JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Circulating KCNH2 current-activating factor in patients with heart failure and ventricular tachyarrhythmia.
PUBLISHED: 04-19-2011
It is estimated that approximately half of the deaths in patients with HF are sudden and that the most likely causes of sudden death are lethal ventricular tachyarrhythmias such as ventricular tachycardia (VT) or fibrillation (VF). However, the precise mechanism of ventricular tachyarrhythmias remains unknown. The KCNH2 channel conducting the delayed rectifier K(+) current (I(Kr)) is recognized as the most susceptible channel in acquired long QT syndrome. Recent findings have revealed that not only suppression but also enhancement of I(Kr) increase vulnerability to major arrhythmic events, as seen in short QT syndrome. Therefore, we investigated the existence of a circulating KCNH2 current-modifying factor in patients with HF.
Authors: Fijoy Vadakkumpadan, Hermenegild Arevalo, Natalia A. Trayanova.
Published: 01-08-2013
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
20 Related JoVE Articles!
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
Play Button
Recapitulation of an Ion Channel IV Curve Using Frequency Components
Authors: John R. Rigby, Steven Poelzing.
Institutions: University of Utah.
INTRODUCTION: Presently, there are no established methods to measure multiple ion channel types simultaneously and decompose the measured current into portions attributable to each channel type. This study demonstrates how impedance spectroscopy may be used to identify specific frequencies that highly correlate with the steady state current amplitude measured during voltage clamp experiments. The method involves inserting a noise function containing specific frequencies into the voltage step protocol. In the work presented, a model cell is used to demonstrate that no high correlations are introduced by the voltage clamp circuitry, and also that the noise function itself does not introduce any high correlations when no ion channels are present. This validation is necessary before the technique can be applied to preparations containing ion channels. The purpose of the protocol presented is to demonstrate how to characterize the frequency response of a single ion channel type to a noise function. Once specific frequencies have been identified in an individual channel type, they can be used to reproduce the steady state current voltage (IV) curve. Frequencies that highly correlate with one channel type and minimally correlate with other channel types may then be used to estimate the current contribution of multiple channel types measured simultaneously. METHODS: Voltage clamp measurements were performed on a model cell using a standard voltage step protocol (-150 to +50 mV, 5mV steps). Noise functions containing equal magnitudes of 1-15 kHz frequencies (zero to peak amplitudes: 50 or 100mV) were inserted into each voltage step. The real component of the Fast Fourier transform (FFT) of the output signal was calculated with and without noise for each step potential. The magnitude of each frequency as a function of voltage step was correlated with the current amplitude at the corresponding voltages. RESULTS AND CONCLUSIONS: In the absence of noise (control), magnitudes of all frequencies except the DC component correlated poorly (|R|<0.5) with the IV curve, whereas the DC component had a correlation coefficient greater than 0.999 in all measurements. The quality of correlation between individual frequencies and the IV curve did not change when a noise function was added to the voltage step protocol. Likewise, increasing the amplitude of the noise function also did not increase the correlation. Control measurements demonstrate that the voltage clamp circuitry by itself does not cause any frequencies above 0 Hz to highly correlate with the steady-state IV curve. Likewise, measurements in the presence of the noise function demonstrate that the noise function does not cause any frequencies above 0 Hz to correlate with the steady-state IV curve when no ion channels are present. Based on this verification, the method can now be applied to preparations containing a single ion channel type with the intent of identifying frequencies whose amplitudes correlate specifically with that channel type.
Biophysics, Issue 48, Ion channel, Kir2.1, impedance spectroscopy, frequency response, voltage clamp, electrophysiology
Play Button
Ambulatory ECG Recording in Mice
Authors: Mark D. McCauley, Xander H.T Wehrens.
Institutions: Baylor College of Medicine (BCM), Baylor College of Medicine (BCM).
