JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Surface hardness impairment of quorum sensing and swarming for Pseudomonas aeruginosa.
PUBLISHED: 04-05-2011
The importance of rhamnolipid to swarming of the bacterium Pseudomonas aeruginosa is well established. It is frequently, but not exclusively, observed that P. aeruginosa swarms in tendril patterns--formation of these tendrils requires rhamnolipid. We were interested to explain the impact of surface changes on P. aeruginosa swarm tendril development. Here we report that P. aeruginosa quorum sensing and rhamnolipid production is impaired when growing on harder semi-solid surfaces. P. aeruginosa wild-type swarms showed huge variation in tendril formation with small deviations to the "standard" swarm agar concentration of 0.5%. These macroscopic differences correlated with microscopic investigation of cells close to the advancing swarm edge using fluorescent gene reporters. Tendril swarms showed significant rhlA-gfp reporter expression right up to the advancing edge of swarming cells while swarms without tendrils (grown on harder agar) showed no rhlA-gfp reporter expression near the advancing edge. This difference in rhamnolipid gene expression can be explained by the necessity of quorum sensing for rhamnolipid production. We provide evidence that harder surfaces seem to limit induction of quorum sensing genes near the advancing swarm edge and these localized effects were sufficient to explain the lack of tendril formation on hard agar. We were unable to artificially stimulate rhamnolipid tendril formation with added acyl-homoserine lactone signals or increasing the carbon nutrients. This suggests that quorum sensing on surfaces is controlled in a manner that is not solely population dependent.
Authors: Sebastian Kirchner, Joanne L Fothergill, Elli A. Wright, Chloe E. James, Eilidh Mowat, Craig Winstanley.
Published: 06-05-2012
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic1. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic2. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests3. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence4,5,6. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a >128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods3. Several in vitro models have been used previously to study P. aeruginosa biofilms7, 8. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung9 . In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa2 and affect antibiotic susceptibility10. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.
17 Related JoVE Articles!
Play Button
Recording Multicellular Behavior in Myxococcus xanthus Biofilms using Time-lapse Microcinematography
Authors: Rion G. Taylor, Roy D. Welch.
Institutions: University of South Carolina (USC), Syracuse University.
A swarm of the δ-proteobacterium Myxococcus xanthus contains millions of cells that act as a collective, coordinating movement through a series of signals to create complex, dynamic patterns as a response to environmental cues. These patterns are self-organizing and emergent; they cannot be predicted by observing the behavior of the individual cells. Using a time-lapse microcinematography tracking assay, we identified a distinct emergent pattern in M. xanthus called chemotaxis, defined as the directed movement of a swarm up a nutrient gradient toward its source 1. In order to efficiently characterize chemotaxis via time-lapse microcinematography, we developed a highly modifiable plate complex (Figure 1) and constructed a cluster of 8 microscopes (Figure 2), each capable of capturing time-lapse videos. The assay is rigorous enough to allow consistent replication of quantifiable data, and the resulting videos allow us to observe and track subtle changes in swarm behavior. Once captured, the videos are transferred to an analysis/storage computer with enough memory to process and store thousands of videos. The flexibility of this setup has proven useful to several members of the M. xanthus community.
Microbiology, Issue 42, microcinematography, Myxococcus, chemotaxis, time-lapse
Play Button
Automated Separation of C. elegans Variably Colonized by a Bacterial Pathogen
Authors: Kwame Twumasi-Boateng, Maureen Berg, Michael Shapira.
Institutions: University of California, Berkeley.
The wormsorter is an instrument analogous to a FACS machine that is used in studies of Caenorhabditis elegans, typically to sort worms based on expression of a fluorescent reporter. Here, we highlight an alternative usage of this instrument, for sorting worms according to their degree of colonization by a GFP-expressing pathogen. This new usage allowed us to address the relationship between colonization of the worm intestine and induction of immune responses. While C. elegans immune responses to different pathogens have been documented, it is still unknown what initiates them. The two main possibilities (which are not mutually exclusive) are recognition of pathogen-associated molecular patterns, and detection of damage caused by infection. To differentiate between the two possibilities, exposure to the pathogen must be dissociated from the damage it causes. The wormsorter enabled separation of worms that were extensively-colonized by the Gram-negative pathogen Pseudomonas aeruginosa, with the damage likely caused by pathogen load, from worms that were similarly exposed, but not, or marginally, colonized. These distinct populations were used to assess the relationship between pathogen load and the induction of transcriptional immune responses. The results suggest that the two are dissociated, supporting the possibility of pathogen recognition.
