughput analyses. To overcome these limitations, a fluorescent-glycosome reporter system in which enhanced yellow fluorescent protein (eYFP) is fused to a peroxisome targeting sequence (PTS2), which directs the fusion protein to glycosomes12, has been established. Upon import of the PTS2eYFP fusion protein, glycosomes become fluorescent. Organelle degradation and recycling results in the loss of fluorescence that can be measured by flow cytometry. Large numbers of cells (5,000 cells/sec) can be analyzed in real-time without extensive sample preparation such as fixation and mounting. This method offers a rapid way of detecting changes in organelle composition in response to fluctuating environmental conditions.
Infectious Diseases, Issue 90, glycosomes, trypanosomes, flow cytometry, kinetoplastids, fluorescent protein, peroxisomes
Play Button
Purification of Transcripts and Metabolites from Drosophila Heads
Authors: Kurt Jensen, Jonatan Sanchez-Garcia, Caroline Williams, Swati Khare, Krishanu Mathur, Rita M. Graze, Daniel A. Hahn, Lauren M. McIntyre, Diego E. Rincon-Limas, Pedro Fernandez-Funez.
Institutions: University of Florida , University of Florida , University of Florida , University of Florida .
For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease.
Genetics, Issue 73, Biochemistry, Molecular Biology, Neurobiology, Neuroscience, Bioengineering, Cellular Biology, Anatomy, Neurodegenerative Diseases, Biological Assay, Drosophila, fruit fly, head separation, purification, mRNA, RNA, cDNA, DNA, transcripts, metabolites, replicates, SCA3, neurodegeneration, NMR, gene expression, animal model
Play Button
A Single-fly Assay for Foraging Behavior in Drosophila
Authors: Orel A. Zaninovich, Susy M. Kim, Cory R. Root, David S. Green, Kang I. Ko, Jing W. Wang.
Institutions: University of California-San Diego, Columbia University, Dart NeuroScience, University of Pennsylvania.
For many animals, hunger promotes changes in the olfactory system in a manner that facilitates the search for appropriate food sources. In this video article, we describe an automated assay to measure the effect of hunger or satiety on olfactory dependent food search behavior in the adult fruit fly Drosophila melanogaster. In a light-tight box illuminated by red light that is invisible to fruit flies, a camera linked to custom data acquisition software monitors the position of six flies simultaneously. Each fly is confined to walk in individual arenas containing a food odor at the center. The testing arenas rest on a porous floor that functions to prevent odor accumulation. Latency to locate the odor source, a metric that reflects olfactory sensitivity under different physiological states, is determined by software analysis. Here, we discuss the critical mechanics of running this behavioral paradigm and cover specific issues regarding fly loading, odor contamination, assay temperature, data quality, and statistical analysis.
Neuroscience, Issue 81, Drosophila, olfaction, neuromodulation, chemotaxis, hunger, nervous system, behavioral sciences
Play Button
Determination of the Spontaneous Locomotor Activity in Drosophila melanogaster
Authors: Jared K. Woods, Suzanne Kowalski, Blanka Rogina.
Institutions: University of Connecticut Health Center.
Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases.
Neuroscience, Issue 86, Investigative Techniques, Life Sciences (General), Behavioral Sciences, Drosophila melanogaster, Fruit flies, Spontaneous physical activity, Mobility, Fly behavior, Locomotor Activity
Play Button
Quantitative Measurement of the Immune Response and Sleep in Drosophila
Authors: Tzu-Hsing Kuo, Arun Handa, Julie A. Williams.
Institutions: University of Pennsylvania Perelman School of Medicine.
