JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Prostaglandin E? regulates AMPA receptor phosphorylation and promotes membrane insertion in preoptic area neurons and glia during sexual differentiation.
PUBLISHED: 03-02-2011
Sexual differentiation of the rodent brain is dependent upon the organizing actions of the steroid hormone, estradiol. In the preoptic area, a brain region critical for the expression of adult reproductive behavior, there are twice as many dendritic spine synapses per unit length on newborn male neurons compared to female neurons and this sex difference correlates with the expression of adult male copulatory behavior. The sex difference in the POA is achieved via estradiols upregulation of the membrane-derived lipid signaling molecule prostaglandin E? (PGE?); PGE? is necessary and sufficient to masculinize both dendritic spine density and adult sexual behavior in rats. We have previously shown that PGE? activates EP? and EP? receptors which increases protein kinase A (PKA) activity and that masculinized dendritic spine density and sex behavior are both dependent upon PKA as well as activation of AMPA type glutamate receptors. In the current experiments, we build upon this signaling cascade by determining that PGE? induces phosphorylation of the AMPA receptor subunit, GluR1, which leads to increased AMPA receptor insertion at the membrane. Treating female pups on the day of birth with PGE? induced the phosphorylation of GluR1 at the PKA-sensitive site within 2 hours of treatment, an effect that was blocked by co-administration of the PKA/AKAP inhibitor, HT31 with PGE?. Brief treatment of mixed neuronal/glial POA cultures with PGE? or the cAMP/PKA stimulator, forskolin, increased membrane associated GluR1 in both neurons and glia. We speculate that PGE? induced increases in AMPA receptor associated with the membrane underlies our previously observed increase in dendritic spine density and is a critical component in the masculinization of rodent sex behavior.
Authors: Yun Li, Brittany D. Roy, Wei Wang, Lifeng Zhang, Stephen B. Sampson, Da-Ting Lin.
Published: 11-20-2012
A better understanding of the mechanisms governing receptor trafficking between the plasma membrane (PM) and intracellular compartments requires an experimental approach with excellent spatial and temporal resolutions. Moreover, such an approach must also have the ability to distinguish receptors localized on the PM from those in intracellular compartments. Most importantly, detecting receptors in a single vesicle requires outstanding detection sensitivity, since each vesicle carries only a small number of receptors. Standard approaches for examining receptor trafficking include surface biotinylation followed by biochemical detection, which lacks both the necessary spatial and temporal resolutions; and fluorescence microscopy examination of immunolabeled surface receptors, which requires chemical fixation of cells and therefore lacks sufficient temporal resolution1-6 . To overcome these limitations, we and others have developed and employed a new strategy that enables visualization of the dynamic insertion of receptors into the PM with excellent spatial and temporal resolutions 7-17 . The approach includes tagging of a pH-sensitive GFP, the superecliptic pHluorin 18, to the N-terminal extracellular domain of the receptors. Superecliptic pHluorin has the unique property of being fluorescent at neutral pH and non-fluorescent at acidic pH (pH < 6.0). Therefore, the tagged receptors are non-fluorescent when within the acidic lumen of intracellular trafficking vesicles or endosomal compartments, and they become readily visualized only when exposed to the extracellular neutral pH environment, on the outer surface of the PM. Our strategy consequently allows us to distinguish PM surface receptors from those within intracellular trafficking vesicles. To attain sufficient spatial and temporal resolutions, as well as the sensitivity required to study dynamic trafficking of receptors, we employed total internal reflection fluorescent microscopy (TIRFM), which enabled us to achieve the optimal spatial resolution of optical imaging (~170 nm), the temporal resolution of video-rate microscopy (30 frames/sec), and the sensitivity to detect fluorescence of a single GFP molecule. By imaging pHluorin-tagged receptors under TIRFM, we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This imaging approach can potentially be applied to any membrane protein with an extracellular domain that could be labeled with superecliptic pHluorin, and will allow dissection of the key detailed mechanisms governing insertion of different membrane proteins (receptors, ion channels, transporters, etc.) to the PM.
