JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation.
PLoS ONE
PUBLISHED: 02-17-2011
Interleukin-8 (IL-8, CXCL8) is readily produced by human malignant cells. Dendritic cells (DC) both produce IL-8 and express the IL-8 functional receptors CXCR1 and CXCR2. Most human colon carcinomas produce IL-8. IL-8 importance in malignancies has been ascribed to angiogenesis promotion.
Authors: Rachel Lubong Sabado, Elizabeth Miller, Meredith Spadaccia, Isabelita Vengco, Farah Hasan, Nina Bhardwaj.
Published: 08-01-2013
ABSTRACT
While clinical studies have established that antigen-loaded DC vaccines are safe and promising therapy for tumors 1, their clinical efficacy remains to be established. The method described below, prepared in accordance with Good Manufacturing Process (GMP) guidelines, is an optimization of the most common ex vivo preparation method for generating large numbers of DCs for clinical studies 2. Our method utilizes the synthetic TLR 3 agonist Polyinosinic-Polycytidylic Acid-poly-L-lysine Carboxymethylcellulose (Poly-ICLC) to stimulate the DCs. Our previous study established that Poly-ICLC is the most potent individual maturation stimulus for human DCs as assessed by an upregulation of CD83 and CD86, induction of interleukin-12 (IL-12), tumor necrosis factor (TNF), interferon gamma-induced protein 10 (IP-10), interleukmin 1 (IL-1), and type I interferons (IFN), and minimal interleukin 10 (IL-10) production. DCs are differentiated from frozen peripheral blood mononuclear cells (PBMCs) obtained by leukapheresis. PBMCs are isolated by Ficoll gradient centrifugation and frozen in aliquots. On Day 1, PBMCs are thawed and plated onto tissue culture flasks to select for monocytes which adhere to the plastic surface after 1-2 hr incubation at 37 °C in the tissue culture incubator. After incubation, the lymphocytes are washed off and the adherent monocytes are cultured for 5 days in the presence of interleukin-4 (IL-4) and granulocyte macrophage-colony stimulating factor (GM-CSF) to differentiate to immature DCs. On Day 6, immature DCs are pulsed with the keyhole limpet hemocyanin (KLH) protein which serves as a control for the quality of the vaccine and may boost the immunogenicity of the vaccine 3. The DCs are stimulated to mature, loaded with peptide antigens, and incubated overnight. On Day 7, the cells are washed, and frozen in 1 ml aliquots containing 4 - 20 x 106 cells using a controlled-rate freezer. Lot release testing for the batches of DCs is performed and must meet minimum specifications before they are injected into patients.
24 Related JoVE Articles!
Play Button
Expanding Cytotoxic T Lymphocytes from Umbilical Cord Blood that Target Cytomegalovirus, Epstein-Barr Virus, and Adenovirus
Authors: Patrick J. Hanley, Sharon Lam, Elizabeth J. Shpall, Catherine M. Bollard.
Institutions: Baylor College of Medicine , Baylor College of Medicine , University of Texas M.D. Anderson Cancer Center, Baylor College of Medicine , Baylor College of Medicine .
Virus infections after stem cell transplantation are among the most common causes of death, especially after cord blood (CB) transplantation (CBT) where the CB does not contain appreciable numbers of virus-experienced T cells which can protect the recipient from infection.1-4 We and others have shown that virus-specific CTL generated from seropositive donors and infused to the recipient are safe and protective.5-8 However, until recently, virus-specific T cells could not be generated from cord blood, likely due to the absence of virus-specific memory T cells. In an effort to better mimic the in vivo priming conditions of naïve T cells, we established a method that used CB-derived dendritic cells (DC) transduced with an adenoviral vector (Ad5f35pp65) containing the immunodominant CMV antigen pp65, hence driving T cell specificity towards CMV and adenovirus.9 At initiation, we use these matured DCs as well as CB-derived T cells in the presence of the cytokines IL-7, IL-12, and IL-15.10 At the second stimulation we used EBV-transformed B cells, or EBV-LCL, which express both latent and lytic EBV antigens. Ad5f35pp65-transduced EBV-LCL are used to stimulate the T cells in the presence of IL-15 at the second stimulation. Subsequent stimulations use Ad5f35pp65-transduced EBV-LCL and IL-2. From 50x106 CB mononuclear cells we are able to generate upwards of 150 x 106 virus-specific T cells that lyse antigen-pulsed targets and release cytokines in response to antigenic stimulation.11 These cells were manufactured in a GMP-compliant manner using only the 20% fraction of a fractionated cord blood unit and have been translated for clinical use.
