JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins.
PLoS ONE
PUBLISHED: 01-20-2011
The chromosome of Mycobacterium tuberculosis (Mtb) encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s) served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as non-toxic. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of non-toxic VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase) activity demonstrated for Rv0065 and Rv0617--VapC proteins with similarity to Rv0549c and Rv3320c, respectively--these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism.
Authors: Christophe. J Queval, Ok-Ryul Song, Vincent Delorme, Raffaella Iantomasi, Romain Veyron-Churlet, Nathalie Deboosère, Valérie Landry, Alain Baulard, Priscille Brodin.
Published: 01-17-2014
ABSTRACT
Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.
22 Related JoVE Articles!
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
50829
Play Button
Diagnosing Pulmonary Tuberculosis with the Xpert MTB/RIF Test
Authors: Thomas Bodmer, Angelika Ströhle.
Institutions: University of Bern, MCL Laboratories Inc..
Tuberculosis (TB) due to Mycobacterium tuberculosis (MTB) remains a major public health issue: the infection affects up to one third of the world population1, and almost two million people are killed by TB each year.2 Universal access to high-quality, patient-centered treatment for all TB patients is emphasized by WHO's Stop TB Strategy.3 The rapid detection of MTB in respiratory specimens and drug therapy based on reliable drug resistance testing results are a prerequisite for the successful implementation of this strategy. However, in many areas of the world, TB diagnosis still relies on insensitive, poorly standardized sputum microscopy methods. Ineffective TB detection and the emergence and transmission of drug-resistant MTB strains increasingly jeopardize global TB control activities.2 Effective diagnosis of pulmonary TB requires the availability - on a global scale - of standardized, easy-to-use, and robust diagnostic tools that would allow the direct detection of both the MTB complex and resistance to key antibiotics, such as rifampicin (RIF). The latter result can serve as marker for multidrug-resistant MTB (MDR TB) and has been reported in > 95% of the MDR-TB isolates.4, 5 The rapid availability of reliable test results is likely to directly translate into sound patient management decisions that, ultimately, will cure the individual patient and break the chain of TB transmission in the community.2 Cepheid's (Sunnyvale, CA, U.S.A.) Xpert MTB/RIF assay6, 7 meets the demands outlined above in a remarkable manner. It is a nucleic-acids amplification test for 1) the detection of MTB complex DNA in sputum or concentrated sputum sediments; and 2) the detection of RIF resistance-associated mutations of the rpoB gene.8 It is designed for use with Cepheid's GeneXpert Dx System that integrates and automates sample processing, nucleic acid amplification, and detection of the target sequences using real-time PCR and reverse transcriptase PCR. The system consists of an instrument, personal computer, barcode scanner, and preloaded software for running tests and viewing the results.9 It employs single-use disposable Xpert MTB/RIF cartridges that hold PCR reagents and host the PCR process. Because the cartridges are self-contained, cross-contamination between samples is eliminated.6 Current nucleic acid amplification methods used to detect MTB are complex, labor-intensive, and technically demanding. The Xpert MTB/RIF assay has the potential to bring standardized, sensitive and very specific diagnostic testing for both TB and drug resistance to universal-access point-of-care settings3, provided that they will be able to afford it. In order to facilitate access, the Foundation for Innovative New Diagnostics (FIND) has negotiated significant price reductions. Current FIND-negotiated prices, along with the list of countries eligible for the discounts, are available on the web.10
Immunology, Issue 62, tuberculosis, drug resistance, rifampicin, rapid diagnosis, Xpert MTB/RIF test
3547
Play Button
Collection, Isolation and Enrichment of Naturally Occurring Magnetotactic Bacteria from the Environment
Authors: Zachery Oestreicher, Steven K. Lower, Wei Lin, Brian H. Lower.
Institutions: The Ohio State University, The Ohio State University, Chinese Academy of Sciences .