20 Related JoVE Articles!
Play Button
Lateral Diffusion and Exocytosis of Membrane Proteins in Cultured Neurons Assessed using Fluorescence Recovery and Fluorescence-loss Photobleaching
Authors: Keri L. Hildick, Inmaculada M. González-González, Frédéric Jaskolski, Jeremy. M. Henley.
Institutions: University of Bristol.
Membrane proteins such as receptors and ion channels undergo active trafficking in neurons, which are highly polarised and morphologically complex. This directed trafficking is of fundamental importance to deliver, maintain or remove synaptic proteins. Super-ecliptic pHluorin (SEP) is a pH-sensitive derivative of eGFP that has been extensively used for live cell imaging of plasma membrane proteins1-2. At low pH, protonation of SEP decreases photon absorption and eliminates fluorescence emission. As most intracellular trafficking events occur in compartments with low pH, where SEP fluorescence is eclipsed, the fluorescence signal from SEP-tagged proteins is predominantly from the plasma membrane where the SEP is exposed to a neutral pH extracellular environment. When illuminated at high intensity SEP, like every fluorescent dye, is irreversibly photodamaged (photobleached)3-5. Importantly, because low pH quenches photon absorption, only surface expressed SEP can be photobleached whereas intracellular SEP is unaffected by the high intensity illumination6-10. FRAP (fluorescence recovery after photobleaching) of SEP-tagged proteins is a convenient and powerful technique for assessing protein dynamics at the plasma membrane. When fluorescently tagged proteins are photobleached in a region of interest (ROI) the recovery in fluorescence occurs due to the movement of unbleached SEP-tagged proteins into the bleached region. This can occur via lateral diffusion and/or from exocytosis of non-photobleached receptors supplied either by de novo synthesis or recycling (see Fig. 1). The fraction of immobile and mobile protein can be determined and the mobility and kinetics of the diffusible fraction can be interrogated under basal and stimulated conditions such as agonist application or neuronal activation stimuli such as NMDA or KCl application8,10. We describe photobleaching techniques designed to selectively visualize the recovery of fluorescence attributable to exocytosis. Briefly, an ROI is photobleached once as with standard FRAP protocols, followed, after a brief recovery, by repetitive bleaching of the flanking regions. This 'FRAP-FLIP' protocol, developed in our lab, has been used to characterize AMPA receptor trafficking at dendritic spines10, and is applicable to a wide range of trafficking studies to evaluate the intracellular trafficking and exocytosis.
Neuroscience, Issue 60, Fluorescence Recovery After Photobleaching, FRAP, Confocal imaging, fluorophore, GFP, Super-ecliptic pHluorin, SEP, fluorescence loss in photobleach, FLIP, neuron, protein traffic, synapse
Play Button
Excitotoxic Stimulation of Brain Microslices as an In vitro Model of Stroke
Authors: Kathryn A. Skelding, Jacinta M. Arellano, David A. Powis, John A. Rostas.
Institutions: The University of Newcastle, Southern Cross University, The University of Newcastle.
Examining molecular mechanisms involved in neuropathological conditions, such as ischemic stroke, can be difficult when using whole animal systems. As such, primary or 'neuronal-like' cell culture systems are commonly utilized. While these systems are relatively easy to work with, and are useful model systems in which various functional outcomes (such as cell death) can be readily quantified, the examined outcomes and pathways in cultured immature neurons (such as excitotoxicity-mediated cell death pathways) are not necessarily the same as those observed in mature brain, or in intact tissue. Therefore, there is the need to develop models in which cellular mechanisms in mature neural tissue can be examined. We have developed an in vitro technique that can be used to investigate a variety of molecular pathways in intact nervous tissue. The technique described herein utilizes rat cortical tissue, but this technique can be adapted to use tissue from a variety of species (such as mouse, rabbit, guinea pig, and chicken) or brain regions (for example, hippocampus, striatum, etc.). Additionally, a variety of stimulations/treatments can be used (for example, excitotoxic, administration of inhibitors, etc.). In conclusion, the brain slice model described herein can be used to examine a variety of molecular mechanisms involved in excitotoxicity-mediated brain injury.