Immunology, Issue 63, Cytotoxic T Lymphocytes (CTL), virus, stem cell transplantation, cord blood, naïve T cells, medicine
3627
Play Button
Accurate and Simple Measurement of the Pro-inflammatory Cytokine IL-1β using a Whole Blood Stimulation Assay
Authors: Barbara Yang, Tuyet-Hang Pham, Raphaela Goldbach-Mansky, Massimo Gadina.
Institutions: National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Arthritis and Musculoskeletal and Skin Diseases.
Inflammatory processes resulting from the secretion of soluble mediators by immune cells, lead to various manifestations in skin, joints and other tissues as well as altered cytokine homeostasis. The innate immune system plays a crucial role in recognizing pathogens and other endogenous danger stimuli. One of the major cytokines released by innate immune cells is Interleukin (IL)-1. Therefore, we utilize a whole blood stimulation assay in order to measure the secretion of inflammatory cytokines and specifically of the pro-inflammatory cytokine IL-1β 1, 2, 3. Patients with genetic dysfunctions of the innate immune system causing autoinflammatory syndromes show an exaggerated release of mature IL-1β upon stimulation with LPS alone. In order to evaluate the innate immune component of patients who present with inflammatory-associated pathologies, we use a specific immunoassay to detect cellular immune responses to pathogen-associated molecular patterns (PAMPs), such as the gram-negative bacterial endotoxin, lipopolysaccharide (LPS). These PAMPs are recognized by pathogen recognition receptors (PRRs), which are found on the cells of the innate immune system 4, 5, 6, 7. A primary signal, LPS, in conjunction with a secondary signal, ATP, is necessary for the activation of the inflammasome, a multiprotein complex that processes pro-IL-1β to its mature, bioactive form 4, 5, 6, 8, 9, 10. The whole blood assay requires minimal sample manipulation to assess cytokine production when compared to other methods that require labor intensive isolation and culturing of specific cell populations. This method differs from other whole blood stimulation assays; rather than diluting samples with a ratio of RPMI media, we perform a white blood cell count directly from diluted whole blood and therefore, stimulate a known number of white blood cells in culture 2. The results of this particular whole blood assay demonstrate a novel technique useful in elucidating patient cohorts presenting with autoinflammatory pathophysiologies.
Immunology, Issue 49, Interleukin-1 beta, autoinflammatory, whole blood stimulation, lipopolysaccharide, ATP, cytokine production, pattern-recognition receptors, pathogen-associated molecular patterns
2662
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
51963
Play Button
Generation of Subcutaneous and Intrahepatic Human Hepatocellular Carcinoma Xenografts in Immunodeficient Mice
Authors: Sharif U. Ahmed, Murtuza Zair, Kui Chen, Matthew Iu, Feng He, Oyedele Adeyi, Sean P. Cleary, Anand Ghanekar.
Institutions: University Health Network, University Health Network, University Health Network.
In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.
Medicine, Issue 79, Liver Neoplasms, Hepatectomy, animal models, hepatocellular carcinoma, xenograft, cancer, liver, subcutaneous, intrahepatic, orthotopic, mouse, human, immunodeficient
50544
Play Button
Monitoring Dendritic Cell Migration using 19F / 1H Magnetic Resonance Imaging
Authors: Helmar Waiczies, Martin Guenther, Julia Skodowski, Stefano Lepore, Andreas Pohlmann, Thoralf Niendorf, Sonia Waiczies.
Institutions: A joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Max Delbrück Center for Molecular Medicine.
Continuous advancements in noninvasive imaging modalities such as magnetic resonance imaging (MRI) have greatly improved our ability to study physiological or pathological processes in living organisms. MRI is also proving to be a valuable tool for capturing transplanted cells in vivo. Initial cell labeling strategies for MRI made use of contrast agents that influence the MR relaxation times (T1, T2, T2*) and lead to an enhancement (T1) or depletion (T2*) of signal where labeled cells are present. T2* enhancement agents such as ultrasmall iron oxide agents (USPIO) have been employed to study cell migration and some have also been approved by the FDA for clinical application. A drawback of T2* agents is the difficulty to distinguish the signal extinction created by the labeled cells from other artifacts such as blood clots, micro bleeds or air bubbles. In this article, we describe an emerging technique for tracking cells in vivo that is based on labeling the cells with fluorine (19F)-rich particles. These particles are prepared by emulsifying perfluorocarbon (PFC) compounds and then used to label cells, which subsequently can be imaged by 19F MRI. Important advantages of PFCs for cell tracking in vivo include (i) the absence of carbon-bound 19F in vivo, which then yields background-free images and complete cell selectivityand(ii) the possibility to quantify the cell signal by 19F MR spectroscopy.
