JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.
PLoS ONE
PUBLISHED: 01-21-2011
The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX), which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.
Authors: Phanidhar Kukutla, Matthew Steritz, Jiannong Xu.
Published: 04-07-2013
ABSTRACT
The mosquito gut accommodates dynamic microbial communities across different stages of the insect's life cycle. Characterization of the genetic capacity and functionality of the gut community will provide insight into the effects of gut microbiota on mosquito life traits. Metagenomic RNA-Seq has become an important tool to analyze transcriptomes from various microbes present in a microbial community. Messenger RNA usually comprises only 1-3% of total RNA, while rRNA constitutes approximately 90%. It is challenging to enrich messenger RNA from a metagenomic microbial RNA sample because most prokaryotic mRNA species lack stable poly(A) tails. This prevents oligo d(T) mediated mRNA isolation. Here, we describe a protocol that employs sample derived rRNA capture probes to remove rRNA from a metagenomic total RNA sample. To begin, both mosquito and microbial small and large subunit rRNA fragments are amplified from a metagenomic community DNA sample. Then, the community specific biotinylated antisense ribosomal RNA probes are synthesized in vitro using T7 RNA polymerase. The biotinylated rRNA probes are hybridized to the total RNA. The hybrids are captured by streptavidin-coated beads and removed from the total RNA. This subtraction-based protocol efficiently removes both mosquito and microbial rRNA from the total RNA sample. The mRNA enriched sample is further processed for RNA amplification and RNA-Seq.
21 Related JoVE Articles!
Play Button
Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons
Authors: Sylvie Sanschagrin, Etienne Yergeau.
Institutions: National Research Council Canada.
One of the major questions in microbial ecology is “who is there?” This question can be answered using various tools, but one of the long-lasting gold standards is to sequence 16S ribosomal RNA (rRNA) gene amplicons generated by domain-level PCR reactions amplifying from genomic DNA. Traditionally, this was performed by cloning and Sanger (capillary electrophoresis) sequencing of PCR amplicons. The advent of next-generation sequencing has tremendously simplified and increased the sequencing depth for 16S rRNA gene sequencing. The introduction of benchtop sequencers now allows small labs to perform their 16S rRNA sequencing in-house in a matter of days. Here, an approach for 16S rRNA gene amplicon sequencing using a benchtop next-generation sequencer is detailed. The environmental DNA is first amplified by PCR using primers that contain sequencing adapters and barcodes. They are then coupled to spherical particles via emulsion PCR. The particles are loaded on a disposable chip and the chip is inserted in the sequencing machine after which the sequencing is performed. The sequences are retrieved in fastq format, filtered and the barcodes are used to establish the sample membership of the reads. The filtered and binned reads are then further analyzed using publically available tools. An example analysis where the reads were classified with a taxonomy-finding algorithm within the software package Mothur is given. The method outlined here is simple, inexpensive and straightforward and should help smaller labs to take advantage from the ongoing genomic revolution.
Molecular Biology, Issue 90, Metagenomics, Bacteria, 16S ribosomal RNA gene, Amplicon sequencing, Next-generation sequencing, benchtop sequencers
51709
Play Button
Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources
Authors: Adrian W. Briggs, Jeffrey M. Good, Richard E. Green, Johannes Krause, Tomislav Maricic, Udo Stenzel, Svante Pääbo.
Institutions: Max-Planck Institute for Evolutionary Anthropology, Leipzig.
We present a method of targeted DNA sequence retrieval from DNA sources which are heavily degraded and contaminated with microbial DNA, as is typical of ancient bones. The method greatly reduces sample destruction and sequencing demands relative to direct PCR or shotgun sequencing approaches. We used this method to reconstruct the complete mitochondrial DNA (mtDNA) genomes of five Neandertals from across their geographic range. The mtDNA genetic diversity of the late Neandertals was approximately three times lower than that of contemporary modern humans. Together with analyses of mtDNA protein evolution, these data suggest that the long-term effective population size of Neandertals was smaller than that of modern humans and extant great apes.
Cellular Biology, Issue 31, Neandertal, anthropology, evolution, ancient DNA, DNA sequencing, targeted sequencing, capture
1573
Play Button
Sequencing of Bacterial Microflora in Peripheral Blood: our Experience with HIV-infected Patients
Authors: Esther Merlini, Giusi M. Bellistri, Camilla Tincati, Antonella d'Arminio Monforte, Giulia Marchetti.
