JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Spinal botulinum neurotoxin B: effects on afferent transmitter release and nociceptive processing.
PLoS ONE
PUBLISHED: 03-25-2011
Botulinum neurotoxin B (BoNT-B) mediates proteolytic cleavage of VAMP I/II (synaptobrevins I/II), which prevents vesicle-membrane fusion and blocks neurotransmitter release. In the present study, we investigated the effects of BoNT-B on neurotransmitter release in vivo from spinal primary afferent sensory fibers and the effects of this blockade on nociception. With intrathecally (IT) delivered BoNT-B in C57B/l6 mice, we characterized the effects of such block on the release of substance P (SP) from spinal afferent nociceptors (as measured by neurokinin-1 receptor, NK1-R, internalization), spinal neuronal activation (as indicated by spinal C-Fos expression) and nociceptive behavior after intraplantar (IPLT) formalin. In addition, we investigated the effect of IT BoNT-B on spinal nerve ligation-induced tactile allodynia. A single percutaneous IT injection of BoNT-B 0.5 U at 2 or 5 days prior to IPLT formalin reduced NK1-R internalization and C-Fos expression. These effects correlated with BoNT-B cleavage of VAMPI/II protein in tissue lysate. IT BoNT-B also produced a corresponding reduction in phase 2 of formalin-evoked flinching behavior for over 30 days after IT injection. In mice with spinal nerve ligation (SNL), tactile allodynia was observed, which was attenuated by IT BoNT-B 0.5 U over the next 15 days, as compared to vehicle animals. These effects were observed without effects upon motor function. The specificity of the IT BoNT-B effect is indicated by: i) IT co-injection of BoNT-B and anti-BoNTB antibody prevented effects on SP release, and ii) IT BoNT-B 50 U in the Sprague Dawley rats showed no effect on formalin-evoked flinching or SNL-induced tactile allodynia, which is consistent with rat resistance to BoNT-B. IT BoNT-B blocks transmitter release from spinal primary afferents, and attenuates inflammatory nociceptive response and spinal nerve injury-induced neuropathic pain, in the absence of motor impairment. These observations provide an initial assessment of the ability of IT BoNT-B to regulate spinal nociceptive processing.
Authors: Dejan Caglič, Kristin M. Bompiani, Michelle C. Krutein, Petr Čapek, Tobin J. Dickerson.
Published: 12-27-2013
ABSTRACT
Botulinum neurotoxin (BoNT) is a potent and potentially lethal bacterial toxin that binds to host motor neurons, is internalized into the cell, and cleaves intracellular proteins that are essential for neurotransmitter release. BoNT is comprised of a heavy chain (HC), which mediates host cell binding and internalization, and a light chain (LC), which cleaves intracellular host proteins essential for acetylcholine release. While therapies that inhibit toxin binding/internalization have a small time window of administration, compounds that target intracellular LC activity have a much larger time window of administrations, particularly relevant given the extremely long half-life of the toxin. In recent years, small molecules have been heavily analyzed as potential LC inhibitors based on their increased cellular permeability relative to larger therapeutics (peptides, aptamers, etc.). Lead identification often involves high-throughput screening (HTS), where large libraries of small molecules are screened based on their ability to modulate therapeutic target function. Here we describe a FRET-based assay with a commercial BoNT/A LC substrate and recombinant LC that can be automated for HTS of potential BoNT inhibitors. Moreover, we describe a manual technique that can be used for follow-up secondary screening, or for comparing the potency of several candidate compounds.
16 Related JoVE Articles!
Play Button
Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays
Authors: F. Mark Dunning, Timothy M. Piazza, Füsûn N. Zeytin, Ward C. Tucker.
Institutions: BioSentinel Inc., Madison, WI.
Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.
Neuroscience, Issue 85, Botulinum, food testing, detection, quantification, complex matrices, BoTest Matrix, Clostridium, potency testing
51170
Play Button
A High Content Imaging Assay for Identification of Botulinum Neurotoxin Inhibitors
Authors: Krishna P. Kota, Veronica Soloveva, Laura M. Wanner, Glenn Gomba, Erkan Kiris, Rekha G. Panchal, Christopher D. Kane, Sina Bavari.