Molecular Biology, Issue 73, Immunology, Cellular Biology, Physiology, Anatomy, Biomedical Engineering, Hematology, nuclear magnetic resonance, NMR, Fluorine, dendritic cells, migration, lymph nodes, magnetic resonance imaging, MRI, magnetic resonance spectroscopy, MRS, spectroscopy, imaging, cell tracking, clinical techniques
50251
Play Button
Assessing the Development of Murine Plasmacytoid Dendritic Cells in Peyer's Patches Using Adoptive Transfer of Hematopoietic Progenitors
Authors: Haiyan S. Li, Stephanie S. Watowich.
Institutions: The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences.
This protocol details a method to analyze the ability of purified hematopoietic progenitors to generate plasmacytoid dendritic cells (pDC) in intestinal Peyer's patch (PP). Common dendritic cell progenitors (CDPs, lin- c-kitlo CD115+ Flt3+) were purified from the bone marrow of C57BL6 mice by FACS and transferred to recipient mice that lack a significant pDC population in PP; in this case, Ifnar-/- mice were used as the transfer recipients. In some mice, overexpression of the dendritic cell growth factor Flt3 ligand (Flt3L) was enforced prior to adoptive transfer of CDPs, using hydrodynamic gene transfer (HGT) of Flt3L-encoding plasmid. Flt3L overexpression expands DC populations originating from transferred (or endogenous) hematopoietic progenitors. At 7-10 days after progenitor transfer, pDCs that arise from the adoptively transferred progenitors were distinguished from recipient cells on the basis of CD45 marker expression, with pDCs from transferred CDPs being CD45.1+ and recipients being CD45.2+. The ability of transferred CDPs to contribute to the pDC population in PP and to respond to Flt3L was evaluated by flow cytometry of PP single cell suspensions from recipient mice. This method may be used to test whether other progenitor populations are capable of generating PP pDCs. In addition, this approach could be used to examine the role of factors that are predicted to affect pDC development in PP, by transferring progenitor subsets with an appropriate knockdown, knockout or overexpression of the putative developmental factor and/or by manipulating circulating cytokines via HGT. This method may also allow analysis of how PP pDCs affect the frequency or function of other immune subsets in PPs. A unique feature of this method is the use of Ifnar-/- mice, which show severely depleted PP pDCs relative to wild type animals, thus allowing reconstitution of PP pDCs in the absence of confounding effects from lethal irradiation.
Immunology, Issue 85, hematopoiesis, dendritic cells, Peyer's patch, cytokines, adoptive transfer
51189
Play Button
The Analysis of Purkinje Cell Dendritic Morphology in Organotypic Slice Cultures
Authors: Josef P. Kapfhammer, Olivia S. Gugger.
Institutions: University of Basel.
Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents 3. Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells 11 are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period 4. We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.
Neuroscience, Issue 61, dendritic development, dendritic branching, cerebellum, Purkinje cells
3637
Play Button
Intralymphatic Immunotherapy and Vaccination in Mice
Authors: Pål Johansen, Thomas M. Kündig.
Institutions: University Hospital Zurich.
Vaccines are typically injected subcutaneously or intramuscularly for stimulation of immune responses. The success of this requires efficient drainage of vaccine to lymph nodes where antigen presenting cells can interact with lymphocytes for generation of the wanted immune responses. The strength and the type of immune responses induced also depend on the density or frequency of interactions as well as the microenvironment, especially the content of cytokines. As only a minute fraction of peripherally injected vaccines reaches the lymph nodes, vaccinations of mice and humans were performed by direct injection of vaccine into inguinal lymph nodes, i.e. intralymphatic injection. In man, the procedure is guided by ultrasound. In mice, a small (5-10 mm) incision is made in the inguinal region of anesthetized animals, the lymph node is localized and immobilized with forceps, and a volume of 10-20 μl of the vaccine is injected under visual control. The incision is closed with a single stitch using surgical sutures. Mice were vaccinated with plasmid DNA, RNA, peptide, protein, particles, and bacteria as well as adjuvants, and strong improvement of immune responses against all type of vaccines was observed. The intralymphatic method of vaccination is especially appropriate in situations where conventional vaccination produces insufficient immunity or where the amount of available vaccine is limited.
Immunology, Issue 84, Vaccination, Immunization, intralymphatic immunotherapy, Lymph node injection, vaccines, adjuvants, surgery, anesthesia
51031
Play Button
Fast Micro-iontophoresis of Glutamate and GABA: A Useful Tool to Investigate Synaptic Integration
Authors: Christina Müller, Stefan Remy.
