JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Adolescents with obstructive sleep apnea adhere poorly to positive airway pressure (PAP), but PAP users show improved attention and school performance.
PLoS ONE
PUBLISHED: 01-10-2011
Obstructive Sleep Apnea (OSA) is associated with medical and neurobehavioral morbidity across the lifespan. Positive airway pressure (PAP) treatment has demonstrated efficacy in treating OSA and has been shown to improve daytime functioning in adults, but treatment adherence can be problematic. There are nearly no published studies examining functional outcomes such as academic functioning in adolescents treated with PAP. This study was conducted as an initial step towards determining whether PAP treatment improves daytime functioning among adolescents with OSA.
Authors: Barry M. Lester, Lynne Andreozzi-Fontaine, Edward Tronick, Rosemarie Bigsby.
Published: 08-25-2014
ABSTRACT
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
21 Related JoVE Articles!
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
51478
Play Button
Tumor Treating Field Therapy in Combination with Bevacizumab for the Treatment of Recurrent Glioblastoma
Authors: Ayman I. Omar.
Institutions: Southern Illinois University School of Medicine.
A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill1. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone2. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting3-5. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab6. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis7. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients8,9. Bevacizumab however failed to prolong overall survival in a recent phase III trial26. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians’ choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm10. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy11,12, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the treated patients.
Medicine, Issue 92, Tumor Treating Fields, TTF System, TTF Therapy, Recurrent Glioblastoma, Bevacizumab, Brain Tumor
51638
Play Button
Psychophysiological Stress Assessment Using Biofeedback
Authors: Inna Khazan.
Institutions: Cambridge Health Alliance, Harvard Medical School.
In the last half century, research in biofeedback has shown the extent to which the human mind can influence the functioning of the autonomic nervous system, previously thought to be outside of conscious control. By letting people observe signals from their own bodies, biofeedback enables them to develop greater awareness of their physiological and psychological reactions, such as stress, and to learn to modify these reactions. Biofeedback practitioners can facilitate this process by assessing people s reactions to mildly stressful events and formulating a biofeedback-based treatment plan. During stress assessment the practitioner first records a baseline for physiological readings, and then presents the client with several mild stressors, such as a cognitive, physical and emotional stressor. Variety of stressors is presented in order to determine a person's stimulus-response specificity, or differences in each person's reaction to qualitatively different stimuli. This video will demonstrate the process of psychophysiological stress assessment using biofeedback and present general guidelines for treatment planning.
Neuroscience, Issue 29, Stress, biofeedback, psychophysiological, assessment
1443
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Evaluation of Respiratory System Mechanics in Mice using the Forced Oscillation Technique
Authors: Toby K. McGovern, Annette Robichaud, Liah Fereydoonzad, Thomas F. Schuessler, James G. Martin.
Institutions: McGill University , SCIREQ Scientific Respiratory Equipment Inc..
The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.
Medicine, Issue 75, Biomedical Engineering, Anatomy, Physiology, Biophysics, Pathology, lung diseases, asthma, respiratory function tests, respiratory system, forced oscillation technique, respiratory system mechanics, airway hyperresponsiveness, flexiVent, lung physiology, lung, oxidative stress, ventilator, cannula, mice, animal model, clinical techniques
50172
Play Button
A Method of Nodose Ganglia Injection in Sprague-Dawley Rat
Authors: Michael W. Calik, Miodrag Radulovacki, David W. Carley.
Institutions: University of Illinois at Chicago, University of Illinois at Chicago, University of Illinois at Chicago.
Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the nucleus of solitary tract of the medulla. The cell bodies of the vagus nerve are located in the nodose and petrosal ganglia, of which the majority are located in the former. The nodose ganglia contain a wealth of receptors for amino acids, monoamines, neuropeptides, and other neurochemicals that can modify afferent vagus nerve activity. Modifying vagal afferents through systemic peripheral drug treatments targeted at the receptors on nodose ganglia has the potential of treating diseases such as sleep apnea, gastroesophageal reflux disease, or chronic cough. The protocol here describes a method of injection neurochemicals directly into the nodose ganglion. Injecting neurochemicals directly into the nodose ganglia allows study of effects solely on cell bodies that modulate afferent nerve activity, and prevents the complication of involving the central nervous system as seen in systemic neurochemical treatment. Using readily available and inexpensive equipment, intranodose ganglia injections are easily done in anesthetized Sprague-Dawley rats.