A complex interaction between the immune response and host behavior has been described in a wide range of species. Excess sleep, in particular, is known to occur as a response to infection in mammals 1 and has also recently been described in Drosophila melanogaster2. It is generally accepted that sleep is beneficial to the host during an infection and that it is important for the maintenance of a robust immune system3,4. However, experimental evidence that supports this hypothesis is limited4, and the function of excess sleep during an immune response remains unclear. We have used a multidisciplinary approach to address this complex problem, and have conducted studies in the simple genetic model system, the fruitfly Drosophila melanogaster. We use a standard assay for measuring locomotor behavior and sleep in flies, and demonstrate how this assay is used to measure behavior in flies infected with a pathogenic strain of bacteria. This assay is also useful for monitoring the duration of survival in individual flies during an infection. Additional measures of immune function include the ability of flies to clear an infection and the activation of NFκB, a key transcription factor that is central to the innate immune response in Drosophila. Both survival outcome and bacterial clearance during infection together are indicators of resistance and tolerance to infection. Resistance refers to the ability of flies to clear an infection, while tolerance is defined as the ability of the host to limit damage from an infection and thereby survive despite high levels of pathogen within the system5. Real-time monitoring of NFκB activity during infection provides insight into a molecular mechanism of survival during infection. The use of Drosophila in these straightforward assays facilitates the genetic and molecular analyses of sleep and the immune response and how these two complex systems are reciprocally influenced.
Immunology, Issue 70, Neuroscience, Medicine, Physiology, Pathology, Microbiology, immune response, sleep, Drosophila, infection, bacteria, luciferase reporter assay, animal model
Play Button
The FlyBar: Administering Alcohol to Flies
Authors: Kim van der Linde, Emiliano Fumagalli, Gregg Roman, Lisa C. Lyons.
Institutions: Florida State University, University of Houston.
Fruit flies (Drosophila melanogaster) are an established model for both alcohol research and circadian biology. Recently, we showed that the circadian clock modulates alcohol sensitivity, but not the formation of tolerance. Here, we describe our protocol in detail. Alcohol is administered to the flies using the FlyBar. In this setup, saturated alcohol vapor is mixed with humidified air in set proportions, and administered to the flies in four tubes simultaneously. Flies are reared under standardized conditions in order to minimize variation between the replicates. Three-day old flies of different genotypes or treatments are used for the experiments, preferably by matching flies of two different time points (e.g., CT 5 and CT 17) making direct comparisons possible. During the experiment, flies are exposed for 1 hr to the pre-determined percentage of alcohol vapor and the number of flies that exhibit the Loss of Righting reflex (LoRR) or sedation are counted every 5 min. The data can be analyzed using three different statistical approaches. The first is to determine the time at which 50% of the flies have lost their righting reflex and use an Analysis of the Variance (ANOVA) to determine whether significant differences exist between time points. The second is to determine the percentage flies that show LoRR after a specified number of minutes, followed by an ANOVA analysis. The last method is to analyze the whole times series using multivariate statistics. The protocol can also be used for non-circadian experiments or comparisons between genotypes.
Neuroscience, Issue 87, neuroscience, alcohol sensitivity, Drosophila, Circadian, sedation, biological rhythms, undergraduate research
Play Button
Cytological Analysis of Spermatogenesis: Live and Fixed Preparations of Drosophila Testes
Authors: Poojitha Sitaram, Sarah Grace Hainline, Laura Anne Lee.
Institutions: Vanderbilt University Medical Center.
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes3-12. Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.
Basic Protocol, Issue 83, Drosophila melanogaster, dissection, testes, spermatogenesis, meiosis, germ cells, phase-contrast microscopy, immunofluorescence
Play Button
The Utility of Stage-specific Mid-to-late Drosophila Follicle Isolation
Authors: Andrew J. Spracklen, Tina L. Tootle.
Institutions: University of Iowa Carver College of Medicine.
Drosophila oogenesis or follicle development has been widely used to advance the understanding of complex developmental and cell biologic processes. This methods paper describes how to isolate mid-to-late stage follicles (Stage 10B-14) and utilize them to provide new insights into the molecular and morphologic events occurring during tight windows of developmental time. Isolated follicles can be used for a variety of experimental techniques, including in vitro development assays, live imaging, mRNA expression analysis and western blot analysis of proteins. Follicles at Stage 10B (S10B) or later will complete development in culture; this allows one to combine genetic or pharmacologic perturbations with in vitro development to define the effects of such manipulations on the processes occurring during specific periods of development. Additionally, because these follicles develop in culture, they are ideally suited for live imaging studies, which often reveal new mechanisms that mediate morphological events. Isolated follicles can also be used for molecular analyses. For example, changes in gene expression that result from genetic perturbations can be defined for specific developmental windows. Additionally, protein level, stability, and/or posttranslational modification state during a particular stage of follicle development can be examined through western blot analyses. Thus, stage-specific isolation of Drosophila follicles provides a rich source of information into widely conserved processes of development and morphogenesis.