Institutions: Perkin Elmer Inc., Henry M. Jackson Foundation, The Geneva Foundation, ORISE, Frederick National Laboratory for Cancer Research, US Army Medical Research Institute of Infectious Diseases, US Army Medical Research and Materiel Command (USAMRMC).
Synaptosomal-associated protein-25 (SNAP-25) is a component of the soluble NSF attachment protein receptor (SNARE) complex that is essential for synaptic neurotransmitter release. Botulinum neurotoxin serotype A (BoNT/A) is a zinc metalloprotease that blocks exocytosis of neurotransmitter by cleaving the SNAP-25 component of the SNARE complex. Currently there are no licensed medicines to treat BoNT/A poisoning after internalization of the toxin by motor neurons. The development of effective therapeutic measures to counter BoNT/A intoxication has been limited, due in part to the lack of robust high-throughput assays for screening small molecule libraries. Here we describe a high content imaging (HCI) assay with utility for identification of BoNT/A inhibitors. Initial optimization efforts focused on improving the reproducibility of inter-plate results across multiple, independent experiments. Automation of immunostaining, image acquisition, and image analysis were found to increase assay consistency and minimize variability while enabling the multiparameter evaluation of experimental compounds in a murine motor neuron system.
Neuroscience, Issue 93, neuroscience, neurobiology, Botulinum neurotoxin, Clostridium botulinum, high content imaging system, neurotoxicity
51915
Play Button
The Sciatic Nerve Cuffing Model of Neuropathic Pain in Mice
Authors: Ipek Yalcin, Salim Megat, Florent Barthas, Elisabeth Waltisperger, Mélanie Kremer, Eric Salvat, Michel Barrot.
Institutions: Centre National de la Recherche Scientifique, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg.
Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.
Medicine, Issue 89, pain, neuropathic pain, allodynia, von Frey, mouse, model, sciatic, cuff
51608
Play Button
Postsynaptic Recordings at Afferent Dendrites Contacting Cochlear Inner Hair Cells: Monitoring Multivesicular Release at a Ribbon Synapse
Authors: Lisa Grant, Eunyoung Yi, Juan D. Goutman, Elisabeth Glowatzki.
Institutions: The Johns Hopkins School of Medicine, Consejo Nacional de Investigaciones Científicas y Técnicas.
The afferent synapse between the inner hair cell (IHC) and the auditory nerve fiber provides an electrophysiologically accessible site for recording the postsynaptic activity of a single ribbon synapse 1-4. Ribbon synapses of sensory cells release neurotransmitter continuously, the rate of which is modulated in response to graded changes in IHC membrane potential 5. Ribbon synapses have been shown to operate by multivesicular release, where multiple vesicles can be released simultaneously to evoke excitatory postsynaptic currents (EPSCs) of varying amplitudes 1, 4, 6-11. Neither the role of the presynaptic ribbon, nor the mechanism underlying multivesicular release is currently well understood. The IHC is innervated by 10-20 auditory nerve fibers, and every fiber contacts the IHC with a unmyelinated single ending to form a single ribbon synapse. The small size of the afferent boutons contacting IHCs (approximately 1 μm in diameter) enables recordings with exceptional temporal resolution to be made. Furthermore, the technique can be adapted to record from both pre- and postsynaptic cells simultaneously, allowing the transfer function at the synapse to be studied directly 2. This method therefore provides a means by which fundamental aspects of neurotransmission can be studied, from multivesicular release to the elusive function of the ribbon in sensory cells.
Neuroscience, Issue 48, electrophysiology, whole-cell recording, patch clamp, synaptic transmission, ribbon synapse, multivesicular, dendrite, auditory nerve, hearing, hair cell.
2442
Play Button
Acute and Chronic Tactile Sensory Testing after Spinal Cord Injury in Rats
Authors: Megan Ryan Detloff, Lesley C. Fisher, Rochelle J. Deibert, D. Michele Basso.