Institutions: San Paolo Hospital University of Milan, Italy.
The healthy gastrointestinal tract is physiologically colonized by a large variety of commensal microbes that influence the development of the humoral and cellular mucosal immune system1,2. Microbiota is shielded from the immune system via a strong mucosal barrier. Infections and antibiotics are known to alter both the normal gastrointestinal tract barrier and the composition of resident bacteria, which may result in possible immune abnormalities3. HIV causes a breach in the gastrointestinal barrier with progressive failure of mucosal immunity and leakage into the systemic circulation of bacterial bioproducts, such as lipopolysaccharide and bacterial DNA fragments, which contribute to systemic immune activation4-7. Microbial translocation is implicated in HIV/AIDS immunopathogenesis and response to therapy 4,8. We aimed to characterise the composition of bacteria translocating in peripheral blood of HIV-infected patients. To pursue our aim we set up a PCR reaction for the panbacteric 16S ribosomial gene followed by a sequencing analysis. Briefly, whole blood from both HIV-infected and healthy subjects is used. Given that healthy individuals present normal intestinal homeostasis no translocation of microflora is expected in these patients. Following whole blood collection by venipuncture and plasma separation, DNA is extracted from plasma and used to perform a broad range PCR reaction for the panbacteric 16S ribosomial gene9. Following PCR product purification, cloning and sequencing analyses are performed.
Medicine, Issue 52, Plasma DNA extraction, 16S rRNA gene PCR, sequencing analysis, HIV
2830
Play Button
One-day Workflow Scheme for Bacterial Pathogen Detection and Antimicrobial Resistance Testing from Blood Cultures
Authors: Wendy L.J. Hansen, Judith Beuving, Annelies Verbon, Petra. F.G. Wolffs.
Institutions: Maastricht University Medical Center, Erasmus Medical Center.
Bloodstream infections are associated with high mortality rates because of the probable manifestation of sepsis, severe sepsis and septic shock1. Therefore, rapid administration of adequate antibiotic therapy is of foremost importance in the treatment of bloodstream infections. The critical element in this process is timing, heavily dependent on the results of bacterial identification and antibiotic susceptibility testing. Both of these parameters are routinely obtained by culture-based testing, which is time-consuming and takes on average 24-48 hours2, 4. The aim of the study was to develop DNA-based assays for rapid identification of bloodstream infections, as well as rapid antimicrobial susceptibility testing. The first assay is a eubacterial 16S rDNA-based real-time PCR assay complemented with species- or genus-specific probes5. Using these probes, Gram-negative bacteria including Pseudomonas spp., Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive bacteria including Staphylococcus spp., Staphylococcus aureus, Enterococcus spp., Streptococcus spp., and Streptococcus pneumoniae could be distinguished. Using this multiprobe assay, a first identification of the causative micro-organism was given after 2 h. Secondly, we developed a semi-molecular assay for antibiotic susceptibility testing of S. aureus, Enterococcus spp. and (facultative) aerobe Gram-negative rods6. This assay was based on a study in which PCR was used to measure the growth of bacteria7. Bacteria harvested directly from blood cultures are incubated for 6 h with a selection of antibiotics, and following a Sybr Green-based real-time PCR assay determines inhibition of growth. The combination of these two methods could direct the choice of a suitable antibiotic therapy on the same day (Figure 1). In conclusion, molecular analysis of both identification and antibiotic susceptibility offers a faster alternative for pathogen detection and could improve the diagnosis of bloodstream infections.
Immunology, Issue 65, Infection, Medicine, Microbiology, Bacteria, real-time PCR, probes, pathogen detection, blood culture, 16S rDNA gene, antibiotic resistance, antibiotic susceptibility testing
3254
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
3806
Play Button
A PCR-based Genotyping Method to Distinguish Between Wild-type and Ornamental Varieties of Imperata cylindrica
Authors: Leland J. Cseke, Sharon M. Talley.
Institutions: The University of Alabama, Huntsville, Center for Plant Health Science and Technology.
