JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to MAP kinases in mitochondria.
PLoS ONE
PUBLISHED: 03-14-2011
The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixels fluorescence intensity in a pair of images to the overall Pearso?s correlation and Manders overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images.
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Published: 12-09-2013
ABSTRACT
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
24 Related JoVE Articles!
Play Button
Three-dimensional Confocal Analysis of Microglia/macrophage Markers of Polarization in Experimental Brain Injury
Authors: Carlo Perego, Stefano Fumagalli, Maria-Grazia De Simoni.
Institutions: IRCCS - Istituto di Ricerche Farmacologiche Mario Negri.
After brain stroke microglia/macrophages (M/M) undergo rapid activation with dramatic morphological and phenotypic changes that include expression of novel surface antigens and production of mediators that build up and maintain the inflammatory response. Emerging evidence indicates that M/M are highly plastic cells that can assume classic pro-inflammatory (M1) or alternative anti-inflammatory (M2) activation after acute brain injury. However a complete characterization of M/M phenotype marker expression, their colocalization and temporal evolution in the injured brain is still missing. Immunofluorescence protocols specifically staining relevant markers of M/M activation can be performed in the ischemic brain. Here we present immunofluorescence-based protocols followed by three-dimensional confocal analysis as a powerful approach to investigate the pattern of localization and co-expression of M/M phenotype markers such as CD11b, CD68, Ym1, in mouse model of focal ischemia induced by permanent occlusion of the middle cerebral artery (pMCAO). Two-dimensional analysis of the stained area reveals that each marker is associated to a defined M/M morphology and has a given localization in the ischemic lesion. Patterns of M/M phenotype marker co-expression can be assessed by three-dimensional confocal imaging in the ischemic area. Images can be acquired over a defined volume (10 μm z-axis and a 0.23 μm step size, corresponding to a 180 x 135 x 10 μm volume) with a sequential scanning mode to minimize bleed-through effects and avoid wavelength overlapping. Images are then processed to obtain three-dimensional renderings by means of Imaris software. Solid view of three dimensional renderings allows the definition of marker expression in clusters of cells. We show that M/M have the ability to differentiate towards a multitude of phenotypes, depending on the location in the lesion site and time after injury.
Neurobiology, Issue 79, Neuroscience, Molecular Biology, Cellular Biology, Medicine, Biomedical Engineering, Anatomy, Physiology, Central Nervous System Diseases, Neurodegenerative Diseases, biology (general), immunology, life sciences, animal models, Inflammation, stroke, alternative activation, brain injury, brain, imaging, confocal microscopy, three-dimensional imaging, clinical techniques, mouse, animal model
50605
Play Button
Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry
Authors: Iris Marangon, Nicole Boggetto, Cécilia Ménard-Moyon, Nathalie Luciani, Claire Wilhelm, Alberto Bianco, Florence Gazeau.
Institutions: CNRS/Université Paris Diderot, CNRS/Université Paris Diderot, CNRS/Institut de Biologie Moléculaire et Cellulaire.
Carbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization. This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light.
Bioengineering, Issue 82, bioengineering, imaging flow cytometry, Carbon Nanotubes, bio-nano-interactions, cellular uptake, cell trafficking
50566
Play Button
Concurrent Quantification of Cellular and Extracellular Components of Biofilms
Authors: Sharukh S. Khajotia, Kristin H. Smart, Mpala Pilula, David M. Thompson.
Institutions: University of Oklahoma Health Sciences Center, University of Oklahoma Health Sciences Center, The Copperbelt University.