Telemetric ECG recording in mice is essential to understanding the mechanisms behind arrhythmias, conduction disorders, and sudden cardiac death. Although the surface ECG is utilized for short-term measurements of waveform intervals, it is not practical for long-term studies of heart rate variability or the capture of rare episodes of arrhythmias. Implantable ECG telemeters offer the advantages of simple surgical implantation, long-term recording of electrograms in ambulatory mice, and scalability with simultaneous recordings of multiple animals. Here, we present a step-by-step guide to the implantation of telemeters for ambulatory ECG recording in mice. Careful adherence to aseptic technique is required for favorable survival results with the possibility of implantation and recording from weeks to months. Thus, implantable ECG telemetry is a valuable tool for detection of critical information on cardiac electrophysiology in ambulatory animal models such as the mouse.
Medicine, Issue 39, Electrocardiogram, electrophysiology, exercise-stress test, mouse, telemetry
Play Button
Isolation, Culture, and Functional Characterization of Adult Mouse Cardiomyoctyes
Authors: Evan Lee Graham, Cristina Balla, Hannabeth Franchino, Yonathan Melman, Federica del Monte, Saumya Das.
Institutions: Beth Israel Deaconess Medical Center, Harvard Medical School, Sapienza University.
The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease.
Cellular Biology, Issue 79, Medicine, Cardiology, Cellular Biology, Anatomy, Physiology, Mice, Ion Channels, Primary Cell Culture, Cardiac Electrophysiology, adult mouse cardiomyocytes, cell isolation, IonOptix, Cell Culture, adenoviral transfection, patch clamp, fluorescent nanosensor
Play Button
Implantation of the Syncardia Total Artificial Heart
Authors: Daniel G. Tang, Keyur B. Shah, Micheal L. Hess, Vigneshwar Kasirajan.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
With advances in technology, the use of mechanical circulatory support devices for end stage heart failure has rapidly increased. The vast majority of such patients are generally well served by left ventricular assist devices (LVADs). However, a subset of patients with late stage biventricular failure or other significant anatomic lesions are not adequately treated by isolated left ventricular mechanical support. Examples of concomitant cardiac pathology that may be better treated by resection and TAH replacement includes: post infarction ventricular septal defect, aortic root aneurysm / dissection, cardiac allograft failure, massive ventricular thrombus, refractory malignant arrhythmias (independent of filling pressures), hypertrophic / restrictive cardiomyopathy, and complex congenital heart disease. Patients often present with cardiogenic shock and multi system organ dysfunction. Excision of both ventricles and orthotopic replacement with a total artificial heart (TAH) is an effective, albeit extreme, therapy for rapid restoration of blood flow and resuscitation. Perioperative management is focused on end organ resuscitation and physical rehabilitation. In addition to the usual concerns of infection, bleeding, and thromboembolism common to all mechanically supported patients, TAH patients face unique risks with regard to renal failure and anemia. Supplementation of the abrupt decrease in brain natriuretic peptide following ventriculectomy appears to have protective renal effects. Anemia following TAH implantation can be profound and persistent. Nonetheless, the anemia is generally well tolerated and transfusion are limited to avoid HLA sensitization. Until recently, TAH patients were confined as inpatients tethered to a 500 lb pneumatic console driver. Recent introduction of a backpack sized portable driver (currently under clinical trial) has enabled patients to be discharged home and even return to work. Despite the profound presentation of these sick patients, there is a 79-87% success in bridge to transplantation.
Medicine, Issue 89, mechanical circulatory support, total artificial heart, biventricular failure, operative techniques
Play Button
Reduction in Left Ventricular Wall Stress and Improvement in Function in Failing Hearts using Algisyl-LVR
Authors: Lik Chuan Lee, Zhang Zhihong, Andrew Hinson, Julius M. Guccione.
Institutions: UCSF/VA Medical Center, LoneStar Heart, Inc..
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na+-Alginate and Ca2+-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship.
Medicine, Issue 74, Biomedical Engineering, Anatomy, Physiology, Biophysics, Molecular Biology, Surgery, Cardiology, Cardiovascular Diseases, bioinjection, ventricular wall stress, mathematical model, heart failure, cardiac function, myocardium, left ventricle, LV, MRI, imaging, clinical techniques
Play Button
Permanent Ligation of the Left Anterior Descending Coronary Artery in Mice: A Model of Post-myocardial Infarction Remodelling and Heart Failure
Authors: Ilayaraja Muthuramu, Marleen Lox, Frank Jacobs, Bart De Geest.