Magnetotactic bacteria (MTB) are aquatic microorganisms that were first notably described in 19751 from sediment samples collected in salt marshes of Massachusetts (USA). Since then MTB have been discovered in stratified water- and sediment-columns from all over the world2. One feature common to all MTB is that they contain magnetosomes, which are intracellular, membrane-bound magnetic nanocrystals of magnetite (Fe3O4) and/or greigite (Fe3S4) or both3, 4. In the Northern hemisphere, MTB are typically attracted to the south end of a bar magnet, while in the Southern hemisphere they are usually attracted to the north end of a magnet3,5. This property can be exploited when trying to isolate MTB from environmental samples. One of the most common ways to enrich MTB is to use a clear plastic container to collect sediment and water from a natural source, such as a freshwater pond. In the Northern hemisphere, the south end of a bar magnet is placed against the outside of the container just above the sediment at the sediment-water interface. After some time, the bacteria can be removed from the inside of the container near the magnet with a pipette and then enriched further by using a capillary racetrack6 and a magnet. Once enriched, the bacteria can be placed on a microscope slide using a hanging drop method and observed in a light microscope or deposited onto a copper grid and observed using transmission electron microscopy (TEM). Using this method, isolated MTB may be studied microscopically to determine characteristics such as swimming behavior, type and number of flagella, cell morphology of the cells, shape of the magnetic crystals, number of magnetosomes, number of magnetosome chains in each cell, composition of the nanomineral crystals, and presence of intracellular vacuoles.
Microbiology, Issue 69, Cellular Biology, Earth Sciences, Environmental Sciences, Geology, Magnetotactic bacteria, MTB, bacteria enrichment, racetrack, bacteria isolation, magnetosome, magnetite, hanging drop, magnetism, magnetospirillum, transmission electron microscopy, TEM, light microscopy, pond water, sediment
50123
Play Button
Using the Overlay Assay to Qualitatively Measure Bacterial Production of and Sensitivity to Pneumococcal Bacteriocins
Authors: Natalie Maricic, Suzanne Dawid.
Institutions: University of Michigan, University of Michigan.
Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.
Infectious Diseases, Issue 91, bacteriocins, antimicrobial peptides, blp locus, bacterial competition, Streptococcus pneumoniae, overlay assay
51876
Play Button
Isolating Potentiated Hsp104 Variants Using Yeast Proteinopathy Models
Authors: Meredith E. Jackrel, Amber Tariq, Keolamau Yee, Rachel Weitzman, James Shorter.
Institutions: Perelman School of Medicine at the University of Pennsylvania.
Many protein-misfolding disorders can be modeled in the budding yeast Saccharomyces cerevisiae. Proteins such as TDP-43 and FUS, implicated in amyotrophic lateral sclerosis, and α-synuclein, implicated in Parkinson’s disease, are toxic and form cytoplasmic aggregates in yeast. These features recapitulate protein pathologies observed in patients with these disorders. Thus, yeast are an ideal platform for isolating toxicity suppressors from libraries of protein variants. We are interested in applying protein disaggregases to eliminate misfolded toxic protein conformers. Specifically, we are engineering Hsp104, a hexameric AAA+ protein from yeast that is uniquely capable of solubilizing both disordered aggregates and amyloid and returning the proteins to their native conformations. While Hsp104 is highly conserved in eukaryotes and eubacteria, it has no known metazoan homologue. Hsp104 has only limited ability to eliminate disordered aggregates and amyloid fibers implicated in human disease. Thus, we aim to engineer Hsp104 variants to reverse the protein misfolding implicated in neurodegenerative disorders. We have developed methods to screen large libraries of Hsp104 variants for suppression of proteotoxicity in yeast. As yeast are prone to spontaneous nonspecific suppression of toxicity, a two-step screening process has been developed to eliminate false positives. Using these methods, we have identified a series of potentiated Hsp104 variants that potently suppress the toxicity and aggregation of TDP-43, FUS, and α-synuclein. Here, we describe this optimized protocol, which could be adapted to screen libraries constructed using any protein backbone for suppression of toxicity of any protein that is toxic in yeast.
Microbiology, Issue 93, Protein-misfolding disorders, yeast proteinopathy models, Hsp104, proteotoxicity, amyloid, disaggregation
52089
Play Button
Single Cell Measurements of Vacuolar Rupture Caused by Intracellular Pathogens
Authors: Charlotte Keller, Nora Mellouk, Anne Danckaert, Roxane Simeone, Roland Brosch, Jost Enninga, Alexandre Bobard.