Immunology, Issue 85, Innate Immunity, C. elegans, Pseudomonas aeruginosa, wormsorter, pathogen recognition
Play Button
Establishing the Minimal Bactericidal Concentration of an Antimicrobial Agent for Planktonic Cells (MBC-P) and Biofilm Cells (MBC-B)
Authors: Thien-Fah Mah.
Institutions: University of Ottawa.
This protocol allows for a direct comparison between planktonic and biofilm resistance for a bacterial strain that can form a biofilm in vitro. Bacteria are inoculated into the wells of a 96-well microtiter plate. In the case of the planktonic assay, serial dilutions of the antimicrobial agent of choice are added to the bacterial suspensions. In the biofilm assay, once inoculated, the bacteria are left to form a biofilm over a set period of time. Unattached cells are removed from the wells, the media is replenished and serial dilutions of the antimicrobial agent of choice are added. After exposure to the antimicrobial agent, the planktonic cells are assayed for growth. For the biofilm assay, the media is refreshed with fresh media lacking the antimicrobial agent and the biofilm cells are left to recover. Biofilm cell viability is assayed after the recovery period. The MBC-P for the antimicrobial agent is defined as the lowest concentration of drug that kills the cells in the planktonic culture.  In contrast, the MBC-B for a strain is determined by exposing preformed biofilms to increasing concentrations of antimicrobial agent for 24 hr. The MBC-B is defined as the lowest concentration of antimicrobial agent that kills the cells in the biofilm.
Immunology, Issue 83, biofilm, planktonic, antibiotic resistance, static, antibacterial, minimal inhibitory concentration (MIC)
Play Button
Using the Overlay Assay to Qualitatively Measure Bacterial Production of and Sensitivity to Pneumococcal Bacteriocins
Authors: Natalie Maricic, Suzanne Dawid.
Institutions: University of Michigan, University of Michigan.
Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.
Infectious Diseases, Issue 91, bacteriocins, antimicrobial peptides, blp locus, bacterial competition, Streptococcus pneumoniae, overlay assay
Play Button
Microtiter Dish Biofilm Formation Assay
Authors: George A. O'Toole.
Institutions: Dartmouth Medical School.
Biofilms are communities of microbes attached to surfaces, which can be found in medical, industrial and natural settings. In fact, life in a biofilm probably represents the predominate mode of growth for microbes in most environments. Mature biofilms have a few distinct characteristics. Biofilm microbes are typically surrounded by an extracellular matrix that provides structure and protection to the community. Microbes growing in a biofilm also have a characteristic architecture generally comprised of macrocolonies (containing thousands of cells) surrounded by fluid-filled channels. Biofilm-grown microbes are also notorious for their resistance to a range of antimicrobial agents including clinically relevant antibiotics. The microtiter dish assay is an important tool for the study of the early stages in biofilm formation, and has been applied primarily for the study of bacterial biofilms, although this assay has also been used to study fungal biofilm formation. Because this assay uses static, batch-growth conditions, it does not allow for the formation of the mature biofilms typically associated with flow cell systems. However, the assay has been effective at identifying many factors required for initiation of biofilm formation (i.e, flagella, pili, adhesins, enzymes involved in cyclic-di-GMP binding and metabolism) and well as genes involved in extracellular polysaccharide production. Furthermore, published work indicates that biofilms grown in microtiter dishes do develop some properties of mature biofilms, such a antibiotic tolerance and resistance to immune system effectors. This simple microtiter dish assay allows for the formation of a biofilm on the wall and/or bottom of a microtiter dish. The high throughput nature of the assay makes it useful for genetic screens, as well as testing biofilm formation by multiple strains under various growth conditions. Variants of this assay have been used to assess early biofilm formation for a wide variety of microbes, including but not limited to, pseudomonads, Vibrio cholerae, Escherichia coli, staphylocci, enterococci, mycobacteria and fungi. In the protocol described here, we will focus on the use of this assay to study biofilm formation by the model organism Pseudomonas aeruginosa. In this assay, the extent of biofilm formation is measured using the dye crystal violet (CV). However, a number of other colorimetric and metabolic stains have been reported for the quantification of biofilm formation using the microtiter plate assay. The ease, low cost and flexibility of the microtiter plate assay has made it a critical tool for the study of biofilms.
Immunology, Issue 47, Biofilm, assay, bacteria, fungi, microtiter, static
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture
Authors: Graham Bailes, Margaret Lind, Andrew Ely, Marianne Powell, Jennifer Moore-Kucera, Carol Miles, Debra Inglis, Marion Brodhagen.
Institutions: Western Washington University, Washington State University Northwestern Research and Extension Center, Texas Tech University.
Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.