Confocal laser scanning microscopy (CLSM) is a powerful tool for investigation of biofilms. Very few investigations have successfully quantified concurrent distribution of more than two components within biofilms because: 1) selection of fluorescent dyes having minimal spectral overlap is complicated, and 2) quantification of multiple fluorochromes poses a multifactorial problem. Objectives: Report a methodology to quantify and compare concurrent 3-dimensional distributions of three cellular/extracellular components of biofilms grown on relevant substrates. Methods: The method consists of distinct, interconnected steps involving biofilm growth, staining, CLSM imaging, biofilm structural analysis and visualization, and statistical analysis of structural parameters. Biofilms of Streptococcus mutans (strain UA159) were grown for 48 hr on sterile specimens of Point 4 and TPH3 resin composites. Specimens were subsequently immersed for 60 sec in either Biotène PBF (BIO) or Listerine Total Care (LTO) mouthwashes, or water (control group; n=5/group). Biofilms were stained with fluorochromes for extracellular polymeric substances, proteins and nucleic acids before imaging with CLSM. Biofilm structural parameters calculated using ISA3D image analysis software were biovolume and mean biofilm thickness. Mixed models statistical analyses compared structural parameters between mouthwash and control groups (SAS software; α=0.05). Volocity software permitted visualization of 3D distributions of overlaid biofilm components (fluorochromes). Results: Mouthwash BIO produced biofilm structures that differed significantly from the control (p<0.05) on both resin composites, whereas LTO did not produce differences (p>0.05) on either product. Conclusions: This methodology efficiently and successfully quantified and compared concurrent 3D distributions of three major components within S. mutans biofilms on relevant substrates, thus overcoming two challenges to simultaneous assessment of biofilm components. This method can also be used to determine the efficacy of antibacterial/antifouling agents against multiple biofilm components, as shown using mouthwashes. Furthermore, this method has broad application because it facilitates comparison of 3D structures/architecture of biofilms in a variety of disciplines.
Immunology, Issue 82, Extracellular Matrix, Streptococcus mutans, Dental Materials, Fluorescent Dyes, Composite Resins, Microscopy, Confocal, Permanent, Biofilms, Microbiological Phenomena, Streptococcus mutans, 3-dimensional structure, confocal laser scanning microscopy, fluorescent stains, dental biomaterials, dental resin composites, biofilm structural analysis, image analysis, image reconstruction
50639
Play Button
The Use of Primary Human Fibroblasts for Monitoring Mitochondrial Phenotypes in the Field of Parkinson's Disease
Authors: Lena F. Burbulla, Rejko Krüger.
Institutions: DZNE, University of Tübingen.
Parkinson's disease (PD) is the second most common movement disorder and affects 1% of people over the age of 60 1. Because ageing is the most important risk factor, cases of PD will increase during the next decades 2. Next to pathological protein folding and impaired protein degradation pathways, alterations of mitochondrial function and morphology were pointed out as further hallmark of neurodegeneration in PD 3-11. After years of research in murine and human cancer cells as in vitro models to dissect molecular pathways of Parkinsonism, the use of human fibroblasts from patients and appropriate controls as ex vivo models has become a valuable research tool, if potential caveats are considered. Other than immortalized, rather artificial cell models, primary fibroblasts from patients carrying disease-associated mutations apparently reflect important pathological features of the human disease. Here we delineate the procedure of taking skin biopsies, culturing human fibroblasts and using detailed protocols for essential microscopic techniques to define mitochondrial phenotypes. These were used to investigate different features associated with PD that are relevant to mitochondrial function and dynamics. Ex vivo, mitochondria can be analyzed in terms of their function, morphology, colocalization with lysosomes (the organelles degrading dysfunctional mitochondria) and degradation via the lysosomal pathway. These phenotypes are highly relevant for the identification of early signs of PD and may precede clinical motor symptoms in human disease-gene carriers. Hence, the assays presented here can be utilized as valuable tools to identify pathological features of neurodegeneration and help to define new therapeutic strategies in PD.
Medicine, Issue 68, Genetics, Cellular Biology, Physiology, Parkinson's disease, fibroblasts, mitochondria, live cell imaging, mitochondrial function, mitochondrial morphology, mitophagy
4228
Play Button
Quantitative Analysis of Autophagy using Advanced 3D Fluorescence Microscopy
Authors: Chun A. Changou, Deanna L. Wolfson, Balpreet Singh Ahluwalia, Richard J. Bold, Hsing-Jien Kung, Frank Y.S. Chuang.
Institutions: University of California, Davis , University of California, Davis , University of Tromsø, University of California, Davis , University of California, Davis , University of California, Davis .
Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine1. This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)1,10. Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)1,2,3. Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation4,5. Although the essential components of this pathway are well-characterized6,7,8,9, many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy11,12. Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early stages of autophagy induction. With commercially available digital image analysis applications, we can readily obtain statistical information about autophagosome and lysosome number, size, distribution, and degree of colocalization from any imaged cell. This information allows us to precisely track the progress of autophagy in living cells and enables our continued investigation into the role of autophagy in cancer chemotherapy.