Institutions: University of Bonn, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE).
One of the fundamental interests in neuroscience is to understand the integration of excitatory and inhibitory inputs along the very complex structure of the dendritic tree, which eventually leads to neuronal output of action potentials at the axon. The influence of diverse spatial and temporal parameters of specific synaptic input on neuronal output is currently under investigation, e.g. the distance-dependent attenuation of dendritic inputs, the location-dependent interaction of spatially segregated inputs, the influence of GABAergig inhibition on excitatory integration, linear and non-linear integration modes, and many more. With fast micro-iontophoresis of glutamate and GABA it is possible to precisely investigate the spatial and temporal integration of glutamatergic excitation and GABAergic inhibition. Critical technical requirements are either a triggered fluorescent lamp, light-emitting diode (LED), or a two-photon scanning microscope to visualize dendritic branches without introducing significant photo-damage of the tissue. Furthermore, it is very important to have a micro-iontophoresis amplifier that allows for fast capacitance compensation of high resistance pipettes. Another crucial point is that no transmitter is involuntarily released by the pipette during the experiment. Once established, this technique will give reliable and reproducible signals with a high neurotransmitter and location specificity. Compared to glutamate and GABA uncaging, fast iontophoresis allows using both transmitters at the same time but at very distant locations without limitation to the field of view. There are also advantages compared to focal electrical stimulation of axons: with micro-iontophoresis the location of the input site is definitely known and it is sure that only the neurotransmitter of interest is released. However it has to be considered that with micro-iontophoresis only the postsynapse is activated and presynaptic aspects of neurotransmitter release are not resolved. In this article we demonstrate how to set up micro-iontophoresis in brain slice experiments.
Neuroscience, Issue 77, Neurobiology, Molecular Biology, Cellular Biology, Physiology, Biomedical Engineering, Biophysics, Biochemistry, biology (general), animal biology, Nervous System, Life Sciences (General), Neurosciences, brain slices, dendrites, inhibition, excitation, glutamate, GABA, micro-iontophoresis, iontophoresis, neurons, patch clamp, whole cell recordings
50701
Play Button
Isolation of Human Monocytes by Double Gradient Centrifugation and Their Differentiation to Macrophages in Teflon-coated Cell Culture Bags
Authors: Kerstin Menck, Daniel Behme, Mathias Pantke, Norbert Reiling, Claudia Binder, Tobias Pukrop, Florian Klemm.
Institutions: University Medical Center Göttingen, Research Center Borstel.
Human macrophages are involved in a plethora of pathologic processes ranging from infectious diseases to cancer. Thus they pose a valuable tool to understand the underlying mechanisms of these diseases. We therefore present a straightforward protocol for the isolation of human monocytes from buffy coats, followed by a differentiation procedure which results in high macrophage yields. The technique relies mostly on commonly available lab equipment and thus provides a cost and time effective way to obtain large quantities of human macrophages. Briefly, buffy coats from healthy blood donors are subjected to a double density gradient centrifugation to harvest monocytes from the peripheral blood. These monocytes are then cultured in fluorinated ethylene propylene (FEP) Teflon-coated cell culture bags in the presence of macrophage colony-stimulating factor (M-CSF). The differentiated macrophages can be easily harvested and used for subsequent studies and functional assays. Important methods for quality control and validation of the isolation and differentiation steps will be highlighted within the protocol. In summary, the protocol described here enables scientists to routinely and reproducibly isolate human macrophages without the need for cost intensive tools. Furthermore, disease models can be studied in a syngeneic human system circumventing the use of murine macrophages.
Immunology, Issue 91, macrophages, monocytes, isolation, PBMCs, density gradient, differentiation, Teflon-coated cell culture bags
51554
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
50868
Play Button
Generation of a Novel Dendritic-cell Vaccine Using Melanoma and Squamous Cancer Stem Cells
Authors: Qiao Li, Lin Lu, Huimin Tao, Carolyn Xue, Seagal Teitz-Tennenbaum, John H. Owen, Jeffrey S Moyer, Mark E.P. Prince, Alfred E. Chang, Max S. Wicha.
Institutions: University of Michigan, University of Michigan, University of Michigan.