Neuroscience, Issue 93, neuroscience, nodose ganglia, vagus nerve, EMG, serotonin, apnea, genioglossus, cannabinoids
52233
Play Button
Assessment of Right Ventricular Structure and Function in Mouse Model of Pulmonary Artery Constriction by Transthoracic Echocardiography
Authors: Hui-Wen Cheng, Sudeshna Fisch, Susan Cheng, Michael Bauer, Soeun Ngoy, Yiling Qiu, Jian Guan, Shikha Mishra, Christopher Mbah, Ronglih Liao.
Institutions: Harvard Medical School, Chang Gung Memorial Hospital.
Emerging clinical data support the notion that RV dysfunction is critical to the pathogenesis of cardiovascular disease and heart failure1-3. Moreover, the RV is significantly affected in pulmonary diseases such as pulmonary artery hypertension (PAH). In addition, the RV is remarkably sensitive to cardiac pathologies, including left ventricular (LV) dysfunction, valvular disease or RV infarction4. To understand the role of RV in the pathogenesis of cardiac diseases, a reliable and noninvasive method to access the RV structurally and functionally is essential. A noninvasive trans-thoracic echocardiography (TTE) based methodology was established and validated for monitoring dynamic changes in RV structure and function in adult mice. To impose RV stress, we employed a surgical model of pulmonary artery constriction (PAC) and measured the RV response over a 7-day period using a high-frequency ultrasound microimaging system. Sham operated mice were used as controls. Images were acquired in lightly anesthetized mice at baseline (before surgery), day 0 (immediately post-surgery), day 3, and day 7 (post-surgery). Data was analyzed offline using software. Several acoustic windows (B, M, and Color Doppler modes), which can be consistently obtained in mice, allowed for reliable and reproducible measurement of RV structure (including RV wall thickness, end-diastolic and end-systolic dimensions), and function (fractional area change, fractional shortening, PA peak velocity, and peak pressure gradient) in normal mice and following PAC. Using this method, the pressure-gradient resulting from PAC was accurately measured in real-time using Color Doppler mode and was comparable to direct pressure measurements performed with a Millar high-fidelity microtip catheter. Taken together, these data demonstrate that RV measurements obtained from various complimentary views using echocardiography are reliable, reproducible and can provide insights regarding RV structure and function. This method will enable a better understanding of the role of RV cardiac dysfunction.
Medicine, Issue 84, Trans-thoracic echocardiography (TTE), right ventricle (RV), pulmonary artery constriction (PAC), peak velocity, right ventricular systolic pressure (RVSP)
51041
Play Button
Eye Tracking, Cortisol, and a Sleep vs. Wake Consolidation Delay: Combining Methods to Uncover an Interactive Effect of Sleep and Cortisol on Memory
Authors: Kelly A. Bennion, Katherine R. Mickley Steinmetz, Elizabeth A. Kensinger, Jessica D. Payne.
Institutions: Boston College, Wofford College, University of Notre Dame.
Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants’ eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.
Behavior, Issue 88, attention, consolidation, cortisol, emotion, encoding, glucocorticoids, memory, sleep, stress
51500
Play Button
Fabrication And Characterization Of Photonic Crystal Slow Light Waveguides And Cavities
Authors: Christopher Paul Reardon, Isabella H. Rey, Karl Welna, Liam O'Faolain, Thomas F. Krauss.
Institutions: University of St Andrews.