Developmental Biology, Issue 82, Drosophila melanogaster, Organ Culture Techniques, Gene Expression Profiling, Microscopy, Confocal, Cell Biology, Genetic Research, Molecular Biology, Pharmacology, Drosophila, oogenesis, follicle, live-imaging, gene expression, development
Play Button
Isolation of Drosophila melanogaster Testes
Authors: Phillip D. Zamore, Shengmei Ma.
Institutions: University of Massachusetts Medical School.
The testes of Drosophila melanogaster provide an important model for the study of stem cell maintenance and differentiation, meiosis, and soma-germline interactions. Testes are typically isolated from adult males 0-3 days after eclosion from the pupal case. The testes of wild-type flies are easily distinguished from other tissues because they are yellow, but the testes of white mutant flies, a common genetic background for laboratory experiments are similar in both shape and color to the fly gut. Performing dissection on a glass microscope slide with a black background makes identifying the testes considerably easier. Testes are removed from the flies using dissecting needles. Compared to protocols that use forceps for testes dissection, our method is far quicker, allowing a well-practiced individual to dissect testes from 200-300 wild-type flies per hour, yielding 400-600 testes. Testes from white flies or from mutants that reduce testes size are harder to dissect and typically yield 200-400 testes per hour.
Cellular Biology, Issue 51, Microdissection, Drosophila melanogaster, testes, germline
Play Button
Studying Aggression in Drosophila (fruit flies)
Authors: Sibu Mundiyanapurath, Sarah Certel, Edward A. Kravitz.
Institutions: Harvard Medical School.
Aggression is an innate behavior that evolved in the framework of defending or obtaining resources. This complex social behavior is influenced by genetic, hormonal and environmental factors. In many organisms, aggression is critical to survival but controlling and suppressing aggression in distinct contexts also has become increasingly important. In recent years, invertebrates have become increasingly useful as model systems for investigating the genetic and systems biological basis of complex social behavior. This is in part due to the diverse repertoire of behaviors exhibited by these organisms. In the accompanying video, we outline a method for analyzing aggression in Drosophila whose design encompasses important eco-ethological constraints. Details include steps for: making a fighting chamber; isolating and painting flies; adding flies to the fight chamber; and video taping fights. This approach is currently being used to identify candidate genes important in aggression and in elaborating the neuronal circuitry that underlies the output of aggression and other social behaviors.
Neuroscience, Issue 2, Drosophila, behavior
Play Button
Operant Learning of Drosophila at the Torque Meter
Authors: Bjoern Brembs.
Institutions: Free University of Berlin.
For experiments at the torque meter, flies are kept on standard fly medium at 25°C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.
Neuroscience, Issue 16, operant, learning, Drosophila, fruit fly, insect, invertebrate, neuroscience, neurobiology, fly, conditioning
Play Button
High-Resolution Video Tracking of Locomotion in Adult Drosophila Melanogaster
Authors: Justin B. Slawson, Eugene Z. Kim, Leslie C. Griffith.
Institutions: Brandeis.
Flies provide an important model for studying complex behavior due to the plethora of genetic tools available to researchers in this field. Studying locomotor behavior in Drosophila melanogaster relies on the ability to be able to quantify changes in motion during or in response to a given task. For this reason, a high-resolution video tracking system, such as the one we describe in this paper, is a valuable tool for measuring locomotion in real-time. Our protocol involves the use of an initial air pulse to break the flies momentum, followed by a thirty second filming period in a square chamber. A tracking program is then used to calculate the instantaneous speed of each fly within the chamber in 10 msec increments. Analysis software then compiles this data, and outputs a variety of parameters such as average speed, max speed, time spent in motion, acceleration, etc. This protocol will discuss proper feeding and management of flies for behavioral tasks, handling flies without anesthetization or immobilization, setting up a controlled environment, and running the assay from start to finish.