We identified cancer stem cell (CSC)-enriched populations from murine melanoma D5 syngeneic to C57BL/6 mice and the squamous cancer SCC7 syngeneic to C3H mice using ALDEFLUOR/ALDH as a marker, and tested their immunogenicity using the cell lysate as a source of antigens to pulse dendritic cells (DCs). DCs pulsed with ALDHhigh CSC lysates induced significantly higher protective antitumor immunity than DCs pulsed with the lysates of unsorted whole tumor cell lysates in both models and in a lung metastasis setting and a s.c. tumor growth setting, respectively. This phenomenon was due to CSC vaccine-induced humoral as well as cellular anti-CSC responses. In particular, splenocytes isolated from the host subjected to CSC-DC vaccine produced significantly higher amount of IFNγ and GM-CSF than splenocytes isolated from the host subjected to unsorted tumor cell lysate pulsed-DC vaccine. These results support the efforts to develop an autologous CSC-based therapeutic vaccine for clinical use in an adjuvant setting.
Cancer Biology, Issue 83, Cancer stem cell (CSC), Dendritic cells (DC), Vaccine, Cancer immunotherapy, antitumor immunity, aldehyde dehydrogenase
50561
Play Button
Activation and Measurement of NLRP3 Inflammasome Activity Using IL-1β in Human Monocyte-derived Dendritic Cells
Authors: Melissa V. Fernandez, Elizabeth A. Miller, Nina Bhardwaj.
Institutions: New York University School of Medicine, Mount Sinai Medical Center, Mount Sinai Medical Center.
Inflammatory processes resulting from the secretion of Interleukin (IL)-1 family cytokines by immune cells lead to local or systemic inflammation, tissue remodeling and repair, and virologic control1,2 . Interleukin-1β is an essential element of the innate immune response and contributes to eliminate invading pathogens while preventing the establishment of persistent infection1-5. Inflammasomes are the key signaling platform for the activation of interleukin 1 converting enzyme (ICE or Caspase-1). The NLRP3 inflammasome requires at least two signals in DCs to cause IL-1β secretion6. Pro-IL-1β protein expression is limited in resting cells; therefore a priming signal is required for IL-1β transcription and protein expression. A second signal sensed by NLRP3 results in the formation of the multi-protein NLRP3 inflammasome. The ability of dendritic cells to respond to the signals required for IL-1β secretion can be tested using a synthetic purine, R848, which is sensed by TLR8 in human monocyte derived dendritic cells (moDCs) to prime cells, followed by activation of the NLRP3 inflammasome with the bacterial toxin and potassium ionophore, nigericin. Monocyte derived DCs are easily produced in culture and provide significantly more cells than purified human myeloid DCs. The method presented here differs from other inflammasome assays in that it uses in vitro human, instead of mouse derived, DCs thus allowing for the study of the inflammasome in human disease and infection.
Immunology, Issue 87, NLRP3, inflammasome, IL-1beta, Interleukin-1 beta, dendritic, cell, Nigericin, Toll-Like Receptor 8, TLR8, R848, Monocyte Derived Dendritic Cells
51284
Play Button
Depletion and Reconstitution of Macrophages in Mice
Authors: Shelley B. Weisser, Nico van Rooijen, Laura M. Sly.
Institutions: University of British Columbia , Vrije Universiteit Amsterdam, University of British Columbia .
Macrophages are critical players in the innate immune response to infectious challenge or injury, initiating the innate immune response and directing the acquired immune response. Macrophage dysfunction can lead to an inability to mount an appropriate immune response and as such, has been implicated in many disease processes, including inflammatory bowel diseases. Macrophages display polarized phenotypes that are broadly divided into two categories. Classically activated macrophages, activated by stimulation with IFNγ or LPS, play an essential role in response to bacterial challenge whereas alternatively activated macrophages, activated by IL-4 or IL-13, participate in debris scavenging and tissue remodeling and have been implicated in the resolution phase of inflammation. During an inflammatory response in vivo, macrophages are found amid a complex mixture of infiltrating immune cells and may participate by exacerbating or resolving inflammation. To define the role of macrophages in situ in a whole animal model, it is necessary to examine the effect of depleting macrophages from the complex environment. To ask questions about the role of macrophage phenotype in situ, phenotypically defined polarized macrophages can be derived ex vivo, from bone marrow aspirates and added back to mice, with or without prior depletion of macrophages. In the protocol presented here clodronate-containing liposomes, versus PBS injected controls, were used to deplete colonic macrophages during dextran sodium sulfate (DSS)-induced colitis in mice. In addition, polarized macrophages were derived ex vivo and transferred to mice by intravenous injection. A caveat to this approach is that clodronate-containing liposomes deplete all professional phagocytes, including both dendritic cells and macrophages so to ensure the effect observed by depletion is macrophage-specific, reconstitution of phenotype by adoptive transfer of macrophages is necessary. Systemic macrophage depletion in mice can also be achieved by backcrossing mice onto a CD11b-DTR background, which is an excellent complementary approach. The advantage of clodronate-containing liposome-mediated depletion is that it does not require the time and expense involved in backcrossing mice and it can be used in mice regardless of the background of the mice (C57BL/6, BALB/c, or mixed background).