Institutions: Catholic University of Leuven.
Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.
Medicine, Issue 94, Myocardial infarction, cardiac remodelling, infarct expansion, heart failure, cardiac function, invasive hemodynamic measurements
Play Button
Ultrasound-guided Transthoracic Intramyocardial Injection in Mice
Authors: Terence W. Prendiville, Qing Ma, Zhiqiang Lin, Pingzhu Zhou, Aibin He, William T. Pu.
Institutions: Boston Children's Hospital, Harvard University.
Murine models of cardiovascular disease are important for investigating pathophysiological mechanisms and exploring potential regenerative therapies. Experiments involving myocardial injection are currently performed by direct surgical access through a thoracotomy. While convenient when performed at the time of another experimental manipulation such as coronary artery ligation, the need for an invasive procedure for intramyocardial delivery limits potential experimental designs. With ever improving ultrasound resolution and advanced noninvasive imaging modalities, it is now feasible to routinely perform ultrasound-guided, percutaneous intramyocardial injection. This modality efficiently and reliably delivers agents to a targeted region of myocardium. Advantages of this technique include the avoidance of surgical morbidity, the facility to target regions of myocardium selectively under ultrasound guidance, and the opportunity to deliver injectate to the myocardium at multiple, predetermined time intervals. With practiced technique, complications from intramyocardial injection are rare, and mice quickly return to normal activity on recovery from anesthetic. Following the steps outlined in this protocol, the operator with basic echocardiography experience can quickly become competent in this versatile, minimally invasive technique.
Medicine, Issue 90, microinjection, mouse, echocardiography, transthoracic, myocardium, percutaneous administration
Play Button
Assessment of Right Ventricular Structure and Function in Mouse Model of Pulmonary Artery Constriction by Transthoracic Echocardiography
Authors: Hui-Wen Cheng, Sudeshna Fisch, Susan Cheng, Michael Bauer, Soeun Ngoy, Yiling Qiu, Jian Guan, Shikha Mishra, Christopher Mbah, Ronglih Liao.
Institutions: Harvard Medical School, Chang Gung Memorial Hospital.
Emerging clinical data support the notion that RV dysfunction is critical to the pathogenesis of cardiovascular disease and heart failure1-3. Moreover, the RV is significantly affected in pulmonary diseases such as pulmonary artery hypertension (PAH). In addition, the RV is remarkably sensitive to cardiac pathologies, including left ventricular (LV) dysfunction, valvular disease or RV infarction4. To understand the role of RV in the pathogenesis of cardiac diseases, a reliable and noninvasive method to access the RV structurally and functionally is essential. A noninvasive trans-thoracic echocardiography (TTE) based methodology was established and validated for monitoring dynamic changes in RV structure and function in adult mice. To impose RV stress, we employed a surgical model of pulmonary artery constriction (PAC) and measured the RV response over a 7-day period using a high-frequency ultrasound microimaging system. Sham operated mice were used as controls. Images were acquired in lightly anesthetized mice at baseline (before surgery), day 0 (immediately post-surgery), day 3, and day 7 (post-surgery). Data was analyzed offline using software. Several acoustic windows (B, M, and Color Doppler modes), which can be consistently obtained in mice, allowed for reliable and reproducible measurement of RV structure (including RV wall thickness, end-diastolic and end-systolic dimensions), and function (fractional area change, fractional shortening, PA peak velocity, and peak pressure gradient) in normal mice and following PAC. Using this method, the pressure-gradient resulting from PAC was accurately measured in real-time using Color Doppler mode and was comparable to direct pressure measurements performed with a Millar high-fidelity microtip catheter. Taken together, these data demonstrate that RV measurements obtained from various complimentary views using echocardiography are reliable, reproducible and can provide insights regarding RV structure and function. This method will enable a better understanding of the role of RV cardiac dysfunction.
