JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Calcium handling in human induced pluripotent stem cell derived cardiomyocytes.
PUBLISHED: 02-23-2011
The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs).
Authors: Elisa Di Pasquale, Belle Song, Gianluigi Condorelli.
Published: 06-28-2013
In order to investigate the events driving heart development and to determine the molecular mechanisms leading to myocardial diseases in humans, it is essential first to generate functional human cardiomyocytes (CMs). The use of these cells in drug discovery and toxicology studies would also be highly beneficial, allowing new pharmacological molecules for the treatment of cardiac disorders to be validated pre-clinically on cells of human origin. Of the possible sources of CMs, induced pluripotent stem (iPS) cells are among the most promising, as they can be derived directly from readily accessible patient tissue and possess an intrinsic capacity to give rise to all cell types of the body 1. Several methods have been proposed for differentiating iPS cells into CMs, ranging from the classical embryoid bodies (EBs) aggregation approach to chemically defined protocols 2,3. In this article we propose an EBs-based protocol and show how this method can be employed to efficiently generate functional CM-like cells from feeder-free iPS cells.
18 Related JoVE Articles!
Play Button
Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Authors: Xuejun H. Parsons, Yang D. Teng, James F. Parsons, Evan Y. Snyder, David B. Smotrich, Dennis A. Moore.
Institutions: San Diego Regenerative Medicine Institute, Xcelthera, Harvard Medical School, VA Boston Healthcare System, Sanford-Burnham Medical Research Institute, La Jolla IVF.
To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering1-3. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart1-3. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery1-3. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration4,5. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity6-8 (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic9-11. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules12 (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics.
Developmental Biology, Issue 57, human embryonic stem cell, human, cardiac progenitor, cardiomyocytes, human pluripotent cell, cardiac differentiation, small molecule induction, cell culture, cell therapy
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
Play Button
Capillary Force Lithography for Cardiac Tissue Engineering
Authors: Jesse Macadangdang, Hyun Jung Lee, Daniel Carson, Alex Jiao, James Fugate, Lil Pabon, Michael Regnier, Charles Murry, Deok-Ho Kim.
Institutions: University of Washington, University of Washington.
Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5. A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9. Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14. Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA mold is placed on top. For UV-assisted CFL, the PU is then exposed to UV radiation (λ = 250-400 nm) for curing. For solvent-mediated CFL, the PLGA is embossed using heat (120 °C) and pressure (100 kPa). After curing, the PUA mold is peeled off, leaving behind an ANFS for cell culture. Primary cells, such as neonatal rat ventricular myocytes, as well as human pluripotent stem cell-derived cardiomyocytes, can be maintained on the ANFS2.
Bioengineering, Issue 88, Nanotopography, Anisotropic, Nanofabrication, Cell Culture, Cardiac Tissue Engineering
Play Button
Enrichment and Purging of Human Embryonic Stem Cells by Detection of Cell Surface Antigens Using the Monoclonal Antibodies TG30 and GCTM-2
Authors: Juan Carlos Polanco, Bei Wang, Qi Zhou, Hun Chy, Carmel O'Brien, Andrew L. Laslett.
Institutions: CSIRO.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.
Stem Cell Biology, Issue 82, Stem cells, cell surface antigens, antibodies, FACS, purging stem cells, differentiation, pluripotency, teratoma, human embryonic stem cells (hESC)
Play Button
Generation of Induced Pluripotent Stem Cells by Reprogramming Mouse Embryonic Fibroblasts with a Four Transcription Factor, Doxycycline Inducible Lentiviral Transduction System
Authors: Brad Hamilton, Qiang Feng, Mike Ye, G Grant Welstead.
Institutions: Stemgent, MIT - Massachusetts Institute of Technology.