Medicine, Issue 84, Brain slices, in vitro , excitotoxicity, brain injury, Mature brain tissue, Stimulation, stroke
Play Button
Recording Electrical Activity from Identified Neurons in the Intact Brain of Transgenic Fish
Authors: Yali Zhao, Nancy L. Wayne.
Institutions: University of California, Los Angeles .
Understanding the cell physiology of neural circuits that regulate complex behaviors is greatly enhanced by using model systems in which this work can be performed in an intact brain preparation where the neural circuitry of the CNS remains intact. We use transgenic fish in which gonadotropin-releasing hormone (GnRH) neurons are genetically tagged with green fluorescent protein for identification in the intact brain. Fish have multiple populations of GnRH neurons, and their functions are dependent on their location in the brain and the GnRH gene that they express1 . We have focused our demonstration on GnRH3 neurons located in the terminal nerves (TN) associated with the olfactory bulbs using the intact brain of transgenic medaka fish (Figure 1B and C). Studies suggest that medaka TN-GnRH3 neurons are neuromodulatory, acting as a transmitter of information from the external environment to the central nervous system; they do not play a direct role in regulating pituitary-gonadal functions, as do the well-known hypothalamic GnRH1 neurons2, 3 .The tonic pattern of spontaneous action potential firing of TN-GnRH3 neurons is an intrinsic property4-6, the frequency of which is modulated by visual cues from conspecifics2 and the neuropeptide kisspeptin 15. In this video, we use a stable line of transgenic medaka in which TN-GnRH3 neurons express a transgene containing the promoter region of Gnrh3 linked to enhanced green fluorescent protein7 to show you how to identify neurons and monitor their electrical activity in the whole brain preparation6.
Neuroscience, Issue 74, Neurobiology, Cellular Biology, Molecular Biology, Anatomy, Physiology, Neuroendocrinology, Neurophysiology, Electrophysiology, Comparative, action potential, gonadotropin-releasing hormone, neuron, brain, teleost, animal model
Play Button
Imaging Analysis of Neuron to Glia Interaction in Microfluidic Culture Platform (MCP)-based Neuronal Axon and Glia Co-culture System
Authors: Haruki Higashimori, Yongjie Yang.
Institutions: Tufts University, Tufts Sackler School of Graduate Biomedical Sciences.
Proper neuron to glia interaction is critical to physiological function of the central nervous system (CNS). This bidirectional communication is sophisticatedly mediated by specific signaling pathways between neuron and glia1,2 . Identification and characterization of these signaling pathways is essential to the understanding of how neuron to glia interaction shapes CNS physiology. Previously, neuron and glia mixed cultures have been widely utilized for testing and characterizing signaling pathways between neuron and glia. What we have learned from these preparations and other in vivo tools, however, has suggested that mutual signaling between neuron and glia often occurred in specific compartments within neurons (i.e., axon, dendrite, or soma)3. This makes it important to develop a new culture system that allows separation of neuronal compartments and specifically examines the interaction between glia and neuronal axons/dendrites. In addition, the conventional mixed culture system is not capable of differentiating the soluble factors and direct membrane contact signals between neuron and glia. Furthermore, the large quantity of neurons and glial cells in the conventional co-culture system lacks the resolution necessary to observe the interaction between a single axon and a glial cell. In this study, we describe a novel axon and glia co-culture system with the use of a microfluidic culture platform (MCP). In this co-culture system, neurons and glial cells are cultured in two separate chambers that are connected through multiple central channels. In this microfluidic culture platform, only neuronal processes (especially axons) can enter the glial side through the central channels. In combination with powerful fluorescent protein labeling, this system allows direct examination of signaling pathways between axonal/dendritic and glial interactions, such as axon-mediated transcriptional regulation in glia, glia-mediated receptor trafficking in neuronal terminals, and glia-mediated axon growth. The narrow diameter of the chamber also significantly prohibits the flow of the neuron-enriched medium into the glial chamber, facilitating probing of the direct membrane-protein interaction between axons/dendrites and glial surfaces.