Institutions: School of Allied Medical Professions, The Ohio State University, Drexel University College of Medicine.
Spinal cord injury (SCI) impairs sensory systems causing allodynia1-8. To identify cellular and molecular causes of allodynia, sensitive and valid sensory testing in rat SCI models is needed. However, until recently, no single testing approach had been validated for SCI so that standardized methods have not been implemented across labs. Additionally, available testing methods could not be implemented acutely or when severe motor impairments existed, preventing studies of the development of SCI-induced allodynia3. Here we present two validated sensory testing methods using von Frey Hair (VFH) monofilaments which quantify changes in tactile sensory thresholds after SCI4-5. One test is the well-established Up-Down test which demonstrates high sensitivity and specificity across different SCI severities when tested chronically5. The other test is a newly-developed dorsal VFH test that can be applied acutely after SCI when allodynia develops, prior to motor recovery4-5. Each VFH monofilament applies a calibrated force when touched to the skin of the hind paw until it bends. In the up-down method, alternating VFHs of higher or lower forces are used on the plantar L5 dermatome to delineate flexor withdrawal thresholds. Successively higher forces are applied until withdrawal occurs then lower force VFHs are used until withdrawal ceases. The tactile threshold reflects the force required to elicit withdrawal in 50% of the stimuli. For the new test, each VFH is applied to the dorsal L5 dermatome of the paw while the rat is supported by the examiner. The VFH stimulation occurs in ascending order of force until at least 2 of 3 applications at a given force produces paw withdrawal. Tactile sensory threshold is the lowest force to elicit withdrawal 66% of the time. Acclimation, testing and scoring procedures are described. Aberrant trials that require a retest and typical trials are defined. Animal use was approved by Ohio State University Animal Care and Use Committee.
Medicine, Issue 62, Rat, neuropathic pain, allodynia, tactile sensation, spinal cord injury, SCI, von Frey monofilaments
3247
Play Button
In Vivo SiRNA Transfection and Gene Knockdown in Spinal Cord via Rapid Noninvasive Lumbar Intrathecal Injections in Mice
Authors: Christian Njoo, Celine Heinl, Rohini Kuner.
Institutions: University of Heidelberg.
This report describes a step-by-step guide to the technique of acute intrathecal needle injections in a noninvasive manner, i.e. independent of catheter implantation. The technical limitation of this surgical technique lies in the finesse of the hands. The injection is rapid, especially for a trained experimenter, and since tissue disruption with this technique is minimal, repeated injections are possible; moreover immune reaction to foreign tools (e.g. catheter) does not occur, thereby giving a better and more specific read out of spinal cord modulation. Since the application of the substance is largely limited to the target region of the spinal cord, drugs do not need to be applied in large dosages, and more importantly unwanted effects on other tissue, as observed with a systemic delivery, could be circumvented1,2. Moreover, we combine this technique with in vivo transfection of nucleic acid with the help of polyethylenimine (PEI) reagent3, which provides tremendous versatility for studying spinal functions via delivery of pharmacological agents as well as gene, RNA, and protein modulators.
Neuroscience, Issue 85, spinal cord, intrathecal, in vivo transfection, siRNA, mouse
51229
Play Button
The Spared Nerve Injury (SNI) Model of Induced Mechanical Allodynia in Mice
Authors: Mette Richner, Ole J. Bjerrum, Anders Nykjaer, Christian B. Vaegter.
Institutions: Aarhus University, University of Copenhagen.
Peripheral neuropathic pain is a severe chronic pain condition which may result from trauma to sensory nerves in the peripheral nervous system. The spared nerve injury (SNI) model induces symptoms of neuropathic pain such as mechanical allodynia i.e. pain due to tactile stimuli that do not normally provoke a painful response [1]. The SNI mouse model involves ligation of two of the three branches of the sciatic nerve (the tibial nerve and the common peroneal nerve), while the sural nerve is left intact [2]. The lesion results in marked hypersensitivity in the lateral area of the paw, which is innervated by the spared sural nerve. The non-operated side of the mouse can be used as a control. The advantages of the SNI model are the robustness of the response and that it doesn’t require expert microsurgical skills. The threshold for mechanical pain response is determined by testing with von Frey filaments of increasing bending force, which are repetitively pressed against the lateral area of the paw [3], [4]. A positive pain reaction is defined as sudden paw withdrawal, flinching and/or paw licking induced by the filament. A positive response in three out of five repetitive stimuli is defined as the pain threshold. As demonstrated in the video protocol, C57BL/6 mice experience profound allodynia as early as the day following surgery and maintain this for several weeks.