Neuroscience, Issue 24, behavior, Drosophila, locomotion, video, tracking, air pulse
Play Button
Dissection of Drosophila Ovaries
Authors: Li Chin Wong, Paul Schedl.
Institutions: Princeton University.
Neuroscience, Issue 1, Protocol, Stem Cells, Cerebral Cortex, Brain Development, Electroporation, Intra Uterine Injections, transfection
Play Button
A Simple Way to Measure Ethanol Sensitivity in Flies
Authors: Thomas Maples, Adrian Rothenfluh.
Institutions: University of Texas Southwestern Medical Center.
Low doses of ethanol cause flies to become hyperactive, while high doses are sedating. The sensitivity to ethanol-induced sedation of a given fly strain is correlated with that strain s ethanol preference, and therefore sedation is a highly relevant measure to study the genetics of alcohol responses and drinking. We demonstrate a simple way to expose flies to ethanol and measure its intoxicating effects. The assay we describe can determine acute sensitivity, as well as ethanol tolerance induced by repeat exposure. It does not require a technically involved setup, and can therefore be applied in any laboratory with basic fly culture tools.
Neuroscience, Issue 48, Drosophila, behavior, alcohol, addiction
Play Button
Proboscis Extension Response (PER) Assay in Drosophila
Authors: Takashi Shiraiwa, John R. Carlson.
Institutions: Yale University.
Proboscis extension response (PER) is a taste behavior assay that has been used in flies as well as in honeybees. On the surface of the fly's mouth (labellum), there are hair-like structures called sensilla which houses taste neurons. When an attractive substance makes contact to the labellum, the fly extends its proboscis to consume the material. Proboscis Extension Response (PER) assay measures this taste behavior response, and it is a useful method to learn about food preferences in a single fly. Solutions of various sugars, such as sucrose, glucose and fructose, are very attractive to the fly. The effect of aversive substances can also be tested as reduction of PER when mixed in a sweet solution.Despite the simplicity of the basic procedure, there are many things that can prevent it from working. One of the factors that requires attention is the fly's responsive state. The required starvation time to bring the fly to the proper responsive state varies drastically from 36 to 72 hours. We established a series of controls to evaluate the fly's state and which allows screening out of non-responsive or hyper-responsive individual animals. Another important factor is the impact level and the position of the contact to the labellum, which would be difficult to describe by words. This video presentation demonstrates all these together with several other improvements that would increase the reproducibility of this method.
Neuroscience, Issue 3, Drosophila, behavior, taste, proboscis, extension
Play Button
An Optimized Protocol for Rearing Fopius arisanus, a Parasitoid of Tephritid Fruit Flies
Authors: Nicholas Manoukis, Scott Geib, Danny Seo, Michael McKenney, Roger Vargas, Eric Jang.
Institutions: US Pacific Basin Agricultural Research Center.
Fopius arisanus (Sonan) is an important parasitoid of Tephritid fruit flies for at least two reasons. First, it is the one of only three opiine parasitoids known to infect the host during the egg stage1. Second, it has a wide range of potential fruit fly hosts. Perhaps due to its life history, F. arisanus has been a successfully used for biological control of fruit flies in multiple tropical regions2-4. One impediment to the wide use of F. arisanus for fruit fly control is that it is difficult to establish a stable laboratory colony5-9. Despite this difficulty, in the 1990s USDA researchers developed a reliable method to maintain laboratory populations of F. arisanus10-12. There is significant interest in F. arisanus biology13,14, especially regarding its ability to colonize a wide variety of Tephritid hosts14-17; interest is especially driven by the alarming spread of Bactrocera fruit fly pests to new continents in the last decade18. Further research on F. arisanus and additional deployments of this species as a biological control agent will benefit from optimizations and improvements of rearing methods. In this protocol and associated video article we describe an optimized method for rearing F. arisanus based on a previously described approach12. The method we describe here allows rearing of F. arisanus in a small scale without the use of fruit, using materials available in tropical regions around the world and with relatively low manual labor requirements.
Developmental Biology, Issue 53, Biological control, Tephritidae, parasitoid, French Polynesia, insectary
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.