Cellular Biology, Issue 75, Biochemistry, Molecular Biology, Medicine, Cancer Biology, Biophysics, Chemical Biology, Proteins, Microscopy, Fluorescence, autophagy, arginine deiminase, prostate cancer, deconvolution microscopy, super-resolution structured-illumination microscopy, live cell imaging, tumors, autophagosomes, lysosomes, cells, cell culture, microscopy, imaging, visualization
50047
Play Button
Visualization of Cortex Organization and Dynamics in Microorganisms, using Total Internal Reflection Fluorescence Microscopy
Authors: Felix Spira, Julia Dominguez-Escobar, Nikola Müller, Roland Wedlich-Söldner.
Institutions: Max Planck Institute of Biochemistry, Helmholtz Zentrum München.
TIRF microscopy has emerged as a powerful imaging technology to study spatio-temporal dynamics of fluorescent molecules in vitro and in living cells1. The optical phenomenon of total internal reflection occurs when light passes from a medium with high refractive index into a medium with low refractive index at an angle larger than a characteristic critical angle (i.e. closer to being parallel with the boundary). Although all light is reflected back under such conditions, an evanescent wave is created that propagates across and along the boundary, which decays exponentially with distance, and only penetrates sample areas that are 100-200 nm near the interface2. In addition to providing superior axial resolution, the reduced excitation of out of focus fluorophores creates a very high signal to noise ratios and minimizes damaging effects of photobleaching2,3. Being a widefield technique, TIRF also allows faster image acquisition than most scanning based confocal setups. At first glance, the low penetration depth of TIRF seems to be incompatible with imaging of bacterial and fungal cells, which are often surrounded by thick cell walls. On the contrary, we have found that the cell walls of yeast and bacterial cells actually improve the usability of TIRF and increase the range of observable structures4-8. Many cellular processes can therefore be directly accessed by TIRF in small, single-cell microorganisms, which often offer powerful genetic manipulation techniques. This allows us to perform in vivo biochemistry experiments, where kinetics of protein interactions and activities can be directly assessed in living cells. We describe here the individual steps required to obtain high quality TIRF images for Saccharomyces cerevisiae or Bacillus subtilis cells. We point out various problems that can affect TIRF visualization of fluorescent probes in cells and illustrate the procedure with several application examples. Finally, we demonstrate how TIRF images can be further improved using established image restoration techniques.
Bioengineering, Issue 63, TIRF, imaging, yeast, bacteria, microscopy, cell cortex
3982
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
52043
Play Button
Confocal Time Lapse Imaging as an Efficient Method for the Cytocompatibility Evaluation of Dental Composites
Authors: Ghania Nina Attik, Kerstin Gritsch, Pierre Colon, Brigitte Grosgogeat.
Institutions: UMR CNRS 5615, Université Lyon1, Hospices Civils de Lyon, APHP, Hôpital Rothschild.
It is generally accepted that in vitro cell material interaction is a useful criterion in the evaluation of dental material biocompatibility. The objective of this study was to use 3D CLSM time lapse confocal imaging to assess the in vitro biocompatibility of dental composites. This method provides an accurate and sensitive indication of viable cell rate in contact with dental composite extracts. The ELS extra low shrinkage, a dental composite used for direct restoration, has been taken as example. In vitro assessment was performed on cultured primary human gingival fibroblast cells using Live/Dead staining. Images were obtained with the FV10i confocal biological inverted system and analyzed with the FV10-ASW 3.1 Software. Image analysis showed a very slight cytotoxicity in the presence of the tested composite after 5 hours of time lapse. A slight decrease of cell viability was shown in contact with the tested composite extracts compared to control cells. The findings highlighted the use of 3D CLSM time lapse imaging as a sensitive method to qualitatively and quantitatively evaluate the biocompatibility behavior of dental composites.
Medicine, Issue 93, In vitro biocompatibility, dental composites, Live/Deadstaining, 3D imaging, Confocal Microscopy, Time lapse imaging
51949
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Quantitative Optical Microscopy: Measurement of Cellular Biophysical Features with a Standard Optical Microscope
Authors: Kevin G. Phillips, Sandra M. Baker-Groberg, Owen J.T. McCarty.
Institutions: Oregon Health & Science University, School of Medicine, Oregon Health & Science University, School of Medicine, Oregon Health & Science University, School of Medicine.