Neuroscience, Issue 54, Sciatic, Injury, PNS, Mechanical allodynia, Neuropathic pain, von Frey
3092
Play Button
Measuring Changes in Tactile Sensitivity in the Hind Paw of Mice Using an Electronic von Frey Apparatus
Authors: Tijana Martinov, Madison Mack, Akilah Sykes, Devavani Chatterjea.
Institutions: Macalester College.
Measuring inflammation-induced changes in thresholds of hind paw withdrawal from mechanical pressure is a useful technique to assess changes in pain perception in rodents. Withdrawal thresholds can be measured first at baseline and then following drug, venom, injury, allergen, or otherwise evoked inflammation by applying an accurate force on very specific areas of the skin. An electronic von Frey apparatus allows precise assessment of mouse hind paw withdrawal thresholds that are not limited by the available filament sizes in contrast to classical von Frey measurements. The ease and rapidity of measurements allow for incorporation of assessment of tactile sensitivity outcomes in diverse models of rapid-onset inflammatory and neuropathic pain as multiple measurements can be taken within a short time period. Experimental measurements for individual rodent subjects can be internally controlled against individual baseline responses and exclusion criteria easily established to standardize baseline responses within and across experimental groups. Thus, measurements using an electronic von Frey apparatus represent a useful modification of the well-established classical von Frey filament-based assays for rodent mechanical allodynia that may also be applied to other nonhuman mammalian models.
Neuroscience, Issue 82, Natural Science Disciplines, Life Sciences (General), Behavioral Sciences, mechanical hyperalgesia, mice, electronic pressure meter, inflammation, snake venom
51212
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Measuring Spinal Presynaptic Inhibition in Mice By Dorsal Root Potential Recording In Vivo
Authors: Benedikt Grünewald, Christian Geis.
Institutions: Jena University Hospital, Jena, Germany, Jena University Hospital, Jena, Germany.
Presynaptic inhibition is one of the most powerful inhibitory mechanisms in the spinal cord. The underlying physiological mechanism is a depolarization of primary afferent fibers mediated by GABAergic axo-axonal synapses (primary afferent depolarization). The strength of primary afferent depolarization can be measured by recording of volume-conducted potentials at the dorsal root (dorsal root potentials, DRP). Pathological changes of presynaptic inhibition are crucial in the abnormal central processing of certain pain conditions and in some disorders of motor hyperexcitability. Here, we describe a method of recording DRP in vivo in mice. The preparation of spinal cord dorsal roots in the anesthetized animal and the recording procedure using suction electrodes are explained. This method allows measuring GABAergic DRP and thereby estimating spinal presynaptic inhibition in the living mouse. In combination with transgenic mouse models, DRP recording may serve as a powerful tool to investigate disease-associated spinal pathophysiology. In vivo recording has several advantages compared to ex vivo isolated spinal cord preparations, e.g. the possibility of simultaneous recording or manipulation of supraspinal networks and induction of DRP by stimulation of peripheral nerves.
Neuroscience, Issue 85, Central Nervous System Diseases, Spinal Cord Diseases, Electrophysiology, dorsal root potentials (DRP), spinal cord, GABA, presynaptic inhibition, primary afferent depolarization (PAD), in vivo electrophysiology
51473
Play Button
Acute Dissociation of Lamprey Reticulospinal Axons to Enable Recording from the Release Face Membrane of Individual Functional Presynaptic Terminals
Authors: Shankar Ramachandran, Simon Alford.
Institutions: University of Illinois at Chicago.