Neuroscience, Issue 68, Molecular Biology, Cellular Biology, Biophysics, Microfluidics, Microfluidic culture platform, Compartmented culture, Neuron to glia signaling, neurons, glia, cell culture
Play Button
DiOLISTIC Labeling of Neurons from Rodent and Non-human Primate Brain Slices
Authors: Gail K. Seabold, James B. Daunais, Andrew Rau, Kathleen A. Grant, Veronica A. Alvarez.
Institutions: NIH, Wake Forest University Health Sciences, Oregon Health and Science University.
DiOLISTIC staining uses the gene gun to introduce fluorescent dyes, such as DiI, into neurons of brain slices (Gan et al., 2009; O'Brien and Lummis, 2007; Gan et al., 2000). Here we provide a detailed description of each step required together with exemplary images of good and bad outcomes that will help when setting up the technique. In our experience, a few steps proved critical for the successful application of DiOLISTICS. These considerations include the quality of the DiI-coated bullets, the extent of fixative exposure, and the concentration of detergent used in the incubation solutions. Tips and solutions for common problems are provided. This is a versatile labeling technique that can be applied to multiple animal species at a wide range of ages. Unlike other fluorescent labeling techniques that are limited to preparations from young animals or restricted to mice because they rely on the expression of a fluorescent transgene, DiOLISTIC labeling can be applied to animals of all ages, species and genotypes and it can be used in combination with immunostaining to identify a specific subpopulation of cells. Here we demonstrate the use of DiOLISTICS to label neurons in brain slices from adult mice and adult non-human primates with the purpose of quantifying dendrite branching and dendritic spine morphology.
JoVE Neuroscience, Issue 41, gene gun, dendritic spine, dendrite branching, neuronal morphology, diI, mouse brain, cynomogus monkey brain, fluorescent labeling
Play Button
Strategies for Study of Neuroprotection from Cold-preconditioning
Authors: Heidi M. Mitchell, David M. White, Richard P. Kraig.
Institutions: The University of Chicago Medical Center.
Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning.
Neuroscience, Issue 43, innate immunity, hormesis, microglia, hippocampus, slice culture, immunohistochemistry, neural-immune, gene expression, real-time PCR
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
One-channel Cell-attached Patch-clamp Recording
Authors: Bruce A. Maki, Kirstie A. Cummings, Meaghan A. Paganelli, Swetha E. Murthy, Gabriela K. Popescu.
Institutions: University at Buffalo, SUNY, University at Buffalo, SUNY, The Scripps Research Institute, University at Buffalo, SUNY.
Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease.
Neuroscience, Issue 88, biophysics, ion channels, single-channel recording, NMDA receptors, gating, electrophysiology, patch-clamp, kinetic analysis
Play Button
Visualizing the Effects of a Positive Early Experience, Tactile Stimulation, on Dendritic Morphology and Synaptic Connectivity with Golgi-Cox Staining
Authors: Richelle Mychasiuk, Robbin Gibb, Bryan Kolb.
Institutions: University of Lethbridge.
To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity.
Neuroscience, Issue 79, Brain, Prefrontal Cortex, Neurons, Massage, Staining and Labeling, mPFC, spine density, methodology, enrichment
Play Button
Multi-photon Intracellular Sodium Imaging Combined with UV-mediated Focal Uncaging of Glutamate in CA1 Pyramidal Neurons
Authors: Christian Kleinhans, Karl W. Kafitz, Christine R. Rose.
Institutions: Heinrich Heine University Düsseldorf.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.