We describe the use of a standard optical microscope to perform quantitative measurements of mass, volume, and density on cellular specimens through a combination of bright field and differential interference contrast imagery. Two primary approaches are presented: noninterferometric quantitative phase microscopy (NIQPM), to perform measurements of total cell mass and subcellular density distribution, and Hilbert transform differential interference contrast microscopy (HTDIC) to determine volume. NIQPM is based on a simplified model of wave propagation, termed the paraxial approximation, with three underlying assumptions: low numerical aperture (NA) illumination, weak scattering, and weak absorption of light by the specimen. Fortunately, unstained cellular specimens satisfy these assumptions and low NA illumination is easily achieved on commercial microscopes. HTDIC is used to obtain volumetric information from through-focus DIC imagery under high NA illumination conditions. High NA illumination enables enhanced sectioning of the specimen along the optical axis. Hilbert transform processing on the DIC image stacks greatly enhances edge detection algorithms for localization of the specimen borders in three dimensions by separating the gray values of the specimen intensity from those of the background. The primary advantages of NIQPM and HTDIC lay in their technological accessibility using “off-the-shelf” microscopes. There are two basic limitations of these methods: slow z-stack acquisition time on commercial scopes currently abrogates the investigation of phenomena faster than 1 frame/minute, and secondly, diffraction effects restrict the utility of NIQPM and HTDIC to objects from 0.2 up to 10 (NIQPM) and 20 (HTDIC) μm in diameter, respectively. Hence, the specimen and its associated time dynamics of interest must meet certain size and temporal constraints to enable the use of these methods. Excitingly, most fixed cellular specimens are readily investigated with these methods.
Bioengineering, Issue 86, Label-free optics, quantitative microscopy, cellular biophysics, cell mass, cell volume, cell density
50988
Play Button
Real-time Live Imaging of T-cell Signaling Complex Formation
Authors: Elad Noy, Maor H. Pauker, Mira Barda-Saad.
Institutions: Bar-Ilan University.
Protection against infectious diseases is mediated by the immune system 1,2. T lymphocytes are the master coordinators of the immune system, regulating the activation and responses of multiple immune cells 3,4. T-cell activation is dependent on the recognition of specific antigens displayed by antigen presenting cells (APCs). The T-cell antigen receptor (TCR) is specific to each T-cell clone and determines antigen specificity 5. The binding of the TCR to the antigen induces the phosphorylation of components of the TCR complex. In order to promote T-cell activation, this signal must be transduced from the membrane to the cytoplasm and the nucleus, initiating various crucial responses such as recruitment of signaling proteins to the TCR;APC site (the immune synapse), their molecular activation, cytoskeletal rearrangement, elevation of intracellular calcium concentration, and changes in gene expression 6,7. The correct initiation and termination of activating signals is crucial for appropriate T-cell responses. The activity of signaling proteins is dependent on the formation and termination of protein-protein interactions, post translational modifications such as protein phosphorylation, formation of protein complexes, protein ubiquitylation and the recruitment of proteins to various cellular sites 8. Understanding the inner workings of the T-cell activation process is crucial for both immunological research and clinical applications. Various assays have been developed in order to investigate protein-protein interactions; however, biochemical assays, such as the widely used co-immunoprecipitation method, do not allow protein location to be discerned, thus precluding the observation of valuable insights into the dynamics of cellular mechanisms. Additionally, these bulk assays usually combine proteins from many different cells that might be at different stages of the investigated cellular process. This can have a detrimental effect on temporal resolution. The use of real-time imaging of live cells allows both the spatial tracking of proteins and the ability to temporally distinguish between signaling events, thus shedding light on the dynamics of the process 9,10. We present a method of real-time imaging of signaling-complex formation during T-cell activation. Primary T-cells or T-cell lines, such as Jurkat, are transfected with plasmids encoding for proteins of interest fused to monomeric fluorescent proteins, preventing non-physiological oligomerization 11. Live T cells are dropped over a coverslip pre-coated with T-cell activating antibody 8,9, which binds to the CD3/TCR complex, inducing T-cell activation while overcoming the need for specific activating antigens. Activated cells are constantly imaged with the use of confocal microscopy. Imaging data are analyzed to yield quantitative results, such as the colocalization coefficient of the signaling proteins.
Immunology, Issue 76, Cellular Biology, Molecular Biology, Medicine, T-cell activation, Live-cell imaging, Signal transduction, Confocal microscopy, Signaling complex, Co-localization analysis, fluorescence, cell biology, T-cell, cell, imaging
50076
Play Button
Visualisation and Quantification of Intracellular Interactions of Neisseria meningitidis and Human α-actinin by Confocal Imaging
Authors: Isabel Murillo, Mumtaz Virji.