Wild-type I. cylindrica (cogongrass) is one of the top ten worst invasive plants in the world, negatively impacting agricultural and natural resources in 73 different countries throughout Africa, Asia, Europe, New Zealand, Oceania and the Americas1-2. Cogongrass forms rapidly-spreading, monodominant stands that displace a large variety of native plant species and in turn threaten the native animals that depend on the displaced native plant species for forage and shelter. To add to the problem, an ornamental variety [I. cylindrica var. koenigii (Retzius)] is widely marketed under the names of Imperata cylindrica 'Rubra', Red Baron, and Japanese blood grass (JBG). This variety is putatively sterile and noninvasive and is considered a desirable ornamental for its red-colored leaves. However, under the correct conditions, JBG can produce viable seed (Carol Holko, 2009 personal communication) and can revert to a green invasive form that is often indistinguishable from cogongrass as it takes on the distinguishing characteristics of the wild-type invasive variety4 (Figure 1). This makes identification using morphology a difficult task even for well-trained plant taxonomists. Reversion of JBG to an aggressive green phenotype is also not a rare occurrence. Using sequence comparisons of coding and variable regions in both nuclear and chloroplast DNA, we have confirmed that JBG has reverted to the green invasive within the states of Maryland, South Carolina, and Missouri. JBG has been sold and planted in just about every state in the continental U.S. where there is not an active cogongrass infestation. The extent of the revert problem in not well understood because reverted plants are undocumented and often destroyed. Application of this molecular protocol provides a method to identify JBG reverts and can help keep these varieties from co-occurring and possibly hybridizing. Cogongrass is an obligate outcrosser and, when crossed with a different genotype, can produce viable wind-dispersed seeds that spread cogongrass over wide distances5-7. JBG has a slightly different genotype than cogongrass and may be able to form viable hybrids with cogongrass. To add to the problem, JBG is more cold and shade tolerant than cogongrass8-10, and gene flow between these two varieties is likely to generate hybrids that are more aggressive, shade tolerant, and cold hardy than wild-type cogongrass. While wild-type cogongrass currently infests over 490 million hectares worldwide, in the Southeast U.S. it infests over 500,000 hectares and is capable of occupying most of the U.S. as it rapidly spreads northward due to its broad niche and geographic potential3,7,11. The potential of a genetic crossing is a serious concern for the USDA-APHIS Federal Noxious Week Program. Currently, the USDA-APHIS prohibits JBG in states where there are major cogongrass infestations (e.g., Florida, Alabama, Mississippi). However, preventing the two varieties from combining can prove more difficult as cogongrass and JBG expand their distributions. Furthermore, the distribution of the JBG revert is currently unknown and without the ability to identify these varieties through morphology, some cogongrass infestations may be the result of JBG reverts. Unfortunately, current molecular methods of identification typically rely on AFLP (Amplified Fragment Length Polymorphisms) and DNA sequencing, both of which are time consuming and costly. Here, we present the first cost-effective and reliable PCR-based molecular genotyping method to accurately distinguish between cogongrass and JBG revert.
Molecular Biology, Issue 60, Molecular genotyping, Japanese blood grass, Red Baron, cogongrass, invasive plants
3265
Play Button
Generation of Human Alloantigen-specific T Cells from Peripheral Blood
Authors: Burhan P Jama, Gerald P Morris.
Institutions: University of California, San Diego.
The study of human T lymphocyte biology often involves examination of responses to activating ligands. T cells recognize and respond to processed peptide antigens presented by MHC (human ortholog HLA) molecules through the T cell receptor (TCR) in a highly sensitive and specific manner. While the primary function of T cells is to mediate protective immune responses to foreign antigens presented by self-MHC, T cells respond robustly to antigenic differences in allogeneic tissues. T cell responses to alloantigens can be described as either direct or indirect alloreactivity. In alloreactivity, the T cell responds through highly specific recognition of both the presented peptide and the MHC molecule. The robust oligoclonal response of T cells to allogeneic stimulation reflects the large number of potentially stimulatory alloantigens present in allogeneic tissues. While the breadth of alloreactive T cell responses is an important factor in initiating and mediating the pathology associated with biologically-relevant alloreactive responses such as graft versus host disease and allograft rejection, it can preclude analysis of T cell responses to allogeneic ligands. To this end, this protocol describes a method for generating alloreactive T cells from naive human peripheral blood leukocytes (PBL) that respond to known peptide-MHC (pMHC) alloantigens. The protocol applies pMHC multimer labeling, magnetic bead enrichment and flow cytometry to single cell in vitro culture methods for the generation of alloantigen-specific T cell clones. This enables studies of the biochemistry and function of T cells responding to allogeneic stimulation.