Medicine, Issue 84, Trans-thoracic echocardiography (TTE), right ventricle (RV), pulmonary artery constriction (PAC), peak velocity, right ventricular systolic pressure (RVSP)
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Isolation and Kv Channel Recordings in Murine Atrial and Ventricular Cardiomyocytes
Authors: Clemens Köhncke, Ulrike Lisewski, Leonhard Schleußner, Carolin Gaertner, Saskia Reichert, Torsten K. Roepke.
Institutions: Charité Medical Faculty and Max-Delbrück Center for Molecular Medicine (MDC), Charité - Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin.
KCNE genes encode for a small family of Kv channel ancillary subunits that form heteromeric complexes with Kv channel alpha subunits to modify their functional properties. Mutations in KCNE genes have been found in patients with cardiac arrhythmias such as the long QT syndrome and/or atrial fibrillation. However, the precise molecular pathophysiology that leads to these diseases remains elusive. In previous studies the electrophysiological properties of the disease causing mutations in these genes have mostly been studied in heterologous expression systems and we cannot be sure if the reported effects can directly be translated into native cardiomyocytes. In our laboratory we therefore use a different approach. We directly study the effects of KCNE gene deletion in isolated cardiomyocytes from knockout mice by cellular electrophysiology - a unique technique that we describe in this issue of the Journal of Visualized Experiments. The hearts from genetically engineered KCNE mice are rapidly excised and mounted onto a Langendorff apparatus by aortic cannulation. Free Ca2+ in the myocardium is bound by EGTA, and dissociation of cardiac myocytes is then achieved by retrograde perfusion of the coronary arteries with a specialized low Ca2+ buffer containing collagenase. Atria, free right ventricular wall and the left ventricle can then be separated by microsurgical techniques. Calcium is then slowly added back to isolated cardiomyocytes in a multiple step comprising washing procedure. Atrial and ventricular cardiomyocytes of healthy appearance with no spontaneous contractions are then immediately subjected to electrophysiological analyses by patch clamp technique or other biochemical analyses within the first 6 hours following isolation.
Physiology, Issue 73, Medicine, Cellular Biology, Molecular Biology, Genetics, Biomedical Engineering, Anatomy, Cardiology, Cardiac Output, Low, Cardiomyopathies, Heart Failure, Arrhythmias, Cardiac, Ventricular Dysfunction, Cardiomyocytes, Kv channel, cardiac arrythmia, electrophysiology, patch clamp, mouse, animal model
Play Button
A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
Authors: Michele M. Pelter, Teri M. Kozik, Denise L. Loranger, Mary G. Carey.
Institutions: University of Nevada, Reno, St. Joseph's Medical Center, University of Rochester Medical Center .
Each year, an estimated 785,000 Americans will have a new coronary attack, or acute coronary syndrome (ACS). The pathophysiology of ACS involves rupture of an atherosclerotic plaque; hence, treatment is aimed at plaque stabilization in order to prevent cellular death. However, there is considerable debate among clinicians, about which treatment pathway is best: early invasive using percutaneous coronary intervention (PCI/stent) when indicated or a conservative approach (i.e., medication only with PCI/stent if recurrent symptoms occur). There are three types of ACS: ST elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI), and unstable angina (UA). Among the three types, NSTEMI/UA is nearly four times as common as STEMI. Treatment decisions for NSTEMI/UA are based largely on symptoms and resting or exercise electrocardiograms (ECG). However, because of the dynamic and unpredictable nature of the atherosclerotic plaque, these methods often under detect myocardial ischemia because symptoms are unreliable, and/or continuous ECG monitoring was not utilized. Continuous 12-lead ECG monitoring, which is both inexpensive and non-invasive, can identify transient episodes of myocardial ischemia, a precursor to MI, even when asymptomatic. However, continuous 12-lead ECG monitoring is not usual hospital practice; rather, only two leads are typically monitored. Information obtained with 12-lead ECG monitoring might provide useful information for deciding the best ACS treatment. Purpose. Therefore, using 12-lead ECG monitoring, the COMPARE Study (electroCardiographic evaluatiOn of ischeMia comParing invAsive to phaRmacological trEatment) was designed to assess the frequency and clinical consequences of transient myocardial ischemia, in patients with NSTEMI/UA treated with either early invasive PCI/stent or those managed conservatively (medications or PCI/stent following recurrent symptoms). The purpose of this manuscript is to describe the methodology used in the COMPARE Study. Method. Permission to proceed with this study was obtained from the Institutional Review Board of the hospital and the university. Research nurses identify hospitalized patients from the emergency department and telemetry unit with suspected ACS. Once consented, a 12-lead ECG Holter monitor is applied, and remains in place during the patient's entire hospital stay. Patients are also maintained on the routine bedside ECG monitoring system per hospital protocol. Off-line ECG analysis is done using sophisticated software and careful human oversight.