Neuroscience, Issue 92, Neurosciences, two-photon microscopy, patch-clamp, UV-flash photolysis, mouse, hippocampus, caged compounds, glutamate, brain slice, dendrite, sodium signals
Play Button
Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways
Authors: Stacy L. Fairbanks, Rebekah Vest, Saurabh Verma, Richard J. Traystman, Paco S. Herson.
Institutions: University of Colorado School of Medicine, Oregon Health & Science University, University of Colorado School of Medicine.
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Neuroscience, Issue 82, male, female, sex, neuronal culture, ischemia, cell death, neuroprotection
Play Button
Analysis of Dendritic Spine Morphology in Cultured CNS Neurons
Authors: Deepak P. Srivastava, Kevin M. Woolfrey, Peter Penzes.
Institutions: Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine.
Dendritic spines are the sites of the majority of excitatory connections within the brain, and form the post-synaptic compartment of synapses. These structures are rich in actin and have been shown to be highly dynamic. In response to classical Hebbian plasticity as well as neuromodulatory signals, dendritic spines can change shape and number, which is thought to be critical for the refinement of neural circuits and the processing and storage of information within the brain. Within dendritic spines, a complex network of proteins link extracellular signals with the actin cyctoskeleton allowing for control of dendritic spine morphology and number. Neuropathological studies have demonstrated that a number of disease states, ranging from schizophrenia to autism spectrum disorders, display abnormal dendritic spine morphology or numbers. Moreover, recent genetic studies have identified mutations in numerous genes that encode synaptic proteins, leading to suggestions that these proteins may contribute to aberrant spine plasticity that, in part, underlie the pathophysiology of these disorders. In order to study the potential role of these proteins in controlling dendritic spine morphologies/number, the use of cultured cortical neurons offers several advantages. Firstly, this system allows for high-resolution imaging of dendritic spines in fixed cells as well as time-lapse imaging of live cells. Secondly, this in vitro system allows for easy manipulation of protein function by expression of mutant proteins, knockdown by shRNA constructs, or pharmacological treatments. These techniques allow researchers to begin to dissect the role of disease-associated proteins and to predict how mutations of these proteins may function in vivo.
Neuroscience, Issue 53, Excitatory synapse, neuroscience, brain, cortex, cortical neurons, primary culture, confocal microscopy, time-lapse imaging, remodeling.
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
An In-vitro Preparation of Isolated Enteric Neurons and Glia from the Myenteric Plexus of the Adult Mouse
Authors: Tricia H. Smith, Joy Ngwainmbi, John R. Grider, William L. Dewey, Hamid I. Akbarali.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
The enteric nervous system is a vast network of neurons and glia running the length of the gastrointestinal tract that functionally controls gastrointestinal motility. A procedure for the isolation and culture of a mixed population of neurons and glia from the myenteric plexus is described. The primary cultures can be maintained for over 7 days, with connections developing among the neurons and glia. The longitudinal muscle strip with the attached myenteric plexus is stripped from the underlying circular muscle of the mouse ileum or colon and subjected to enzymatic digestion. In sterile conditions, the isolated neuronal and glia population are preserved within the pellet following centrifugation and plated on coverslips. Within 24-48 hr, neurite outgrowth occurs and neurons can be identified by pan-neuronal markers. After two days in culture, isolated neurons fire action potentials as observed by patch clamp studies. Furthermore, enteric glia can also be identified by GFAP staining. A network of neurons and glia in close apposition forms within 5 - 7 days. Enteric neurons can be individually and directly studied using methods such as immunohistochemistry, electrophysiology, calcium imaging, and single-cell PCR. Furthermore, this procedure can be performed in genetically modified animals. This methodology is simple to perform and inexpensive. Overall, this protocol exposes the components of the enteric nervous system in an easily manipulated manner so that we may better discover the functionality of the ENS in normal and disease states.