Institutions: Institut Pasteur, Paris, France, Institut Pasteur, Paris, France, Institut Pasteur, Paris, France.
Shigella flexneri are pathogenic bacteria that invade host cells entering into an endocytic vacuole. Subsequently, the rupture of this membrane-enclosed compartment allows bacteria to move within the cytosol, proliferate and further invade neighboring cells. Mycobacterium tuberculosis is phagocytosed by immune cells, and has recently been shown to rupture phagosomal membrane in macrophages. We developed a robust assay for tracking phagosomal membrane disruption after host cell entry of Shigella flexneri or Mycobacterium tuberculosis. The approach makes use of CCF4, a FRET reporter sensitive to β-lactamase that equilibrates in the cytosol of host cells. Upon invasion of host cells by bacterial pathogens, the probe remains intact as long as the bacteria reside in membrane-enclosed compartments. After disruption of the vacuole, β-lactamase activity on the surface of the intracellular pathogen cleaves CCF4 instantly leading to a loss of FRET signal and switching its emission spectrum. This robust ratiometric assay yields accurate information about the timing of vacuolar rupture induced by the invading bacteria, and it can be coupled to automated microscopy and image processing by specialized algorithms for the detection of the emission signals of the FRET donor and acceptor. Further, it allows investigating the dynamics of vacuolar disruption elicited by intracellular bacteria in real time in single cells. Finally, it is perfectly suited for high-throughput analysis with a spatio-temporal resolution exceeding previous methods. Here, we provide the experimental details of exemplary protocols for the CCF4 vacuolar rupture assay on HeLa cells and THP-1 macrophages for time-lapse experiments or end points experiments using Shigella flexneri as well as multiple mycobacterial strains such as Mycobacterium marinum, Mycobacterium bovis, and Mycobacterium tuberculosis.
Infection, Issue 76, Infectious Diseases, Immunology, Medicine, Microbiology, Biochemistry, Cellular Biology, Molecular Biology, Pathology, Bacteria, biology (general), life sciences, CCF4-AM, Shigella flexneri, Mycobacterium tuberculosis, vacuolar rupture, fluorescence microscopy, confocal microscopy, pathogens, cell culture
50116
Play Button
Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray
Authors: Yvonne Linger, Alexander Kukhtin, Julia Golova, Alexander Perov, Peter Qu, Christopher Knickerbocker, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc..
Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.
Immunology, Issue 86, MDR-TB, gel element microarray, closed amplicon, drug resistance, rifampin, isoniazid, streptomycin, ethambutol
51256
Play Button
Sample Preparation of Mycobacterium tuberculosis Extracts for Nuclear Magnetic Resonance Metabolomic Studies
Authors: Denise K. Zinniel, Robert J. Fenton, Steven Halouska, Robert Powers, Raul G. Barletta.
Institutions: University of Nebraska-Lincoln, University of Nebraska-Lincoln.
Mycobacterium tuberculosis is a major cause of mortality in human beings on a global scale. The emergence of both multi- (MDR) and extensively-(XDR) drug-resistant strains threatens to derail current disease control efforts. Thus, there is an urgent need to develop drugs and vaccines that are more effective than those currently available. The genome of M. tuberculosis has been known for more than 10 years, yet there are important gaps in our knowledge of gene function and essentiality. Many studies have since used gene expression analysis at both the transcriptomic and proteomic levels to determine the effects of drugs, oxidants, and growth conditions on the global patterns of gene expression. Ultimately, the final response of these changes is reflected in the metabolic composition of the bacterium including a few thousand small molecular weight chemicals. Comparing the metabolic profiles of wild type and mutant strains, either untreated or treated with a particular drug, can effectively allow target identification and may lead to the development of novel inhibitors with anti-tubercular activity. Likewise, the effects of two or more conditions on the metabolome can also be assessed. Nuclear magnetic resonance (NMR) is a powerful technology that is used to identify and quantify metabolic intermediates. In this protocol, procedures for the preparation of M. tuberculosis cell extracts for NMR metabolomic analysis are described. Cell cultures are grown under appropriate conditions and required Biosafety Level 3 containment,1 harvested, and subjected to mechanical lysis while maintaining cold temperatures to maximize preservation of metabolites. Cell lysates are recovered, filtered sterilized, and stored at ultra-low temperatures. Aliquots from these cell extracts are plated on Middlebrook 7H9 agar for colony-forming units to verify absence of viable cells. Upon two months of incubation at 37 °C, if no viable colonies are observed, samples are removed from the containment facility for downstream processing. Extracts are lyophilized, resuspended in deuterated buffer and injected in the NMR instrument, capturing spectroscopic data that is then subjected to statistical analysis. The procedures described can be applied for both one-dimensional (1D) 1H NMR and two-dimensional (2D) 1H-13C NMR analyses. This methodology provides more reliable small molecular weight metabolite identification and more reliable and sensitive quantitative analyses of cell extract metabolic compositions than chromatographic methods. Variations of the procedure described following the cell lysis step can also be adapted for parallel proteomic analysis.