Synaptic transmission is an extremely rapid process. Action potential driven influx of Ca2+ into the presynaptic terminal, through voltage-gated calcium channels (VGCCs) located in the release face membrane, is the trigger for vesicle fusion and neurotransmitter release. Crucial to the rapidity of synaptic transmission is the spatial and temporal synchrony between the arrival of the action potential, VGCCs and the neurotransmitter release machinery. The ability to directly record Ca2+ currents from the release face membrane of individual presynaptic terminals is imperative for a precise understanding of the relationship between presynaptic Ca2+ and neurotransmitter release. Access to the presynaptic release face membrane for electrophysiological recording is not available in most preparations and presynaptic Ca2+ entry has been characterized using imaging techniques and macroscopic current measurements – techniques that do not have sufficient temporal resolution to visualize Ca2+ entry. The characterization of VGCCs directly at single presynaptic terminals has not been possible in central synapses and has thus far been successfully achieved only in the calyx-type synapse of the chick ciliary ganglion and in rat calyces. We have successfully addressed this problem in the giant reticulospinal synapse of the lamprey spinal cord by developing an acutely dissociated preparation of the spinal cord that yields isolated reticulospinal axons with functional presynaptic terminals devoid of postsynaptic structures. We can fluorescently label and identify individual presynaptic terminals and target them for recording. Using this preparation, we have characterized VGCCs directly at the release face of individual presynaptic terminals using immunohistochemistry and electrophysiology approaches. Ca2+ currents have been recorded directly at the release face membrane of individual presynaptic terminals, the first such recording to be carried out at central synapses.
Neuroscience, Issue 92, reticulospinal synapse, reticulospinal axons, presynaptic terminal, presynaptic calcium, voltage-gated calcium channels, vesicle fusion, synaptic transmission, neurotransmitter release, spinal cord, lamprey, synaptic vesicles, acute dissociation
51925
Play Button
Assessment of Morphine-induced Hyperalgesia and Analgesic Tolerance in Mice Using Thermal and Mechanical Nociceptive Modalities
Authors: Khadija Elhabazi, Safia Ayachi, Brigitte Ilien, Frédéric Simonin.
Institutions: Université de Strasbourg.
Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy.
Neuroscience, Issue 89, mice, nociception, tail immersion test, tail pressure test, morphine, analgesia, opioid-induced hyperalgesia, tolerance
51264
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
51807
Play Button
Meal Duration as a Measure of Orofacial Nociceptive Responses in Rodents
Authors: Phillip R. Kramer, Larry L. Bellinger.
Institutions: Texas A&M University Baylor College of Dentistry.
A lengthening in meal duration can be used to measure an increase in orofacial mechanical hyperalgesia having similarities to the guarding behavior of humans with orofacial pain. To measure meal duration unrestrained rats are continuously kept in sound attenuated, computerized feeding modules for days to weeks to record feeding behavior. These sound-attenuated chambers are equipped with chow pellet dispensers. The dispenser has a pellet trough with a photobeam placed at the bottom of the trough and when a rodent removes a pellet from the feeder trough this beam is no longer blocked, signaling the computer to drop another pellet. The computer records the date and time when the pellets were taken from the trough and from this data the experimenter can calculate the meal parameters. When calculating meal parameters a meal was defined based on previous work and was set at 10 min (in other words when the animal does not eat for 10 min that would be the end of the animal's meal) also the minimum meal size was set at 3 pellets. The meal duration, meal number, food intake, meal size and inter-meal interval can then be calculated by the software for any time period that the operator desires. Of the feeding parameters that can be calculated meal duration has been shown to be a continuous noninvasive biological marker of orofacial nociception in male rats and mice and female rats. Meal duration measurements are quantitative, require no training or animal manipulation, require cortical participation, and do not compete with other experimentally induced behaviors. These factors distinguish this assay from other operant or reflex methods for recording orofacial nociception.
Behavior, Issue 83, Pain, rat, nociception, myofacial, orofacial, tooth, temporomandibular joint (TMJ)
50745
Play Button
Physiological, Morphological and Neurochemical Characterization of Neurons Modulated by Movement
Authors: Dean Dessem.