Neurobiology, Issue 78, Neuroscience, Biomedical Engineering, Anatomy, Physiology, Molecular Biology, Cellular Biology, Biophysics, Pharmacology, Myenteric Plexus, Digestive System, Neurosciences, Enteric nervous system, culture, mouse, patch clamp, action potential, gastrointestinal neuropathies, neurons, glia, tissue, cell culture, animal model
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Preparation of Synaptic Plasma Membrane and Postsynaptic Density Proteins Using a Discontinuous Sucrose Gradient
Authors: Marie Kristel Bermejo, Marija Milenkovic, Ali Salahpour, Amy J. Ramsey.
Institutions: University of Toronto.
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960’s, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
Neurobiology, Issue 91, brain, synapse, western blot, ultracentrifugation, SPM, PSD
Play Button
Paired Whole Cell Recordings in Organotypic Hippocampal Slices
Authors: Chantelle Fourie, Marianna Kiraly, Daniel V. Madison, Johanna M. Montgomery.
Institutions: University of Auckland, Stanford University.
Pair recordings involve simultaneous whole cell patch clamp recordings from two synaptically connected neurons, enabling not only direct electrophysiological characterization of the synaptic connections between individual neurons, but also pharmacological manipulation of either the presynaptic or the postsynaptic neuron. When carried out in organotypic hippocampal slice cultures, the probability that two neurons are synaptically connected is significantly increased. This preparation readily enables identification of cell types, and the neurons maintain their morphology and properties of synaptic function similar to that in native brain tissue. A major advantage of paired whole cell recordings is the highly precise information it can provide on the properties of synaptic transmission and plasticity that are not possible with other more crude techniques utilizing extracellular axonal stimulation. Paired whole cell recordings are often perceived as too challenging to perform. While there are challenging aspects to this technique, paired recordings can be performed by anyone trained in whole cell patch clamping provided specific hardware and methodological criteria are followed. The probability of attaining synaptically connected paired recordings significantly increases with healthy organotypic slices and stable micromanipulation allowing independent attainment of pre- and postsynaptic whole cell recordings. While CA3-CA3 pyramidal cell pairs are most widely used in the organotypic slice hippocampal preparation, this technique has also been successful in CA3-CA1 pairs and can be adapted to any neurons that are synaptically connected in the same slice preparation. In this manuscript we provide the detailed methodology and requirements for establishing this technique in any laboratory equipped for electrophysiology.
Neuroscience, Issue 91, hippocampus, paired recording, whole cell recording, organotypic slice, synapse, synaptic transmission, synaptic plasticity
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Organotypic Hippocampal Slice Cultures
Authors: Ximena Opitz-Araya, Andres Barria.
Institutions: University of Washington School of Medicine.
The hippocampus, a component of the limbic system, plays important roles in long-term memory and spatial navigation 1. Hippocampal neurons can modify the strength of their connections after brief periods of strong activation. This phenomenon, known as long-term potentiation (LTP) can last for hours or days and has become the best candidate mechanism for learning and memory 2. In addition, the well defined anatomy and connectivity of the hippocampus 3 has made it a classical model system to study synaptic transmission and synaptic plasticity4. As our understanding of the physiology of hippocampal synapses grew and molecular players became identified, a need to manipulate synaptic proteins became imperative. Organotypic hippocampal cultures offer the possibility for easy gene manipulation and precise pharmacological intervention but maintain synaptic organization that is critical to understanding synapse function in a more naturalistic context than routine culture dissociated neurons methods. Here we present a method to prepare and culture hippocampal slices that can be easily adapted to other brain regions. This method allows easy access to the slices for genetic manipulation using different approaches like viral infection 5,6 or biolistics 7. In addition, slices can be easily recovered for biochemical assays 8, or transferred to microscopes for imaging 9 or electrophysiological experiments 10.
Neuroscience, Issue 48, Hippocampus, Hippocampal formation, Brain Slices, Organotypic Cultures, Synaptic Transmission, Synaptic Physiology
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.