Infection, Issue 67, Mycobacterium tuberculosis, NMR, Metabolomics, homogenizer, lysis, cell extracts, sample preparation
3673
Play Button
Growth of Mycobacterium tuberculosis Biofilms
Authors: Kathleen Kulka, Graham Hatfull, Anil K. Ojha.
Institutions: University of Pittsburgh, University of Pittsburgh.
Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, has an extraordinary ability to survive against environmental stresses including antibiotics. Although stress tolerance of M. tuberculosis is one of the likely contributors to the 6-month long chemotherapy of tuberculosis 1, the molecular mechanisms underlying this characteristic phenotype of the pathogen remain unclear. Many microbial species have evolved to survive in stressful environments by self-assembling in highly organized, surface attached, and matrix encapsulated structures called biofilms 2-4. Growth in communities appears to be a preferred survival strategy of microbes, and is achieved through genetic components that regulate surface attachment, intercellular communications, and synthesis of extracellular polymeric substances (EPS) 5,6. The tolerance to environmental stress is likely facilitated by EPS, and perhaps by the physiological adaptation of individual bacilli to heterogeneous microenvironments within the complex architecture of biofilms 7. In a series of recent papers we established that M. tuberculosis and Mycobacterium smegmatis have a strong propensity to grow in organized multicellular structures, called biofilms, which can tolerate more than 50 times the minimal inhibitory concentrations of the anti-tuberculosis drugs isoniazid and rifampicin 8-10. M. tuberculosis, however, intriguingly requires specific conditions to form mature biofilms, in particular 9:1 ratio of headspace: media as well as limited exchange of air with the atmosphere 9. Requirements of specialized environmental conditions could possibly be linked to the fact that M. tuberculosis is an obligate human pathogen and thus has adapted to tissue environments. In this publication we demonstrate methods for culturing M. tuberculosis biofilms in a bottle and a 12-well plate format, which is convenient for bacteriological as well as genetic studies. We have described the protocol for an attenuated strain of M. tuberculosis, mc27000, with deletion in the two loci, panCD and RD1, that are critical for in vivo growth of the pathogen 9. This strain can be safely used in a BSL-2 containment for understanding the basic biology of the tuberculosis pathogen thus avoiding the requirement of an expensive BSL-3 facility. The method can be extended, with appropriate modification in media, to grow biofilm of other culturable mycobacterial species. Overall, a uniform protocol of culturing mycobacterial biofilms will help the investigators interested in studying the basic resilient characteristics of mycobacteria. In addition, a clear and concise method of growing mycobacterial biofilms will also help the clinical and pharmaceutical investigators to test the efficacy of a potential drug.
Immunology, Issue 60, Mycobacterium tuberculosis, tuberculosis, drug tolerance, biofilms
3820
Play Button
Growth Assays to Assess Polyglutamine Toxicity in Yeast
Authors: Martin L. Duennwald.
Institutions: Boston Biomedical Research Institute.