Institutions: University of Bristol, UK.
The Opc protein of Neisseria meningitidis (Nm, meningococcus) is a surface-expressed integral outer membrane protein, which can act as an adhesin and an effective invasin for human epithelial and endothelial cells. We have identified endothelial surface-located integrins as major receptors for Opc, a process which requires Opc to first bind to integrin ligands such as vitronectin and via these to the cell-expressed receptors1. This process leads to bacterial invasion of endothelial cells2. More recently, we observed an interaction of Opc with a 100kDa protein found in whole cell lysates of human cells3. We initially observed this interaction when host cell proteins separated by electrophoresis and blotted on to nitrocellulose were overlaid with Opc-expressing Nm. The interaction was direct and did not involve intermediate molecules. By mass spectrometry, we established the identity of the protein as α-actinin. As no surface expressed α-actinin was found on any of the eight cell lines examined, and as Opc interactions with endothelial cells in the presence of serum lead to bacterial entry into the target cells, we examined the possibility of the two proteins interacting intracellularly. For this, cultured human brain microvascular endothelial cells (HBMECs) were infected with Opc-expressing Nm for extended periods and the locations of internalised bacteria and α-actinin were examined by confocal microscopy. We observed time-dependent increase in colocalisation of Nm with the cytoskeletal protein, which was considerable after an eight hour period of bacterial internalisation. In addition, the use of quantitative imaging software enabled us to obtain a relative measure of the colocalisation of Nm with α-actinin and other cytoskeletal proteins. Here we present a protocol for visualisation and quantification of the colocalisation of the bacterium with intracellular proteins after bacterial entry into human endothelial cells, although the procedure is also applicable to human epithelial cells.
Immunology, Issue 44, Neisseria meningitidis, Opc, α-actinin, colocalization
2045
Play Button
Characterizing the Composition of Molecular Motors on Moving Axonal Cargo Using "Cargo Mapping" Analysis
Authors: Sylvia Neumann, George E. Campbell, Lukasz Szpankowski, Lawrence S.B. Goldstein, Sandra E. Encalada.
Institutions: The Scripps Research Institute, University of California San Diego, University of California San Diego, University of California San Diego School of Medicine.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.
Neuroscience, Issue 92, kinesin, dynein, single vesicle, axonal transport, microfluidic devices, primary hippocampal neurons, quantitative fluorescence microscopy
52029
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
51673
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Visualization of Endosome Dynamics in Living Nerve Terminals with Four-dimensional Fluorescence Imaging
Authors: Richard S. Stewart, Ilona M. Kiss, Robert S. Wilkinson.
Institutions: Washington University School of Medicine.
Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections.
Neuroscience, Issue 86, Microscopy, Fluorescence, Endocytosis, nerve, endosome, lysosome, deconvolution, 3D, 4D, epifluorescence
51477
Play Button
Test Samples for Optimizing STORM Super-Resolution Microscopy
Authors: Daniel J. Metcalf, Rebecca Edwards, Neelam Kumarswami, Alex E. Knight.
Institutions: National Physical Laboratory.
STORM is a recently developed super-resolution microscopy technique with up to 10 times better resolution than standard fluorescence microscopy techniques. However, as the image is acquired in a very different way than normal, by building up an image molecule-by-molecule, there are some significant challenges for users in trying to optimize their image acquisition. In order to aid this process and gain more insight into how STORM works we present the preparation of 3 test samples and the methodology of acquiring and processing STORM super-resolution images with typical resolutions of between 30-50 nm. By combining the test samples with the use of the freely available rainSTORM processing software it is possible to obtain a great deal of information about image quality and resolution. Using these metrics it is then possible to optimize the imaging procedure from the optics, to sample preparation, dye choice, buffer conditions, and image acquisition settings. We also show examples of some common problems that result in poor image quality, such as lateral drift, where the sample moves during image acquisition and density related problems resulting in the 'mislocalization' phenomenon.
Molecular Biology, Issue 79, Genetics, Bioengineering, Biomedical Engineering, Biophysics, Basic Protocols, HeLa Cells, Actin Cytoskeleton, Coated Vesicles, Receptor, Epidermal Growth Factor, Actins, Fluorescence, Endocytosis, Microscopy, STORM, super-resolution microscopy, nanoscopy, cell biology, fluorescence microscopy, test samples, resolution, actin filaments, fiducial markers, epidermal growth factor, cell, imaging
50579
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Acquiring Fluorescence Time-lapse Movies of Budding Yeast and Analyzing Single-cell Dynamics using GRAFTS
Authors: Christopher J. Zopf, Narendra Maheshri.