Using a defined set of transcription factors and cell culture conditions, Yamanaka and colleagues demonstrated that retrovirus-mediated delivery and expression of Oct4, Sox2, c-Myc, and Klf4 is capable of inducing pluripotency in mouse fibroblasts.1 Subsequent reports have demonstrated the utility of the doxycycline (DOX) inducible lentiviral delivery system for the generation of both primary and secondary iPS cells from a variety of other adult mouse somatic cell types.2,3 Induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells in morphology, proliferation and ability to induce teratoma formation. Both types of cell can be used as the pluripotent starting material for the generation of differentiated cells or tissues in regenerative medicine.4-6 iPS cells also have a distinct advantage over ES cells as they exhibit key properties of ES cells without the ethical dilemma of embryo destruction. Here we demonstrate the protocol for reprogramming mouse embryonic fibroblast (MEF) cells with the Stemgent DOX Inducible Mouse TF Lentivirus Set. We also demonstrate that the Stemgent DOX Inducible Mouse TF Lentivirus Set is capable of expressing each of the four transcription factors upon transduction into MEFs thereby inducing a pluripotent stem cell state that displays the pluripotency markers characteristic of ES cells.
Developmental Biology, Issue 33, reprogramming, Doxycycline, DOX, iPS, induced pluripotent stem cells, lentivirus, pluripotency, transduction, stem cells
Play Button
Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral Vector with GFP
Authors: Kun-Yong Kim, Eriona Hysolli, In-Hyun Park.
Institutions: Yale School of Medicine.
Human embryonic stem cells (hESCs) are pluripotent and an invaluable cellular sources for in vitro disease modeling and regenerative medicine1. It has been previously shown that human somatic cells can be reprogrammed to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) and become induced pluripotent stem cells (iPSCs)2-4 . Like hESCs, human iPSCs are pluripotent and a potential source for autologous cells. Here we describe the protocol to reprogram human fibroblast cells with the four reprogramming factors cloned into GFP-containing retroviral backbone4. Using the following protocol, we generate human iPSCs in 3-4 weeks under human ESC culture condition. Human iPSC colonies closely resemble hESCs in morphology and display the loss of GFP fluorescence as a result of retroviral transgene silencing. iPSC colonies isolated mechanically under a fluorescence microscope behave in a similar fashion as hESCs. In these cells, we detect the expression of multiple pluripotency genes and surface markers.
Stem Cell Biology, Issue 62, Human iPS cells, iPSCs, Reprogramming, Retroviral vectors and Pluripotency
Play Button
Generation of Induced Pluripotent Stem Cells by Reprogramming Human Fibroblasts with the Stemgent Human TF Lentivirus Set
Authors: Dongmei Wu, Brad Hamilton, Charles Martin, Yan Gao, Mike Ye, Shuyuan Yao.
Institutions: Stemgent.
In 2006, Yamanaka and colleagues first demonstrated that retrovirus-mediated delivery and expression of Oct4, Sox2, c-Myc and Klf4 is capable of inducing the pluripotent state in mouse fibroblasts.1 The same group also reported the successful reprogramming of human somatic cells into induced pluripotent stem (iPS) cells using human versions of the same transcription factors delivered by retroviral vectors.2 Additionally, James Thomson et al. reported that the lentivirus-mediated co-expression of another set of factors (Oct4, Sox2, Nanog and Lin28) was capable of reprogramming human somatic cells into iPS cells.3 iPS cells are similar to ES cells in morphology, proliferation and the ability to differentiate into all tissue types of the body. Human iPS cells have a distinct advantage over ES cells as they exhibit key properties of ES cells without the ethical dilemma of embryo destruction. The generation of patient-specific iPS cells circumvents an important roadblock to personalized regenerative medicine therapies by eliminating the potential for immune rejection of non-autologous transplanted cells. Here we demonstrate the protocol for reprogramming human fibroblast cells using the Stemgent Human TF Lentivirus Set. We also show that cells reprogrammed with this set begin to show iPS morphology four days post-transduction. Using the Stemolecule Y27632, we selected for iPS cells and observed correct morphology after three sequential rounds of colony picking and passaging. We also demonstrate that after reprogramming cells displayed the pluripotency marker AP, surface markers TRA-1-81, TRA-1-60, SSEA-4, and SSEA-3, and nuclear markers Oct4, Sox2 and Nanog.