Protein misfolding is associated with many human diseases, particularly neurodegenerative diseases, such as Alzheimer’s disease, Parkinson's disease, and Huntington's disease 1. Huntington's disease (HD) is caused by the abnormal expansion of a polyglutamine (polyQ) region within the protein huntingtin. The polyQ-expanded huntingtin protein attains an aberrant conformation (i.e. it misfolds) and causes cellular toxicity 2. At least eight further neurodegenerative diseases are caused by polyQ-expansions, including the Spinocerebellar Ataxias and Kennedy’s disease 3. The model organism yeast has facilitated significant insights into the cellular and molecular basis of polyQ-toxicity, including the impact of intra- and inter-molecular factors of polyQ-toxicity, and the identification of cellular pathways that are impaired in cells expressing polyQ-expansion proteins 3-8. Importantly, many aspects of polyQ-toxicity that were found in yeast were reproduced in other experimental systems and to some extent in samples from HD patients, thus demonstrating the significance of the yeast model for the discovery of basic mechanisms underpinning polyQ-toxicity. A direct and relatively simple way to determine polyQ-toxicity in yeast is to measure growth defects of yeast cells expressing polyQ-expansion proteins. This manuscript describes three complementary experimental approaches to determine polyQ-toxicity in yeast by measuring the growth of yeast cells expressing polyQ-expansion proteins. The first two experimental approaches monitor yeast growth on plates, the third approach monitors the growth of liquid yeast cultures using the BioscreenC instrument. Furthermore, this manuscript describes experimental difficulties that can occur when handling yeast polyQ models and outlines strategies that will help to avoid or minimize these difficulties. The protocols described here can be used to identify and to characterize genetic pathways and small molecules that modulate polyQ-toxicity. Moreover, the described assays may serve as templates for accurate analyses of the toxicity caused by other disease-associated misfolded proteins in yeast models.
Molecular Biology, Issue 61, Protein misfolding, yeast, polyglutamine diseases, growth assays
3461
Play Button
A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Institutions: Delft University of Technology, Delft University of Technology.
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
Bioengineering, Issue 68, Microbiology, Biochemistry, Chemistry, Chemical Engineering, Oil remediation, alkane metabolism, alkane hydroxylase system, resting cell assay, prefoldin, Escherichia coli, synthetic biology, homologous interaction mapping, mathematical model, BioBrick, iGEM
4182
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
51438
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
3064
Play Button
A Novel Microdissection Approach to Recovering Mycobacterium tuberculosis Specific Transcripts from Formalin Fixed Paraffin Embedded Lung Granulomas
Authors: Teresa A. Hudock, Deepak Kaushal.
Institutions: Tulane National Primate Research Center, Tulane National Primate Research Center.
Microdissection has been used for the examination of tissues at DNA, RNA, and protein levels for over a decade. Laser capture microscopy (LCM) is the most common microdissection technique used today. In this technique, a laser is used to focally melt a thermoplastic membrane that overlies a dehydrated tissue section1. The tissue section composite is then lifted and separated from the membrane. Although this technique can be used successfully for tissue examination, it is time consuming and expensive. Furthermore, the successful completion of procedures using this technique requires the use of a laser, thus limiting its use. A new more affordable and practical microdissection approach called mesodissection is a possible solution to the pitfalls of LCM. This technique employs the MESO-1/MeSectr system to mill the desired tissue from a slide mounted tissue sample while concurrently dispensing and aspirating fluid to recover the desired tissue sample into a consumable mill bit. Before the dissection process begins, the user aligns the formalin fixed paraffin embedded (FFPE) slide with a hematoxylin and eosin stained (H&E) reference slide. Thereafter, the operator annotates the desired dissection area and proceeds to dissect the appropriate segment. The program generates an archived image of the dissection. The main advantage of mesodissection is the short duration needed to dissect a slide, taking an average of ten minutes from set up to sample generation in this experiment. Additionally, the system is significantly more cost effective and user friendly. A slight disadvantage is that it is not as precise as laser capture microscopy. In this article we demonstrate how mesodissection can be used to extract RNA from slides from FFPE granulomas caused by Mycobacterium tuberculosis (Mtb).
Immunology, Issue 88, Microdissection, mesodissection, formalin fixed paraffin embedded, Mtb, LCM, TB, Mycobacterium tuberculosis
51693
Play Button
Antimicrobial Susceptibility Testing of Mycobacterium Tuberculosis Complex for First and Second Line Drugs by Broth Dilution in a Microtiter Plate Format
Authors: Leslie Hall, Kurt P. Jude, Shirley L. Clark, Nancy L. Wengenack.