Medicine, Issue 70, Anatomy, Physiology, Cardiology, Myocardial Ischemia, Cardiovascular Diseases, Health Occupations, Health Care, transient myocardial ischemia, Acute Coronary Syndrome, electrocardiogram, ST-segment monitoring, Holter monitoring, research methodology
Play Button
Implantation of Total Artificial Heart in Congenital Heart Disease
Authors: Iki Adachi, David S. L. Morales.
Institutions: Texas Children's Hospital, Baylor College of Medicine, The University of Cincinnati College of Medicine.
In patients with end-stage heart failure (HF), a total artificial heart (TAH) may be implanted as a bridge to cardiac transplant. However, in congenital heart disease (CHD), the malformed heart presents a challenge to TAH implantation. In the case presented here, a 17 year-old patient with congenital transposition of the great arteries (CCTGA) experienced progressively worsening HF due to his congenital condition. He was hospitalized multiple times and received an implantable cardioverter defibrillator (ICD). However, his condition soon deteriorated to end-stage HF with multisystem organ failure. Due to the patient's grave clinical condition and the presence of complex cardiac lesions, the decision was made to proceed with a TAH. The abnormal arrangement of the patient's ventricles and great arteries required modifications to the TAH during implantation. With the TAH in place, the patient was able to return home and regain strength and physical well-being while awaiting a donor heart. He was successfully bridged to heart transplantation 5 months after receiving the device. This report highlights the TAH is feasible even in patients with structurally abnormal hearts, with technical modification.
Medicine, Issue 89, total artificial heart, transposition of the great arteries, congenital heart disease, aortic insufficiency, ventricular outflow tract obstruction, conduit obstruction, heart failure
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Programmed Electrical Stimulation in Mice
Authors: Na Li, Xander H.T Wehrens.
Institutions: Baylor College of Medicine (BCM), Baylor College of Medicine (BCM).
Genetically-modified mice have emerged as a preferable animal model to study the molecular mechanisms underlying conduction abnormalities, atrial and ventricular arrhythmias, and sudden cardiac death.1 Intracardiac pacing studies can be performed in mice using a 1.1F octapolar catheter inserted into the jugular vein, and advanced into the right atrium and ventricle. Here, we illustrate the steps involved in performing programmed electrical stimulation in mice. Surface ECG and intracardiac electrograms are recorded simultaneously in the atria, atrioventricular junction, and ventricular myocardium, whereas intracardiac pacing of the atrium is performed using an external stimulator. Thus, programmed electrical stimulation in mice provides unique opportunities to explore molecular mechanisms underlying conduction defects and cardiac arrhythmias.
JoVE Medicine, Issue 39, Arrhythmias, electrophysiology, mouse, programmed electrical stimulation
Play Button
A New Single Chamber Implantable Defibrillator with Atrial Sensing: A Practical Demonstration of Sensing and Ease of Implantation
Authors: Dietmar Bänsch, Ralph Schneider, Ibrahim Akin, Cristoph A. Nienaber.
Institutions: University Hospital of Rostock, Germany.