Microbiology, Issue 75, Plant Biology, Environmental Sciences, Agricultural Sciences, Soil Science, Molecular Biology, Cellular Biology, Genetics, Mycology, Fungi, Bacteria, Microorganisms, Biodegradable plastic, biodegradable mulch, compostable plastic, compostable mulch, plastic degradation, composting, breakdown, soil, 18S ribosomal DNA, isolation, culture
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
A Visual Assay to Monitor T6SS-mediated Bacterial Competition
Authors: Abderrahman Hachani, Nadine S. Lossi, Alain Filloux.
Institutions: Imperial College London .
Type VI secretion systems (T6SSs) are molecular nanomachines allowing Gram-negative bacteria to transport and inject proteins into a wide variety of target cells1,2. The T6SS is composed of 13 core components and displays structural similarities with the tail-tube of bacteriophages3. The phage uses a tube and a puncturing device to penetrate the cell envelope of target bacteria and inject DNA. It is proposed that the T6SS is an inverted bacteriophage device creating a specific path in the bacterial cell envelope to drive effectors and toxins to the surface. The process could be taken further and the T6SS device could perforate other cells with which the bacterium is in contact, thus injecting the effectors into these targets. The tail tube and puncturing device parts of the T6SS are made with Hcp and VgrG proteins, respectively4,5. The versatility of the T6SS has been demonstrated through studies using various bacterial pathogens. The Vibrio cholerae T6SS can remodel the cytoskeleton of eukaryotic host cells by injecting an "evolved" VgrG carrying a C-terminal actin cross-linking domain6,7. Another striking example was recently documented using Pseudomonas aeruginosa which is able to target and kill bacteria in a T6SS-dependent manner, therefore promoting the establishment of bacteria in specific microbial niches and competitive environment8,9,10. In the latter case, three T6SS-secreted proteins, namely Tse1, Tse2 and Tse3 have been identified as the toxins injected in the target bacteria (Figure 1). The donor cell is protected from the deleterious effect of these effectors via an anti-toxin mechanism, mediated by the Tsi1, Tsi2 and Tsi3 immunity proteins8,9,10. This antimicrobial activity can be monitored when T6SS-proficient bacteria are co-cultivated on solid surfaces in competition with other bacterial species or with T6SS-inactive bacteria of the same species8,11,12,13. The data available emphasized a numerical approach to the bacterial competition assay, including time-consuming CFU counting that depends greatly on antibiotic makers. In the case of antibiotic resistant strains like P. aeruginosa, these methods can be inappropriate. Moreover, with the identification of about 200 different T6SS loci in more than 100 bacterial genomes14, a convenient screening tool is highly desirable. We developed an assay that is easy to use and requires standard laboratory material and reagents. The method offers a rapid and qualitative technique to monitor the T6SS-dependent bactericidal/bacteriostasis activity by using a reporter strain as a prey (in this case Escherichia coli DH5α) allowing a-complementation of the lacZ gene. Overall, this method is graphic and allows rapid identification of T6SS-related phenotypes on agar plates. This experimental protocol may be adapted to other strains or bacterial species taking into account specific conditions such as growth media, temperature or time of contact.
Infection, Issue 73, Microbiology, Immunology, Infectious Diseases, Molecular Biology, Genetics, Biochemistry, Cellular Biology, Bacteriology, Bacteria, Type Six Secretion System, T6SS, Bacterial Competition, Killing Assay, Pseudomonas aeruginosa, E. coli, lacZ, CFU, bacterial screen, pathogens, assay
Play Button
Pseudomonas aeruginosa Induced Lung Injury Model
Authors: Varsha Suresh Kumar, Ruxana T. Sadikot, Jeanette E. Purcell, Asrar B. Malik, Yuru Liu.
Institutions: University of Illinois at Chicago, Emory University, University of Illinois at Chicago.
In order to study human acute lung injury and pneumonia, it is important to develop animal models to mimic various pathological features of this disease. Here we have developed a mouse lung injury model by intra-tracheal injection of bacteria Pseudomonas aeruginosa (P. aeruginosa or PA). Using this model, we were able to show lung inflammation at the early phase of injury. In addition, alveolar epithelial barrier leakiness was observed by analyzing bronchoalveolar lavage (BAL); and alveolar cell death was observed by Tunel assay using tissue prepared from injured lungs. At a later phase following injury, we observed cell proliferation required for the repair process. The injury was resolved 7 days from the initiation of P. aeruginosa injection. This model mimics the sequential course of lung inflammation, injury and repair during pneumonia. This clinically relevant animal model is suitable for studying pathology, mechanism of repair, following acute lung injury, and also can be used to test potential therapeutic agents for this disease.