Institutions: Mayo Clinic .
The rapid detection of antimicrobial resistance is important in the effort to control the increase in resistant Mycobacterium tuberculosis (Mtb). Antimicrobial susceptibility testing (AST) of Mtb has traditionally been performed by the agar method of proportion or by macrobroth testing on an instrument such as the BACTEC (Becton Dickinson, Sparks, MD), VersaTREK (TREK Diagnostics, Cleveland, OH) or BacT/ALERT (bioMérieux, Hazelwood, MO). The agar proportion method, while considered the “gold” standard of AST, is labor intensive and requires calculation of resistance by performing colony counts on drug-containing agar as compared to drug-free agar. If there is ≥1% growth on the drug-containing medium as compared to drug-free medium, the organism is considered resistant to that drug. The macrobroth methods require instrumentation and test break point ("critical") drug concentrations for the first line drugs (isoniazid, ethambutol, rifampin, and pyrazinamide). The method described here is commercially available in a 96 well microtiter plate format [MYCOTB (TREK Diagnostics)] and contains increasing concentrations of 12 antimicrobials used for treatment of tuberculosis including both first (isoniazid, rifampin, ethambutol) and second line drugs (amikacin, cycloserine, ethionamide, kanamycin, moxifloxacin, ofloxacin, para-aminosalicylic acid, rifabutin, and streptomycin). Pyrazinamide, a first line drug, is not included in the microtiter plate due to its need for acidic test conditions. Advantages of the microtiter system include both ease of set up and faster turn around time (14 days) compared with traditional agar proportion (21 days). In addition, the plate can be set up from inoculum prepared using either broth or solid medium. Since the microtiter plate format is new and since Mtb presents unique safety challenges in the laboratory, this protocol will describe how to safely setup, incubate and read the microtiter plate.
Immunology, Issue 52, Mycobacterium tuberculosis, MIC, antimicrobial susceptibility testing, first and second line drugs, microtiter plate, broth dilution
3094
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
High-throughput Screening for Broad-spectrum Chemical Inhibitors of RNA Viruses
Authors: Marianne Lucas-Hourani, Hélène Munier-Lehmann, Olivier Helynck, Anastassia Komarova, Philippe Desprès, Frédéric Tangy, Pierre-Olivier Vidalain.
Institutions: Institut Pasteur, CNRS UMR3569, Institut Pasteur, CNRS UMR3523, Institut Pasteur.
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.
Immunology, Issue 87, Viral infections, high-throughput screening assays, broad-spectrum antivirals, chikungunya virus, measles virus, luciferase reporter, chemical libraries
51222
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Purification of Transcripts and Metabolites from Drosophila Heads
Authors: Kurt Jensen, Jonatan Sanchez-Garcia, Caroline Williams, Swati Khare, Krishanu Mathur, Rita M. Graze, Daniel A. Hahn, Lauren M. McIntyre, Diego E. Rincon-Limas, Pedro Fernandez-Funez.
Institutions: University of Florida , University of Florida , University of Florida , University of Florida .
For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease.
Genetics, Issue 73, Biochemistry, Molecular Biology, Neurobiology, Neuroscience, Bioengineering, Cellular Biology, Anatomy, Neurodegenerative Diseases, Biological Assay, Drosophila, fruit fly, head separation, purification, mRNA, RNA, cDNA, DNA, transcripts, metabolites, replicates, SCA3, neurodegeneration, NMR, gene expression, animal model
50245
Play Button
Fluorescence Based Primer Extension Technique to Determine Transcriptional Starting Points and Cleavage Sites of RNases In Vivo
Authors: Christopher F. Schuster, Ralph Bertram.
Institutions: University of Tübingen.