Immunology, Issue 93, T cell, immunology, human cell culture, transplantation, flow cytometry, alloreactivity
52257
Play Button
Isolation of Myeloid Dendritic Cells and Epithelial Cells from Human Thymus
Authors: Christina Stoeckle, Ioanna A. Rota, Eva Tolosa, Christoph Haller, Arthur Melms, Eleni Adamopoulou.
Institutions: Hertie Institute for Clinical Brain Research, University of Bern, University Medical Center Hamburg-Eppendorf, University Clinic Tuebingen, University Hospital Erlangen.
In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c+), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45hi) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.
Immunology, Issue 79, Immune System Processes, Biological Processes, immunology, Immune System Diseases, Immune System Phenomena, Life Sciences (General), immunology, human thymus, isolation, dendritic cells, mTEC, cTEC
50951
Play Button
Profiling of Methyltransferases and Other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS)
Authors: Thomas Lenz, Peter Poot, Olivia Gräbner, Mirko Glinski, Elmar Weinhold, Mathias Dreger, Hubert Köster.
Institutions: caprotec bioanalytics GmbH, RWTH Aachen University.
There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography 1 or Activity Based Protein Profiling 2. Trifunctional Capture Compounds (CCs, Figure 1A) 3 are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-L-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads). Two configurations of the experiments are possible: "off-bead" 4 or the presently described "on-bead" configuration (Figure 1B). The selectivity function may be virtually any small molecule of interest (substrates, inhibitors, drug molecules). S-Adenosyl-L-methionine (SAM, Figure 1A) is probably, second to ATP, the most widely used cofactor in nature 5, 6. It is used as the major methyl group donor in all living organisms with the chemical reaction being catalyzed by SAM-dependent methyltransferases (MTases), which methylate DNA 7, RNA 8, proteins 9, or small molecules 10. Given the crucial role of methylation reactions in diverse physiological scenarios (gene regulation, epigenetics, metabolism), the profiling of MTases can be expected to become of similar importance in functional proteomics as the profiling of kinases. Analytical tools for their profiling, however, have not been available. We recently introduced a CC with SAH as selectivity group to fill this technological gap (Figure 1A). SAH, the product of SAM after methyl transfer, is a known general MTase product inhibitor 11. For this reason and because the natural cofactor SAM is used by further enzymes transferring other parts of the cofactor or initiating radical reactions as well as because of its chemical instability 12, SAH is an ideal selectivity function for a CC to target MTases. Here, we report the utility of the SAH-CC and CCMS by profiling MTases and other SAH-binding proteins from the strain DH5α of Escherichia coli (E. coli), one of the best-characterized prokaryotes, which has served as the preferred model organism in countless biochemical, biological, and biotechnological studies. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free SAH.
Biochemistry, Issue 46, Capture Compound, photo-crosslink, small molecule-protein interaction, methyltransferase, S-adenosyl-l-homocysteine, SAH, S-adenosyl-l-methionine, SAM, functional proteomics, LC-MS/MS
2264
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
50863
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
4393
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
52131
Play Button
Identification of Metabolically Active Bacteria in the Gut of the Generalist Spodoptera littoralis via DNA Stable Isotope Probing Using 13C-Glucose
Authors: Yongqi Shao, Erika M Arias-Cordero, Wilhelm Boland.
Institutions: Max Planck Institute for Chemical Ecology.
Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, 13C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.
Microbiology, Issue 81, Insects, Sequence Analysis, Genetics, Microbial, Bacteria, Lepidoptera, Spodoptera littoralis, stable-isotope-probing (SIP), pyro-sequencing, 13C-glucose, gut, microbiota, bacteria
50734
Play Button
Bromodeoxyuridine (BrdU) Labeling and Subsequent Fluorescence Activated Cell Sorting for Culture-independent Identification of Dissolved Organic Carbon-degrading Bacterioplankton
Authors: Steven Robbins, Jisha Jacob, Xinxin Lu, Mary Ann Moran, Xiaozhen Mou.
Institutions: Kent State University, University of Georgia (UGA).