Institutions: Massachusetts Institute of Technology.
Fluorescence time-lapse microscopy has become a powerful tool in the study of many biological processes at the single-cell level. In particular, movies depicting the temporal dependence of gene expression provide insight into the dynamics of its regulation; however, there are many technical challenges to obtaining and analyzing fluorescence movies of single cells. We describe here a simple protocol using a commercially available microfluidic culture device to generate such data, and a MATLAB-based, graphical user interface (GUI) -based software package to quantify the fluorescence images. The software segments and tracks cells, enables the user to visually curate errors in the data, and automatically assigns lineage and division times. The GUI further analyzes the time series to produce whole cell traces as well as their first and second time derivatives. While the software was designed for S. cerevisiae, its modularity and versatility should allow it to serve as a platform for studying other cell types with few modifications.
Microbiology, Issue 77, Cellular Biology, Molecular Biology, Genetics, Biophysics, Saccharomyces cerevisiae, Microscopy, Fluorescence, Cell Biology, microscopy/fluorescence and time-lapse, budding yeast, gene expression dynamics, segmentation, lineage tracking, image tracking, software, yeast, cells, imaging
50456
Play Button
Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly
Authors: Joel Ramirez, Christopher J.M. Scott, Alicia A. McNeely, Courtney Berezuk, Fuqiang Gao, Gregory M. Szilagyi, Sandra E. Black.
Institutions: Sunnybrook Health Sciences Centre, University of Toronto.
Obtaining in vivo human brain tissue volumetrics from MRI is often complicated by various technical and biological issues. These challenges are exacerbated when significant brain atrophy and age-related white matter changes (e.g. Leukoaraiosis) are present. Lesion Explorer (LE) is an accurate and reliable neuroimaging pipeline specifically developed to address such issues commonly observed on MRI of Alzheimer's disease and normal elderly. The pipeline is a complex set of semi-automatic procedures which has been previously validated in a series of internal and external reliability tests1,2. However, LE's accuracy and reliability is highly dependent on properly trained manual operators to execute commands, identify distinct anatomical landmarks, and manually edit/verify various computer-generated segmentation outputs. LE can be divided into 3 main components, each requiring a set of commands and manual operations: 1) Brain-Sizer, 2) SABRE, and 3) Lesion-Seg. Brain-Sizer's manual operations involve editing of the automatic skull-stripped total intracranial vault (TIV) extraction mask, designation of ventricular cerebrospinal fluid (vCSF), and removal of subtentorial structures. The SABRE component requires checking of image alignment along the anterior and posterior commissure (ACPC) plane, and identification of several anatomical landmarks required for regional parcellation. Finally, the Lesion-Seg component involves manual checking of the automatic lesion segmentation of subcortical hyperintensities (SH) for false positive errors. While on-site training of the LE pipeline is preferable, readily available visual teaching tools with interactive training images are a viable alternative. Developed to ensure a high degree of accuracy and reliability, the following is a step-by-step, video-guided, standardized protocol for LE's manual procedures.
Medicine, Issue 86, Brain, Vascular Diseases, Magnetic Resonance Imaging (MRI), Neuroimaging, Alzheimer Disease, Aging, Neuroanatomy, brain extraction, ventricles, white matter hyperintensities, cerebrovascular disease, Alzheimer disease
50887
Play Button
A Microscopic Phenotypic Assay for the Quantification of Intracellular Mycobacteria Adapted for High-throughput/High-content Screening
Authors: Christophe. J Queval, Ok-Ryul Song, Vincent Delorme, Raffaella Iantomasi, Romain Veyron-Churlet, Nathalie Deboosère, Valérie Landry, Alain Baulard, Priscille Brodin.
Institutions: Université de Lille.
Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.
Infection, Issue 83, Mycobacterium tuberculosis, High-content/High-throughput screening, chemogenomics, Drug Discovery, siRNA library, automated confocal microscopy, image-based analysis
51114
Play Button
Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish
Authors: Sudip Mondal, Shikha Ahlawat, Sandhya P. Koushika.
Institutions: NCBS-TIFR, TIFR.