Fluorescence based primer extension (FPE) is a molecular method to determine transcriptional starting points or processing sites of RNA molecules. This is achieved by reverse transcription of the RNA of interest using specific fluorescently labeled primers and subsequent analysis of the resulting cDNA fragments by denaturing polyacrylamide gel electrophoresis. Simultaneously, a traditional Sanger sequencing reaction is run on the gel to map the ends of the cDNA fragments to their exact corresponding bases. In contrast to 5'-RACE (Rapid Amplification of cDNA Ends), where the product must be cloned and multiple candidates sequenced, the bulk of cDNA fragments generated by primer extension can be simultaneously detected in one gel run. In addition, the whole procedure (from reverse transcription to final analysis of the results) can be completed in one working day. By using fluorescently labeled primers, the use of hazardous radioactive isotope labeled reagents can be avoided and processing times are reduced as products can be detected during the electrophoresis procedure. In the following protocol, we describe an in vivo fluorescent primer extension method to reliably and rapidly detect the 5' ends of RNAs to deduce transcriptional starting points and RNA processing sites (e.g., by toxin-antitoxin system components) in S. aureus, E. coli and other bacteria.
Molecular Biology, Issue 92, Primer extension, RNA mapping, 5' end, fluorescent primer, transcriptional starting point, TSP, RNase, toxin-antitoxin, cleavage site, gel electrophoresis, DNA isolation, RNA processing
52134
Play Button
The MODS method for diagnosis of tuberculosis and multidrug resistant tuberculosis
Authors: Mark F Brady, Jorge Coronel, Robert H Gilman, David AJ Moore.
Institutions: The Warren Alpert Medical School of Brown University, Universidad Peruana Cayetano Heredia, Johns Hopkins Bloomberg School of Public Health, Imperial College London .
Patients with active pulmonary tuberculosis (TB) infect 10-15 other persons per year, making diagnosing active TB essential to both curing the patient and preventing new infections. Furthermore, the emergence of multidrug resistant tuberculosis (MDRTB) means that detection of drug resistance is necessary for stopping the spread of drug-resistant strains. The microscopic-observation drug-susceptibility (MODS) assay is a low-cost, low-tech tool for high-performance detection of TB and MDRTB. The MODS assay is based on three principles: 1) mycobacterium tuberculosis (MTB) grows faster in liquid media than on solid media 2) microscopic MTB growth can be detected earlier in liquid media than waiting for the macroscopic appearance of colonies on solid media, and that growth is characteristic of MTB, allowing it to be distinguished from atypical mycobacteria or fungal or bacterial contamination 3) the drugs isoniazid and rifampicin can be incorporated into the MODS assay to allow for simultaneous direct detection of MDRTB, obviating the need for subculture to perform an indirect drug susceptibility test. Competing current diagnostics are hampered by low sensitivity with sputum smear, long delays until diagnosis with solid media culture, prohibitively high cost with existing liquid media culture methods, and the need to do subculture for indirect drug susceptibility testing to detect MDRTB. In contrast, the non-proprietary MODS method has a high sensitivity for TB and MDRTB, is a relatively rapid culture method, provides simultaneous drug susceptibility testing for MDRTB, and is accessible to resource-limited settings at just under $3 for testing for TB and MDRTB.
Microbiology, Issue 18, tuberculosis, TB, multidrug resistant tuberculosis, MDRTB, culture, diagnostic
845
Play Button
Electroporation of Mycobacteria
Authors: Renan Goude, Tanya Parish.
Institutions: Barts and the London School of Medicine and Dentistry, Barts and the London School of Medicine and Dentistry.
High efficiency transformation is a major limitation in the study of mycobacteria. The genus Mycobacterium can be difficult to transform; this is mainly caused by the thick and waxy cell wall, but is compounded by the fact that most molecular techniques have been developed for distantly-related species such as Escherichia coli and Bacillus subtilis. In spite of these obstacles, mycobacterial plasmids have been identified and DNA transformation of many mycobacterial species have now been described. The most successful method for introducing DNA into mycobacteria is electroporation. Many parameters contribute to successful transformation; these include the species/strain, the nature of the transforming DNA, the selectable marker used, the growth medium, and the conditions for the electroporation pulse. Optimized methods for the transformation of both slow- and fast-grower are detailed here. Transformation efficiencies for different mycobacterial species and with various selectable markers are reported.
Microbiology, Issue 15, Springer Protocols, Mycobacteria, Electroporation, Bacterial Transformation, Transformation Efficiency, Bacteria, Tuberculosis, M. Smegmatis, Springer Protocols
761
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.