Immunology, Issue 66, Molecular Biology, macrophages, clodronate-containing liposomes, macrophage depletion, macrophage derivation, macrophage reconstitution
4105
Play Button
In Vitro Assay to Evaluate the Impact of Immunoregulatory Pathways on HIV-specific CD4 T Cell Effector Function
Authors: Filippos Porichis, Meghan G. Hart, Jennifer Zupkosky, Lucie Barblu, Daniel E. Kaufmann.
Institutions: The Ragon Institute of MGH, MIT and Harvard, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM).
T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.
Immunology, Issue 80, Virus Diseases, Immune System Diseases, HIV, CD4 T cell, CD8 T cell, antigen-presenting cell, Cytokines, immunoregulatory networks, PD-1: IL-10, exhaustion, monocytes
50821
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
50765
Play Button
Development, Expansion, and In vivo Monitoring of Human NK Cells from Human Embryonic Stem Cells (hESCs) and Induced Pluripotent Stem Cells (iPSCs)
Authors: Allison M. Bock, David Knorr, Dan S. Kaufman.
Institutions: University of Minnesota, Minneapolis, University of Minnesota, Minneapolis.
We present a method for deriving natural killer (NK) cells from undifferentiated hESCs and iPSCs using a feeder-free approach. This method gives rise to high levels of NK cells after 4 weeks culture and can undergo further 2-log expansion with artificial antigen presenting cells. hESC- and iPSC-derived NK cells developed in this system have a mature phenotype and function. The production of large numbers of genetically modifiable NK cells is applicable for both basic mechanistic as well as anti-tumor studies. Expression of firefly luciferase in hESC-derived NK cells allows a non-invasive approach to follow NK cell engraftment, distribution, and function. We also describe a dual-imaging scheme that allows separate monitoring of two different cell populations to more distinctly characterize their interactions in vivo. This method of derivation, expansion, and dual in vivo imaging provides a reliable approach for producing NK cells and their evaluation which is necessary to improve current NK cell adoptive therapies.
Stem Cell Biology, Issue 74, Bioengineering, Biomedical Engineering, Medicine, Physiology, Anatomy, Cellular Biology, Molecular Biology, Biochemistry, Hematology, Embryonic Stem Cells, ESCs, ES Cells, Hematopoietic Stem Cells, HSC, Pluripotent Stem Cells, Induced Pluripotent Stem Cells, iPSCs, Luciferases, Firefly, Immunotherapy, Immunotherapy, Adoptive, stem cells, differentiation, NK cells, in vivo imaging, fluorescent imaging, turboFP650, FACS, cell culture
50337
Play Button
Clinical Application of Sleeping Beauty and Artificial Antigen Presenting Cells to Genetically Modify T Cells from Peripheral and Umbilical Cord Blood
Authors: M. Helen Huls, Matthew J. Figliola, Margaret J. Dawson, Simon Olivares, Partow Kebriaei, Elizabeth J. Shpall, Richard E. Champlin, Harjeet Singh, Laurence J.N. Cooper.
Institutions: U.T. MD Anderson Cancer Center, U.T. MD Anderson Cancer Center.