Developmental Biology, Issue 34, iPS, reprogramming, lentivirus, stem cell, induced pluripotent cell, pluripotency, fibroblast, embryonic stem cells, ES cells, iPS cells
Play Button
Preparation of Mouse Embryonic Fibroblast Cells Suitable for Culturing Human Embryonic and Induced Pluripotent Stem Cells
Authors: Justyna Jozefczuk, Katharina Drews, James Adjaye.
Institutions: Max Planck Institute for Molecular Genetics.
In general, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs)1 can be cultured under variable conditions. However, it is not easy to establish an effective system for culturing these cells. Since the culture conditions can influence gene expression that confers pluripotency in hESCs and hiPSCs, the optimization and standardization of the culture method is crucial. The establishment of hESC lines was first described by using MEFs as feeder cells and fetal bovine serum (FBS)-containing culture medium2. Next, FBS was replaced with knockout serum replacement (KSR) and FGF2, which enhances proliferation of hESCs3. Finally, feeder-free culture systems enable culturing cells on Matrigel-coated plates in KSR-containing conditioned medium (medium conditioned by MEFs)4. Subsequently, hESCs culture conditions have moved towards feeder-free culture in chemically defined conditions5-7. Moreover, to avoid the potential contamination by pathogens and animal proteins culture methods using xeno-free components have been established8. To obtain improved conditions mouse feeder cells have been replaced with human cell lines (e.g. fetal muscle and skin cells9, adult skin cells10, foreskin fibroblasts11-12, amniotic mesenchymal cells13). However, the efficiency of maintaining undifferentiated hESCs using human foreskin fibroblast-derived feeder layers is not as high as that from mouse feeder cells due to the lower level of secretion of Activin A14. Obviously, there is an evident difference in growth factor production by mouse and human feeder cells. Analyses of the transcriptomes of mouse and human feeder cells revealed significant differences between supportive and non-supportive cells. Exogenous FGF2 is crucial for maintaining self-renewal of hESCs and hiPSCs, and has been identified as a key factor regulating the expression of Tgfβ1, Activin A and Gremlin (a BMP antagonist) in feeder cells. Activin A has been shown to induce the expression of OCT4, SOX2, and NANOG in hESCs15-16. For long-term culture, hESCs and hiPSCs can be grown on mitotically inactivated MEFs or under feeder-free conditions in MEF-CM (MEF-Conditioned Medium) on Matrigel-coated plates to maintain their undifferentiated state. Success of both culture conditions fully depends on the quality of the feeder cells, since they directly affect the growth of hESCs. Here, we present an optimized method for the isolation and culture of mouse embryonic fibroblasts (MEFs), preparation of conditioned medium (CM) and enzyme-linked immunosorbent assay (ELISA) to assess the levels of Activin A within the media.
Stem Cell Biology, Issue 64, Molecular Biology, Developmental Biology, mouse embryonic fibroblasts (MEFs), human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), Activin A -conditioned medium (CM), cell culture
Play Button
Directed Dopaminergic Neuron Differentiation from Human Pluripotent Stem Cells
Authors: Pengbo Zhang, Ninuo Xia, Renee A. Reijo Pera.
Institutions: Stanford University School of Medicine, Stanford University School of Medicine.
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson’s disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development, A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here, we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons, which mimics embryonic DA neuron development. In our protocol, we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method, and then convert the FP cells to A9 DA neurons, which could be maintained in vitro for several months. This efficient, repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients, in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.
Neuroscience, Issue 91, dopaminergic neuron, substantia nigra pars compacta, midbrain, Parkinson’s disease, directed differentiation, human pluripotent stem cells, floor plate
Play Button
Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells
Authors: Nadja Zeltner, Fabien G. Lafaille, Faranak Fattahi, Lorenz Studer.
Institutions: Sloan-Kettering Institute for Cancer Research, The Rockefeller University.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Neuroscience, Issue 87, Embryonic Stem Cells (ESCs), Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Neural Crest, Peripheral Nervous System (PNS), pluripotent stem cells, neural crest cells, in vitro differentiation, disease modeling, differentiation protocol, human embryonic stem cells, human pluripotent stem cells
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
Play Button
Isolation, Culture, and Functional Characterization of Adult Mouse Cardiomyoctyes
Authors: Evan Lee Graham, Cristina Balla, Hannabeth Franchino, Yonathan Melman, Federica del Monte, Saumya Das.