Micro fabricated fluidic devices provide an accessible micro-environment for in vivo studies on small organisms. Simple fabrication processes are available for microfluidic devices using soft lithography techniques 1-3. Microfluidic devices have been used for sub-cellular imaging 4,5, in vivo laser microsurgery 2,6 and cellular imaging 4,7. In vivo imaging requires immobilization of organisms. This has been achieved using suction 5,8, tapered channels 6,7,9, deformable membranes 2-4,10, suction with additional cooling 5, anesthetic gas 11, temperature sensitive gels 12, cyanoacrylate glue 13 and anesthetics such as levamisole 14,15. Commonly used anesthetics influence synaptic transmission 16,17 and are known to have detrimental effects on sub-cellular neuronal transport 4. In this study we demonstrate a membrane based poly-dimethyl-siloxane (PDMS) device that allows anesthetic free immobilization of intact genetic model organisms such as Caenorhabditis elegans (C. elegans), Drosophila larvae and zebrafish larvae. These model organisms are suitable for in vivo studies in microfluidic devices because of their small diameters and optically transparent or translucent bodies. Body diameters range from ~10 μm to ~800 μm for early larval stages of C. elegans and zebrafish larvae and require microfluidic devices of different sizes to achieve complete immobilization for high resolution time-lapse imaging. These organisms are immobilized using pressure applied by compressed nitrogen gas through a liquid column and imaged using an inverted microscope. Animals released from the trap return to normal locomotion within 10 min. We demonstrate four applications of time-lapse imaging in C. elegans namely, imaging mitochondrial transport in neurons, pre-synaptic vesicle transport in a transport-defective mutant, glutamate receptor transport and Q neuroblast cell division. Data obtained from such movies show that microfluidic immobilization is a useful and accurate means of acquiring in vivo data of cellular and sub-cellular events when compared to anesthetized animals (Figure 1J and 3C-F 4). Device dimensions were altered to allow time-lapse imaging of different stages of C. elegans, first instar Drosophila larvae and zebrafish larvae. Transport of vesicles marked with synaptotagmin tagged with GFP (syt.eGFP) in sensory neurons shows directed motion of synaptic vesicle markers expressed in cholinergic sensory neurons in intact first instar Drosophila larvae. A similar device has been used to carry out time-lapse imaging of heartbeat in ~30 hr post fertilization (hpf) zebrafish larvae. These data show that the simple devices we have developed can be applied to a variety of model systems to study several cell biological and developmental phenomena in vivo.
Bioengineering, Issue 67, Molecular Biology, Neuroscience, Microfluidics, C. elegans, Drosophila larvae, zebrafish larvae, anesthetic, pre-synaptic vesicle transport, dendritic transport of glutamate receptors, mitochondrial transport, synaptotagmin transport, heartbeat
3780
Play Button
Born Normalization for Fluorescence Optical Projection Tomography for Whole Heart Imaging
Authors: Claudio Vinegoni, Daniel Razansky, Jose-Luiz Figueiredo, Lyuba Fexon, Misha Pivovarov, Matthias Nahrendorf, Vasilis Ntziachristos, Ralph Weissleder.
Institutions: Harvard Medical School, MGH - Massachusetts General Hospital, Technical University of Munich and Helmholtz Center Munich.
Optical projection tomography is a three-dimensional imaging technique that has been recently introduced as an imaging tool primarily in developmental biology and gene expression studies. The technique renders biological sample optically transparent by first dehydrating them and then placing in a mixture of benzyl alcohol and benzyl benzoate in a 2:1 ratio (BABB or Murray s Clear solution). The technique renders biological samples optically transparent by first dehydrating them in graded ethanol solutions then placing them in a mixture of benzyl alcohol and benzyl benzoate in a 2:1 ratio (BABB or Murray s Clear solution) to clear. After the clearing process the scattering contribution in the sample can be greatly reduced and made almost negligible while the absorption contribution cannot be eliminated completely. When trying to reconstruct the fluorescence distribution within the sample under investigation, this contribution affects the reconstructions and leads, inevitably, to image artifacts and quantification errors.. While absorption could be reduced further with a permanence of weeks or months in the clearing media, this will lead to progressive loss of fluorescence and to an unrealistically long sample processing time. This is true when reconstructing both exogenous contrast agents (molecular contrast agents) as well as endogenous contrast (e.g. reconstructions of genetically expressed fluorescent proteins).
Bioengineering, Issue 28, optical imaging, fluorescence imaging, optical projection tomography, born normalization, molecular imaging, heart imaging
1389
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.