The potency of clinical-grade T cells can be improved by combining gene therapy with immunotherapy to engineer a biologic product with the potential for superior (i) recognition of tumor-associated antigens (TAAs), (ii) persistence after infusion, (iii) potential for migration to tumor sites, and (iv) ability to recycle effector functions within the tumor microenvironment. Most approaches to genetic manipulation of T cells engineered for human application have used retrovirus and lentivirus for the stable expression of CAR1-3. This approach, although compliant with current good manufacturing practice (GMP), can be expensive as it relies on the manufacture and release of clinical-grade recombinant virus from a limited number of production facilities. The electro-transfer of nonviral plasmids is an appealing alternative to transduction since DNA species can be produced to clinical grade at approximately 1/10th the cost of recombinant GMP-grade virus. To improve the efficiency of integration we adapted Sleeping Beauty (SB) transposon and transposase for human application4-8. Our SB system uses two DNA plasmids that consist of a transposon coding for a gene of interest (e.g. 2nd generation CD19-specific CAR transgene, designated CD19RCD28) and a transposase (e.g. SB11) which inserts the transgene into TA dinucleotide repeats9-11. To generate clinically-sufficient numbers of genetically modified T cells we use K562-derived artificial antigen presenting cells (aAPC) (clone #4) modified to express a TAA (e.g. CD19) as well as the T cell costimulatory molecules CD86, CD137L, a membrane-bound version of interleukin (IL)-15 (peptide fused to modified IgG4 Fc region) and CD64 (Fc-γ receptor 1) for the loading of monoclonal antibodies (mAb)12. In this report, we demonstrate the procedures that can be undertaken in compliance with cGMP to generate CD19-specific CAR+ T cells suitable for human application. This was achieved by the synchronous electro-transfer of two DNA plasmids, a SB transposon (CD19RCD28) and a SB transposase (SB11) followed by retrieval of stable integrants by the every-7-day additions (stimulation cycle) of γ-irradiated aAPC (clone #4) in the presence of soluble recombinant human IL-2 and IL-2113. Typically 4 cycles (28 days of continuous culture) are undertaken to generate clinically-appealing numbers of T cells that stably express the CAR. This methodology to manufacturing clinical-grade CD19-specific T cells can be applied to T cells derived from peripheral blood (PB) or umbilical cord blood (UCB). Furthermore, this approach can be harnessed to generate T cells to diverse tumor types by pairing the specificity of the introduced CAR with expression of the TAA, recognized by the CAR, on the aAPC.
Immunology, Issue 72, Cellular Biology, Medicine, Molecular Biology, Cancer Biology, Biomedical Engineering, Hematology, Biochemistry, Genetics, T-Lymphocytes, Antigen-Presenting Cells, Leukemia, Lymphoid, Lymphoma, Antigens, CD19, Immunotherapy, Adoptive, Electroporation, Genetic Engineering, Gene Therapy, Sleeping Beauty, CD19, T cells, Chimeric Antigen Receptor, Artificial Antigen Presenting Cells, Clinical Trial, Peripheral Blood, Umbilical Cord Blood, Cryopreservation, Electroporation
50070
Play Button
Strategies for Study of Neuroprotection from Cold-preconditioning
Authors: Heidi M. Mitchell, David M. White, Richard P. Kraig.
Institutions: The University of Chicago Medical Center.
Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning.
Neuroscience, Issue 43, innate immunity, hormesis, microglia, hippocampus, slice culture, immunohistochemistry, neural-immune, gene expression, real-time PCR
2192
Play Button
Rapid Homogeneous Detection of Biological Assays Using Magnetic Modulation Biosensing System
Authors: Amos Danielli, Noga Porat, Marcelo Ehrlich, Ady Arie.
Institutions: Tel Aviv University, Washington University in St. Louis, University of Illinois, Tel Aviv University.
A magnetic modulation biosensing system (MMB) [1,2] rapidly and homogeneously detected biological targets at low concentrations without any washing or separation step. When the IL-8 target was present, a 'sandwich'-based assay attached magnetic beads with IL-8 capture antibody to streptavidin coupled fluorescent protein via the IL-8 target and a biotinylated IL-8 antibody. The magnetic beads are maneuvered into oscillatory motion by applying an alternating magnetic field gradient through two electromagnetic poles. The fluorescent proteins, which are attached to the magnetic beads are condensed into the detection area and their movement in and out of an orthogonal laser beam produces a periodic fluorescent signal that is demodulated using synchronous detection. The magnetic modulation biosensing system was previously used to detect the coding sequences of the non-structural Ibaraki virus protein 3 (NS3) complementary DNA (cDNA) [2]. The techniques that are demonstrated in this work for external manipulation and condensation of particles may be used for other applications, e.g. delivery of magnetically-coupled drugs in-vivo or enhancing the contrast for in-vivo imaging applications.
Bioengineering, Issue 40, Magnetic modulation, magnetic nanoparticles, protein detection, IL8, fluorescent detection
1935
Play Button
Aortic Ring Assay
Authors: Keren Bellacen, Eli C. Lewis.
Institutions: Ben-Gurion University.