Institutions: University of Maryland.
The role of individual neurons and their function in neuronal circuits is fundamental to understanding the neuronal mechanisms of sensory and motor functions. Most investigations of sensorimotor mechanisms rely on either examination of neurons while an animal is static1,2 or record extracellular neuronal activity during a movement.3,4 While these studies have provided the fundamental background for sensorimotor function, they either do not evaluate functional information which occurs during a movement or are limited in their ability to fully characterize the anatomy, physiology and neurochemical phenotype of the neuron. A technique is shown here which allows extensive characterization of individual neurons during an in vivo movement. This technique can be used not only to study primary afferent neurons but also to characterize motoneurons and sensorimotor interneurons. Initially the response of a single neuron is recorded using electrophysiological methods during various movements of the mandible followed by determination of the receptive field for the neuron. A neuronal tracer is then intracellularly injected into the neuron and the brain is processed so that the neuron can be visualized with light, electron or confocal microscopy (Fig. 1). The detailed morphology of the characterized neuron is then reconstructed so that neuronal morphology can be correlated with the physiological response of the neuron (Figs. 2,3). In this communication important key details and tips for successful implementation of this technique are provided. Valuable additional information can be determined for the neuron under study by combining this method with other techniques. Retrograde neuronal labeling can be used to determine neurons with which the labeled neuron synapses; thus allowing detailed determination of neuronal circuitry. Immunocytochemistry can be combined with this method to examine neurotransmitters within the labeled neuron and to determine the chemical phenotypes of neurons with which the labeled neuron synapses. The labeled neuron can also be processed for electron microscopy to determine the ultrastructural features and microcircuitry of the labeled neuron. Overall this technique is a powerful method to thoroughly characterize neurons during in vivo movement thus allowing substantial insight into the role of the neuron in sensorimotor function.
Neuroscience, Issue 50, neurophysiology, sensory neuron, motor control, proprioception, neurotransmitter, sensorimotor integration, rat
2650
Play Button
Demonstration of Cutaneous Allodynia in Association with Chronic Pelvic Pain
Authors: John Jarrell.
Institutions: University of Calgary.
Pelvic pain is a common condition that is associated with dysmenorrhea and endometriosis. In some women the severe episodes of cyclic pain change and the resultant pain becomes continuous and this condition becomes known as Chronic Pelvic Pain. This state can be present even after the appropriate medical or surgical therapy has been instituted. It can be associated with pain and tenderness in the muscles of the abdomen wall and intra-pelvic muscles leading to severe dyspareunia. Additional symptoms of irritable bowel and interstitial cystitis are common. A common sign of the development of this state is the emergence of cutaneous allodynia which emerges from the so-called viscero-somatic reflex. A simple bedside test for the presence of cutaneous allodynia is presented that does not require excessive time or special equipment. This test builds on previous work associated with changes in sensation related to gall bladder function and the viscera-somatic reflex(1;2). The test is undertaken with the subject s permission after an explanation of how the test will be performed. Allodynia refers to a condition in which a stimulus that is not normally painful is interpreted by the subject as painful. In this instance the light touch associated with a cotton-tipped applicator would not be expected to be painful. A positive test is however noted by the woman as suddenly painful or suddenly sharp. The patterns of this sensation are usually in a discrete pattern of a dermatome of the nerves that innervate the pelvis. The underlying pathology is now interpreted as evidence of neuroplasticity as a consequence of severe and repeating pain with changes in the functions of the dorsal horns of the spinal cord that results in altered function of visceral tissues and resultant somatic symptoms(3). The importance of recognizing the condition lies in an awareness that this process may present coincidentally with the initiating condition or after it has been treated. It also permits the clinician to evaluate the situation from the perspective that alternative explanations for the pain may be present that may not require additional surgery.
Medicine, Issue 28, Chronic pelvic pain, cutaneous allodynia, trigger points, dysmenorrhea, endometriosis, dyspareunia
1232
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.