Implantable cardioverter-defibrillators (ICDs) terminate ventricular tachycardia (VT) and ventricular fibrillation (VF) with high efficacy and can protect patients from sudden cardiac death (SCD). However, inappropriate shocks may occur if tachycardias are misdiagnosed. Inappropriate shocks are harmful and impair patient quality of life. The risk of inappropriate therapy increases with lower detection rates programmed in the ICD. Single-chamber detection poses greater risks for misdiagnosis when compared with dual-chamber devices that have the benefit of additional atrial information. However, using a dual-chamber device merely for the sake of detection is generally not accepted, since the risks associated with the second electrode may outweigh the benefits of detection. Therefore, BIOTRONIK developed a ventricular lead called the LinoxSMART S DX, which allows for the detection of atrial signals from two electrodes positioned at the atrial part of the ventricular electrode. This device contains two ring electrodes; one that contacts the atrial wall at the junction of the superior vena cava (SVC) and one positioned at the free floating part of the electrode in the atrium. The excellent signal quality can only be achieved by a special filter setting in the ICD (Lumax 540 and 740 VR-T DX, BIOTRONIK). Here, the ease of implantation of the system will be demonstrated.
Medicine, Issue 60, Implantable defibrillator, dual chamber, single chamber, tachycardia detection
Play Button
Methods for ECG Evaluation of Indicators of Cardiac Risk, and Susceptibility to Aconitine-induced Arrhythmias in Rats Following Status Epilepticus
Authors: Steven L. Bealer, Cameron S. Metcalf, Jason G. Little.
Institutions: University of Utah.
Lethal cardiac arrhythmias contribute to mortality in a number of pathological conditions. Several parameters obtained from a non-invasive, easily obtained electrocardiogram (ECG) are established, well-validated prognostic indicators of cardiac risk in patients suffering from a number of cardiomyopathies. Increased heart rate, decreased heart rate variability (HRV), and increased duration and variability of cardiac ventricular electrical activity (QT interval) are all indicative of enhanced cardiac risk 1-4. In animal models, it is valuable to compare these ECG-derived variables and susceptibility to experimentally induced arrhythmias. Intravenous infusion of the arrhythmogenic agent aconitine has been widely used to evaluate susceptibility to arrhythmias in a range of experimental conditions, including animal models of depression 5 and hypertension 6, following exercise 7 and exposure to air pollutants 8, as well as determination of the antiarrhythmic efficacy of pharmacological agents 9,10. It should be noted that QT dispersion in humans is a measure of QT interval variation across the full set of leads from a standard 12-lead ECG. Consequently, the measure of QT dispersion from the 2-lead ECG in the rat described in this protocol is different than that calculated from human ECG records. This represents a limitation in the translation of the data obtained from rodents to human clinical medicine. Status epilepticus (SE) is a single seizure or series of continuously recurring seizures lasting more than 30 min 11,12 11,12, and results in mortality in 20% of cases 13. Many individuals survive the SE, but die within 30 days 14,15. The mechanism(s) of this delayed mortality is not fully understood. It has been suggested that lethal ventricular arrhythmias contribute to many of these deaths 14-17. In addition to SE, patients experiencing spontaneously recurring seizures, i.e. epilepsy, are at risk of premature sudden and unexpected death associated with epilepsy (SUDEP) 18. As with SE, the precise mechanisms mediating SUDEP are not known. It has been proposed that ventricular abnormalities and resulting arrhythmias make a significant contribution 18-22. To investigate the mechanisms of seizure-related cardiac death, and the efficacy of cardioprotective therapies, it is necessary to obtain both ECG-derived indicators of risk and evaluate susceptibility to cardiac arrhythmias in animal models of seizure disorders 23-25. Here we describe methods for implanting ECG electrodes in the Sprague-Dawley laboratory rat (Rattus norvegicus), following SE, collection and analysis of ECG recordings, and induction of arrhythmias during iv infusion of aconitine. These procedures can be used to directly determine the relationships between ECG-derived measures of cardiac electrical activity and susceptibility to ventricular arrhythmias in rat models of seizure disorders, or any pathology associated with increased risk of sudden cardiac death.
Medicine, Issue 50, cardiac, seizure disorders, QTc, QTd, cardiac arrhythmias, rat
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.