Institutions: Beth Israel Deaconess Medical Center, Harvard Medical School, Sapienza University.
The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease.
Cellular Biology, Issue 79, Medicine, Cardiology, Cellular Biology, Anatomy, Physiology, Mice, Ion Channels, Primary Cell Culture, Cardiac Electrophysiology, adult mouse cardiomyocytes, cell isolation, IonOptix, Cell Culture, adenoviral transfection, patch clamp, fluorescent nanosensor
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Selecting and Isolating Colonies of Human Induced Pluripotent Stem Cells Reprogrammed from Adult Fibroblasts
Authors: Urszula Polak, Calley Hirsch, Sherman Ku, Joel Gottesfeld, Sharon Y.R. Dent, Marek Napierala.
Institutions: University of Texas M.D. Anderson Cancer Center, Poznan University of Medical Sciences, The Scripps Research Institute.
Herein we present a protocol of reprogramming human adult fibroblasts into human induced pluripotent stem cells (hiPSC) using retroviral vectors encoding Oct3/4, Sox2, Klf4 and c-myc (OSKM) in the presence of sodium butyrate 1-3. We used this method to reprogram late passage (>p10) human adult fibroblasts derived from Friedreich's ataxia patient (GM03665, Coriell Repository). The reprogramming approach includes highly efficient transduction protocol using repetitive centrifugation of fibroblasts in the presence of virus-containing media. The reprogrammed hiPSC colonies were identified using live immunostaining for Tra-1-81, a surface marker of pluripotent cells, separated from non-reprogrammed fibroblasts and manually passaged 4,5. These hiPSC were then transferred to Matrigel plates and grown in feeder-free conditions, directly from the reprogramming plate. Starting from the first passage, hiPSC colonies demonstrate characteristic hES-like morphology. Using this protocol more than 70% of selected colonies can be successfully expanded and established into cell lines. The established hiPSC lines displayed characteristic pluripotency markers including surface markers TRA-1-60 and SSEA-4, as well as nuclear markers Oct3/4, Sox2 and Nanog. The protocol presented here has been established and tested using adult fibroblasts obtained from Friedreich's ataxia patients and control individuals 6, human newborn fibroblasts, as well as human keratinocytes.
Developmental Biology, Issue 60, stem cells, induced pluripotent stem cells, iPSC, somatic cell reprogramming, pluripotency, retroviral transduction
Play Button
Efficient Generation Human Induced Pluripotent Stem Cells from Human Somatic Cells with Sendai-virus
Authors: In Young Choi, HoTae Lim, Gabsang Lee.
Institutions: Johns Hopkins University School of Medicine.
A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases. Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner.
Stem Cell Biology, Issue 86, Induced pluripotent stem cells, Human embryonic stem cells, Sendai-virus
Play Button
Derivation and Characterization of a Transgene-free Human Induced Pluripotent Stem Cell Line and Conversion into Defined Clinical-grade Conditions
Authors: Jason P. Awe, Agustin Vega-Crespo, James A. Byrne.
Institutions: University of California, Los Angeles (UCLA), University of California, Los Angeles (UCLA).
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications1. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context2. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences3. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology—provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications—for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
Stem Cell Biology, Issue 93, Human induced pluripotent stem cells, STEMCCA, factor-free, GMP, xeno-free, quantitative PCR
Play Button
Isolation and Culture of Neonatal Mouse Cardiomyocytes
Authors: Elisabeth Ehler, Thomas Moore-Morris, Stephan Lange.
Institutions: King’s College London, University of California San Diego .
Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.
Cellular Biology, Issue 79, Biomedical Engineering, Bioengineering, Molecular Biology, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Disease Models, Animal, Models, Cardiovascular, Cell Biology, neonatal mouse, cardiomyocytes, isolation, culture, primary cells, NMC, heart cells, animal model
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.