Slow light has been one of the hot topics in the photonics community in the past decade, generating great interest both from a fundamental point of view and for its considerable potential for practical applications. Slow light photonic crystal waveguides, in particular, have played a major part and have been successfully employed for delaying optical signals1-4 and the enhancement of both linear5-7 and nonlinear devices.8-11 Photonic crystal cavities achieve similar effects to that of slow light waveguides, but over a reduced band-width. These cavities offer high Q-factor/volume ratio, for the realization of optically12 and electrically13 pumped ultra-low threshold lasers and the enhancement of nonlinear effects.14-16 Furthermore, passive filters17 and modulators18-19 have been demonstrated, exhibiting ultra-narrow line-width, high free-spectral range and record values of low energy consumption. To attain these exciting results, a robust repeatable fabrication protocol must be developed. In this paper we take an in-depth look at our fabrication protocol which employs electron-beam lithography for the definition of photonic crystal patterns and uses wet and dry etching techniques. Our optimised fabrication recipe results in photonic crystals that do not suffer from vertical asymmetry and exhibit very good edge-wall roughness. We discuss the results of varying the etching parameters and the detrimental effects that they can have on a device, leading to a diagnostic route that can be taken to identify and eliminate similar issues. The key to evaluating slow light waveguides is the passive characterization of transmission and group index spectra. Various methods have been reported, most notably resolving the Fabry-Perot fringes of the transmission spectrum20-21 and interferometric techniques.22-25 Here, we describe a direct, broadband measurement technique combining spectral interferometry with Fourier transform analysis.26 Our method stands out for its simplicity and power, as we can characterise a bare photonic crystal with access waveguides, without need for on-chip interference components, and the setup only consists of a Mach-Zehnder interferometer, with no need for moving parts and delay scans. When characterising photonic crystal cavities, techniques involving internal sources21 or external waveguides directly coupled to the cavity27 impact on the performance of the cavity itself, thereby distorting the measurement. Here, we describe a novel and non-intrusive technique that makes use of a cross-polarised probe beam and is known as resonant scattering (RS), where the probe is coupled out-of plane into the cavity through an objective. The technique was first demonstrated by McCutcheon et al.28 and further developed by Galli et al.29
Physics, Issue 69, Optics and Photonics, Astronomy, light scattering, light transmission, optical waveguides, photonics, photonic crystals, Slow-light, Cavities, Waveguides, Silicon, SOI, Fabrication, Characterization
50216
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
50643
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
51405
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
50537
Play Button
Handwriting Analysis Indicates Spontaneous Dyskinesias in Neuroleptic Naïve Adolescents at High Risk for Psychosis
Authors: Derek J. Dean, Hans-Leo Teulings, Michael Caligiuri, Vijay A. Mittal.
Institutions: University of Colorado Boulder, NeuroScript LLC, University of California, San Diego.
Growing evidence suggests that movement abnormalities are a core feature of psychosis. One marker of movement abnormality, dyskinesia, is a result of impaired neuromodulation of dopamine in fronto-striatal pathways. The traditional methods for identifying movement abnormalities include observer-based reports and force stability gauges. The drawbacks of these methods are long training times for raters, experimenter bias, large site differences in instrumental apparatus, and suboptimal reliability. Taking these drawbacks into account has guided the development of better standardized and more efficient procedures to examine movement abnormalities through handwriting analysis software and tablet. Individuals at risk for psychosis showed significantly more dysfluent pen movements (a proximal measure for dyskinesia) in a handwriting task. Handwriting kinematics offers a great advance over previous methods of assessing dyskinesia, which could clearly be beneficial for understanding the etiology of psychosis.
Behavior, Issue 81, Schizophrenia, Disorders with Psychotic Features, Psychology, Clinical, Psychopathology, behavioral sciences, Movement abnormalities, Ultra High Risk, psychosis, handwriting, computer tablet, dyskinesia
50852
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
Bronchial Thermoplasty: A Novel Therapeutic Approach to Severe Asthma
Authors: David R. Duhamel, Jeff B. Hales.
Institutions: Virginia Hospital Center, Virginia Hospital Center.