Immunology, Issue 92, Lung, injury, pseudomonas, pneumonia, mouse model, alveoli
Play Button
Co-culture Models of Pseudomonas aeruginosa Biofilms Grown on Live Human Airway Cells
Authors: Sophie Moreau-Marquis, Carly V. Redelman, Bruce A. Stanton, Gregory G. Anderson.
Institutions: Dartmouth College, Indiana University Purdue University Indianapolis.
Bacterial biofilms have been associated with a number of different human diseases, but biofilm development has generally been studied on non-living surfaces. In this paper, we describe protocols for forming Pseudomonas aeruginosa biofilms on human airway epithelial cells (CFBE cells) grown in culture. In the first method (termed the Static Co-culture Biofilm Model), P. aeruginosa is incubated with CFBE cells grown as confluent monolayers on standard tissue culture plates. Although the bacterium is quite toxic to epithelial cells, the addition of arginine delays the destruction of the monolayer long enough for biofilms to form on the CFBE cells. The second method (termed the Flow Cell Co-culture Biofilm Model), involves adaptation of a biofilm flow cell apparatus, which is often used in biofilm research, to accommodate a glass coverslip supporting a confluent monolayer of CFBE cells. This monolayer is inoculated with P. aeruginosa and a peristaltic pump then flows fresh medium across the cells. In both systems, bacterial biofilms form within 6-8 hours after inoculation. Visualization of the biofilm is enhanced by the use of P. aeruginosa strains constitutively expressing green fluorescent protein (GFP). The Static and Flow Cell Co-culture Biofilm assays are model systems for early P. aeruginosa infection of the Cystic Fibrosis (CF) lung, and these techniques allow different aspects of P. aeruginosa biofilm formation and virulence to be studied, including biofilm cytotoxicity, measurement of biofilm CFU, and staining and visualizing the biofilm.
Cellular Biology, Issue 44, biofilm, Pseudomonas aeruginosa, airway, epithelial cells, co-culture, cytotoxicity, Cystic Fibrosis, virulence
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice
Authors: Marcella Facchini, Ida De Fino, Camilla Riva, Alessandra Bragonzi.
Institutions: San Raffaele Scientific Institute, Italian Cystic Fibrosis Research Foundation.
A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection in vivo. The main challenge for long term chronic infection remains the low bacterial burden by P. aeruginosa and the low percentage of infected mice weeks after challenge, indicating that bacterial cells are progressively cleared by the host. This paper presents a method for obtaining efficient long-term chronic infection in mice. This method is based on the embedding of the P. aeruginosa clinical strains in the agar-beads in vitro, followed by intratracheal instillation in C57Bl/6NCrl mice. Bilateral lung infection is associated with several measurable read-outs including weight loss, mortality, chronic infection, and inflammatory response. The P. aeruginosa RP73 clinical strain was preferred over the PAO1 reference laboratory strain since it resulted in a comparatively lower mortality, more severe lesions, and higher chronic infection. P. aeruginosa colonization may persist in the lung for over three months. Murine lung pathology resembles that of CF patients with advanced chronic pulmonary disease. This murine model most closely mimics the course of the human disease and can be used both for studies on the pathogenesis and for the evaluation of novel therapies.
Infection, Issue 85, Opportunistic Infections, Respiratory Tract Infections, Inflammation, Lung Diseases, Cystic Fibrosis, Pseudomonas aeruginosa
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
A Semi-quantitative Approach to Assess Biofilm Formation Using Wrinkled Colony Development
Authors: Valerie A. Ray, Andrew R. Morris, Karen L. Visick.
Institutions: Loyola University Medical Center.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses 1. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities 2. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media 3. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis 4, and Gram-negative bacteria, such as Vibrio cholerae 5, Vibrio parahaemolyticus 6, Pseudomonas aeruginosa 7, and Vibrio fischeri 8. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes 8-10. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect 9,11, while strains exhibiting increased biofilm phenotypes are enhanced for colonization 8,12. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.
Microbiology, Issue 64, Immunology, Biofilm, wrinkled colony, rugose, Vibrio fischeri, Zeiss stemi, dissecting microscope, marine biology
Play Button
Identification of Novel Genes Associated with Alginate Production in Pseudomonas aeruginosa Using Mini-himar1 Mariner Transposon-mediated Mutagenesis
Authors: T. Ryan Withers, Yeshi Yin, Hongwei D. Yu.
Institutions: Marshall University.
Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ22). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.
Immunology, Issue 85, Pseudomonas aeruginosa, alginate, mucoidy, mutagenesis, mini-himar1 mariner transposon, pFAC
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.