Angiogenesis, the sprouting of blood vessels from preexisting vasculature is associated with both natural and pathological processes. Various angiogenesis assays involve the study of individual endothelial cells in culture conditions (1). The aortic ring assay is an angiogenesis model that is based on organ culture. In this assay, angiogenic vessels grow from a segment of the aorta (modified from (2)). Briefly, mouse thoracic aorta is excised, the fat layer and adventitia are removed, and rings approximately 1 mm in length are prepared. Individual rings are then embedded in a small solid dome of basement matrix extract (BME), cast inside individual wells of a 48-well plate. Angiogenic factors and inhibitors of angiogenesis can be directly added to the rings, and a mixed co-culture of aortic rings and other cell types can be employed for the study of paracrine angiogenic effects. Sprouting is observed by inspection under a stereomicroscope over a period of 6-12 days. Due to the large variation caused by the irregularities in the aortic segments, experimentation in 6-plicates is strongly advised. Neovessel outgrowth is monitored throughout the experiment and imaged using phase microscopy, and supernatants are collected for measurement of relevant angiogenic and anti-angiogenic factors, cell death markers and nitrite.
Medicine, Issue 33, aortic rings, angiogenesis, blood vessels, aorta, mouse, vessel outgrowth
1564
Play Button
Ex vivo Expansion of Tumor-reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common Gamma Chain Cytokines Formulation
Authors: Maciej Kmieciak, Amir Toor, Laura Graham, Harry D. Bear, Masoud H. Manjili.
Institutions: Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center, Virginia Commonwealth University- Massey Cancer Center.
It was reported that breast cancer patients have pre-existing immune responses against their tumors1,2. However, such immune responses fail to provide complete protection against the development or recurrence of breast cancer. To overcome this problem by increasing the frequency of tumor-reactive T cells, adoptive immunotherapy has been employed. A variety of protocols have been used for the expansion of tumor-specific T cells. These protocols, however, are restricted to the use of tumor antigens ex vivo for the activation of antigen-specific T cells. Very recently, common gamma chain cytokines such as IL-2, IL-7, IL-15, and IL-21 have been used alone or in combination for the enhancement of anti-tumor immune responses3. However, it is not clear what formulation would work best for the expansion of tumor-reactive T cells. Here we present a protocol for the selective activation and expansion of tumor-reactive T cells from the FVBN202 transgenic mouse model of HER-2/neu positive breast carcinoma for use in adoptive T cell therapy of breast cancer. The protocol includes activation of T cells with bryostatin-1/ionomycin (B/I) and IL-2 in the absence of tumor antigens for 16 hours. B/I activation mimics intracellular signals that result in T cell activation by increasing protein kinase C activity and intracellular calcium, respectively4. This protocol specifically activates tumor-specific T cells while killing irrelevant T cells. The B/I-activated T cells are cultured with IL-7 and IL-15 for 24 hours and then pulsed with IL-2. After 24 hours, T cells are washed, split, and cultured with IL-7 + IL-15 for additional 4 days. Tumor-specificity and anti-tumor efficacy of the ex vivo expanded T cells is determined.
Immunology, Issue 47, Adoptive T cell therapy, Breast Cancer, HER-2/neu, common gamma chain cytokines, Bryostatin 1, Ionomycin
2381
Play Button
Understanding Cerebellar Pattern Formation
Authors: Kathleen J. Millen.
Institutions: University of Chicago.
Neuroscience, Issue 9, Brain, Development, Neuron
407
Play Button
Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
Authors: Brendan Carvalho, David J Clark, David Yeomans, Martin S Angst.
Institutions: Stanford University School of Medicine .
We describe a methodology by which we are able to collect and measure biochemical inflammatory and nociceptive mediators at the surgical wound site. Collecting site-specific biochemical markers is important to understand the relationship between levels in serum and surgical wound, determine any associations between mediator release, pain, analgesic use and other outcomes of interest, and evaluate the effect of systemic and peripheral drug administration on surgical wound biochemistry. This methodology has been applied to healthy women undergoing elective cesarean delivery with spinal anesthesia. We have measured wound exudate and serum mediators at the same time intervals as patient's pain scores and analgesics consumption for up to 48 hours post-cesarean delivery. Using this methodology we have been able to detect various biochemical mediators including nerve growth factor (NGF), prostaglandin E2 (PG-E2) substance P, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα, INFγ, G-CSF, GM-CSF, MCP-1 and MIP-1β. Studies applying this human surgical wound bioassay have found no correlations between wound and serum cytokine concentrations or their time-release profile (J Pain. 2008; 9(7):650-7).1 We also documented the utility of the technique to identify drug-mediated changes in wound cytokine content (Anesth Analg 2010; 111:1452-9).2
Medicine, Issue 68, Biochemistry, Anatomy, Physiology, Cytokines, Cesarean Section, Wound Healing, Wounds and Injuries, Surgical Procedures, Operative, Surgical wound, Exudate, cytokines, Substance P, Interleukin 10, Interleukin 6, Nerve growth factor, Prostaglandin E2, Cesarean, Analgesia
50133
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.