Microbes are major agents mediating the degradation of numerous dissolved organic carbon (DOC) substrates in aquatic environments. However, identification of bacterial taxa that transform specific pools of DOC in nature poses a technical challenge. Here we describe an approach that couples bromodeoxyuridine (BrdU) incorporation, fluorescence activated cell sorting (FACS), and 16S rRNA gene-based molecular analysis that allows culture-independent identification of bacterioplankton capable of degrading a specific DOC compound in aquatic environments. Triplicate bacterioplankton microcosms are set up to receive both BrdU and a model DOC compound (DOC amendments), or only BrdU (no-addition control). BrdU substitutes the positions of thymidine in newly synthesized bacterial DNA and BrdU-labeled DNA can be readily immunodetected 1,2. Through a 24-hr incubation, bacterioplankton that are able to use the added DOC compound are expected to be selectively activated, and therefore have higher levels of BrdU incorporation (HI cells) than non-responsive cells in the DOC amendments and cells in no-addition controls (low BrdU incorporation cells, LI cells). After fluorescence immunodetection, HI cells are distinguished and physically separated from the LI cells by fluorescence activated cell sorting (FACS) 3. Sorted DOC-responsive cells (HI cells) are extracted for DNA and taxonomically identified through subsequent 16S rRNA gene-based analyses including PCR, clone library construction and sequencing.
Molecular Biology, Issue 55, BrdU incorporation, fluorescence-activated cell sorting, FACS, flow cytometry, microbial community, culture-independent, bacterioplankton
2855
Play Button
Bacterial Detection & Identification Using Electrochemical Sensors
Authors: Colin Halford, Vincent Gau, Bernard M. Churchill, David A. Haake.
Institutions: Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles , GeneFluidics, Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles .
Electrochemical sensors are widely used for rapid and accurate measurement of blood glucose and can be adapted for detection of a wide variety of analytes. Electrochemical sensors operate by transducing a biological recognition event into a useful electrical signal. Signal transduction occurs by coupling the activity of a redox enzyme to an amperometric electrode. Sensor specificity is either an inherent characteristic of the enzyme, glucose oxidase in the case of a glucose sensor, or a product of linkage between the enzyme and an antibody or probe. Here, we describe an electrochemical sensor assay method to directly detect and identify bacteria. In every case, the probes described here are DNA oligonucleotides. This method is based on sandwich hybridization of capture and detector probes with target ribosomal RNA (rRNA). The capture probe is anchored to the sensor surface, while the detector probe is linked to horseradish peroxidase (HRP). When a substrate such as 3,3',5,5'-tetramethylbenzidine (TMB) is added to an electrode with capture-target-detector complexes bound to its surface, the substrate is oxidized by HRP and reduced by the working electrode. This redox cycle results in shuttling of electrons by the substrate from the electrode to HRP, producing current flow in the electrode.
Bioengineering, Issue 74, Microbiology, Genetics, Molecular Biology, Cellular Biology, Biochemistry, Biomedical Engineering, Medicine, Immunology, Bacteria, Electrochemical sensor, ribosomal RNA, rRNA, 16S RNA, DNA, probe, assay
4282
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
3998
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
50598
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
RNA Isolation from Embryonic Zebrafish and cDNA Synthesis for Gene Expression Analysis
Authors: Samuel M. Peterson, Jennifer L. Freeman.
Institutions: Purdue University.
Many important and complex laboratory procedures require an input of high quality, intact RNA. A degraded sample or the presence of impurities can lead to disastrous results in downstream experimental applications. It is therefore, of utmost importance to use solid techniques with numerous safeguards and quality control checks to ensure a superior sample. Herein, we detail a protocol to isolate total RNA from whole zebrafish embryos using a commercially available chemical denaturant and subsequent cleanup to remove traces of DNA and impurities using a commercial RNA isolation kit. As RNA is relatively unstable and easily prone to cleavage by RNAses, most protocols assay gene expression using a cDNA product that is directly synthesized from an RNA template. We detail a procedure to convert RNA into the more stable cDNA product using a commercially available kit. Throughout these procedures there are numerous quality control checks to ensure that the sample is not degraded or contaminated. The end product of these protocols is cDNA that is suitable for microarray analysis, RT-PCR or long-term storage.
Developmental Biology, Issue 30, zebrafish, RNA, cDNA, expression, microarray, gene
1470
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.