Bronchial thermoplasty is a non-drug procedure for severe persistent asthma that delivers thermal energy to the airway wall in a precisely controlled manner to reduce excessive airway smooth muscle. Reducing airway smooth muscle decreases the ability of the airways to constrict, thereby reducing the frequency of asthma attacks. Bronchial thermoplasty is delivered by the Alair System and is performed in three outpatient procedure visits, each scheduled approximately three weeks apart. The first procedure treats the airways of the right lower lobe, the second treats the airways of the left lower lobe and the third and final procedure treats the airways in both upper lobes. After all three procedures are performed the bronchial thermoplasty treatment is complete. Bronchial thermoplasty is performed during bronchoscopy with the patient under moderate sedation. All accessible airways distal to the mainstem bronchi between 3 and 10 mm in diameter, with the exception of the right middle lobe, are treated under bronchoscopic visualization. Contiguous and non-overlapping activations of the device are used, moving from distal to proximal along the length of the airway, and systematically from airway to airway as described previously. Although conceptually straightforward, the actual execution of bronchial thermoplasty is quite intricate and procedural duration for the treatment of a single lobe is often substantially longer than encountered during routine bronchoscopy. As such, bronchial thermoplasty should be considered a complex interventional bronchoscopy and is intended for the experienced bronchoscopist. Optimal patient management is critical in any such complex and longer duration bronchoscopic procedure. This article discusses the importance of careful patient selection, patient preparation, patient management, procedure duration, postoperative care and follow-up to ensure that bronchial thermoplasty is performed safely. Bronchial thermoplasty is expected to complement asthma maintenance medications by providing long-lasting asthma control and improving asthma-related quality of life of patients with severe asthma. In addition, bronchial thermoplasty has been demonstrated to reduce severe exacerbations (asthma attacks) emergency rooms visits for respiratory symptoms, and time lost from work, school and other daily activities due to asthma.
Medicine, Issue 45, bronchial thermoplasty, severe asthma, airway smooth muscle, bronchoscopy, radiofrequency energy, patient management, moderate sedation
2428
Play Button
Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused with Pulsatile Flow
Authors: Rebecca R. Vanderpool, Naomi C. Chesler.
Institutions: University of Wisconsin – Madison.
The isolated, ventilated and instrumented mouse lung preparation allows steady and pulsatile pulmonary vascular pressure-flow relationships to be measured with independent control over pulmonary arterial flow rate, flow rate waveform, airway pressure and left atrial pressure. Pulmonary vascular resistance is calculated based on multi-point, steady pressure-flow curves; pulmonary vascular impedance is calculated from pulsatile pressure-flow curves obtained at a range of frequencies. As now recognized clinically, impedance is a superior measure of right ventricular afterload than resistance because it includes the effects of vascular compliance, which are not negligible, especially in the pulmonary circulation. Three important metrics of impedance - the zero hertz impedance Z0, the characteristic impedance ZC, and the index of wave reflection RW - provide insight into distal arterial cross-sectional area available for flow, proximal arterial stiffness and the upstream-downstream impedance mismatch, respectively. All results obtained in isolated, ventilated and perfused lungs are independent of sympathetic nervous system tone, volume status and the effects of anesthesia. We have used this technique to quantify the impact of pulmonary emboli and chronic hypoxia on resistance and impedance, and to differentiate between sites of action (i.e., proximal vs. distal) of vasoactive agents and disease using the pressure dependency of ZC. Furthermore, when these techniques are used with the lungs of genetically engineered strains of mice, the effects of molecular-level defects on pulmonary vascular structure and function can be determined.
Medicine, Issue 50, ex-vivo, mouse, lung, pulmonary vascular impedance, characteristic impedance
2690
Play Button
Trans-vivo Delayed Type Hypersensitivity Assay for Antigen Specific Regulation
Authors: Ewa Jankowska-Gan, Subramanya Hegde, William J. Burlingham.
Institutions: University of Wisconsin-Madison, School of Medicine and Public Health.
Delayed-type hypersensitivity response (DTH) is a rapid in vivo manifestation of T cell-dependent immune response to a foreign antigen (Ag) that the host immune system has experienced in the recent past. DTH reactions are often divided into a sensitization phase, referring to the initial antigen experience, and a challenge phase, which usually follows several days after sensitization. The lack of a delayed-type hypersensitivity response to a recall Ag demonstrated by skin testing is often regarded as an evidence of anergy. The traditional DTH assay has been effectively used in diagnosing many microbial infections. Despite sharing similar immune features such as lymphocyte infiltration, edema, and tissue necrosis, the direct DTH is not a feasible diagnostic technique in transplant patients because of the possibility of direct injection resulting in sensitization to donor antigens and graft loss. To avoid this problem, the human-to-mouse "trans-vivo" DTH assay was developed 1,2. This test is essentially a transfer DTH assay, in which human peripheral blood mononuclear cells (PBMCs) and specific antigens were injected subcutaneously into the pinnae or footpad of a naïve mouse and DTH-like swelling is measured after 18-24 hr 3. The antigen presentation by human antigen presenting cells such as macrophages or DCs to T cells in highly vascular mouse tissue triggers the inflammatory cascade and attracts mouse immune cells resulting in swelling responses. The response is antigen-specific and requires prior antigen sensitization. A positive donor-reactive DTH response in the Tv-DTH assay reflects that the transplant patient has developed a pro-inflammatory immune disposition toward graft alloantigens. The most important feature of this assay is that it can also be used to detect regulatory T cells, which cause bystander suppression. Bystander suppression of a DTH recall response in the presence of donor antigen is characteristic of transplant recipients with accepted allografts 2,4-14. The monitoring of transplant recipients for alloreactivity and regulation by Tv-DTH may identify a subset of patients who could benefit from reduction of immunosuppression without elevated risk of rejection or deteriorating renal function. A promising area is the application of the Tv-DTH assay in monitoring of autoimmunity15,16 and also in tumor immunology 17.
Immunology, Issue 75, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Surgery, Trans-vivo delayed type hypersensitivity, Tv-DTH, Donor antigen, Antigen-specific regulation, peripheral blood mononuclear cells, PBMC, T regulatory cells, severe combined immunodeficient mice, SCID, T cells, lymphocytes, inflammation, injection, mouse, animal model
4454
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
51242
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
Quantitation of γH2AX Foci in Tissue Samples
Authors: Michelle M. Tang, Li-Jeen Mah, Raja S. Vasireddy, George T. Georgiadis, Assam El-Osta, Simon G. Royce, Tom C. Karagiannis.
Institutions: The Alfred Medical Research and Education Precinct, The Alfred Medical Research and Education Precinct, The University of Melbourne, Royal Children's Hospital, The University of Melbourne.
DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.
Cellular Biology, Issue 40, immunofluorescence, DNA double-strand breaks, histone variant, H2AX, DNA damage, ionising radiation, reactive oxygen species
2063
Play Button
Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
Authors: Andrea L. Axtell, Fatemeh A. Gomari, John P. Cooke.
Institutions: Stanford University .
The endothelium is a delicate monolayer of cells that lines all blood vessels, and which comprises the systemic and lymphatic capillaries. By virtue of the panoply of paracrine factors that it secretes, the endothelium regulates the contractile and proliferative state of the underlying vascular smooth muscle, as well as the interaction of the vessel wall with circulating blood elements. Because of its central role in mediating vessel tone and growth, its position as gateway to circulating immune cells, and its local regulation of hemostasis and coagulation, the the properly functioning endothelium is the key to cardiovascular health. Conversely, the earliest disorder in most vascular diseases is endothelial dysfunction. In the arterial circulation, the healthy endothelium generally exerts a vasodilator influence on the vascular smooth muscle. There are a number of methods to assess endothelial vasodilator function. The Endo-PAT 2000 is a new device that is used to assess endothelial vasodilator function in a rapid and non-invasive fashion. Unlike the commonly used technique of duplex ultra-sonography to assess flow-mediated vasodilation, it is totally non-operator-dependent, and the equipment is an order of magnitude less expensive. The device records endothelium-mediated changes in the digital pulse waveform known as the PAT ( peripheral Arterial Tone) signal, measured with a pair of novel modified plethysmographic probes situated on the finger index of each hand. Endothelium-mediated changes in the PAT signal are elicited by creating a downstream hyperemic response. Hyperemia is induced by occluding blood flow through the brachial artery for 5 minutes using an inflatable cuff on one hand. The response to reactive hyperemia is calculated automatically by the system. A PAT ratio is created using the post and pre occlusion values. These values are normalized to measurements from the contra-lateral arm, which serves as control for non-endothelial dependent systemic effects. Most notably, this normalization controls for fluctuations in sympathetic nerve outflow that may induce changes in peripheral arterial tone that are superimposed on the hyperemic response. In this video we demonstrate how to use the Endo-PAT 2000 to perform a clinically relevant assessment of endothelial vasodilator function.
Medicine, Issue 44, endothelium, endothelial dysfunction, Endo-PAT 2000, peripheral arterial tone, reactive hyperemia
2167
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.