JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia.
PLoS ONE
PUBLISHED: 01-27-2011
Therapeutic application of mesenchymal stem cells (MSC) requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM) that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The tool box of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Published: 12-09-2013
ABSTRACT
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
26 Related JoVE Articles!
Play Button
Isolation and Animal Serum Free Expansion of Human Umbilical Cord Derived Mesenchymal Stromal Cells (MSCs) and Endothelial Colony Forming Progenitor Cells (ECFCs)
Authors: Andreas Reinisch, Dirk Strunk.
Institutions: Medical University of Graz, Austria.
The umbilical cord is a rich source for progenitor cells with high proliferative potential including mesenchymal stromal cells (also termed mesenchymal stem cells, MSCs) and endothelial colony forming progenitor cells (ECFCs). Both cell types are key players in maintaining the integrity of tissue and are probably also involved in regenerative processes and tumor formation. To study their biology and function in a comparative manner it is important to have both cells types available from the same donor. It may also be beneficial for regenerative purposes to derive MSCs and ECFCs from the same tissue. Because cellular therapeutics should eventually find their way from bench to bedside we established a new method to isolate and further expand progenitor cells without the use of animal protein. Pooled human platelet lysate (pHPL) replaced fetal bovine serum in all steps of our protocol to completely avoid contact of the cells to xenogeneic proteins. This video demonstrates a methodology for the isolation and expansion of progenitor cells from one umbilical cord. All materials and procedures will be described.
Cellular Biology, Issue 32, Human adult progenitor cells, mesenchymal stromal cells (MSCs), endothelial colony forming progenitor cells (ECFCs), umbilical cord
1525
Play Button
Micro-drive Array for Chronic in vivo Recording: Drive Fabrication
Authors: Fabian Kloosterman, Thomas J. Davidson, Stephen N. Gomperts, Stuart P. Layton, Gregory Hale, David P. Nguyen, Matthew A. Wilson.
Institutions: MIT - Massachusetts Institute of Technology, MIT - Massachusetts Institute of Technology.
Chronic recording of large populations of neurons is a valuable technique for studying the function of neuronal circuits in awake behaving rats. Lightweight recording devices carrying a high density array of tetrodes allow for the simultaneous monitoring of the activity of tens to hundreds of individual neurons. Here we describe a protocol for the fabrication of a micro-drive array with twenty one independently movable micro-drives. This device has been used successfully to record from hippocampal and cortical neurons in our lab. We show how to prepare a custom designed, 3-D printed plastic base that will hold the micro-drives. We demonstrate how to construct the individual micro-drives and how to assemble the complete micro-drive array. Further preparation of the drive array for surgical implantation, such as the fabrication of tetrodes, loading of tetrodes into the drive array and gold-plating, is covered in a subsequent video article.
Neuroscience, Issue 26, fabrication, micro-drive array, tetrode, electrophysiology, multiple neuronal recordings, in vivo recording, systems neuroscience, hippocampus, cortex, rat brain
1094
Play Button
Plasma Lithography Surface Patterning for Creation of Cell Networks
Authors: Michael Junkin, Siu Ling Leung, Yongliang Yang, Yi Lu, Justin Volmering, Pak Kin Wong.
Institutions: University of Arizona , University of Arizona .
Systematic manipulation of a cell microenvironment with micro- and nanoscale resolution is often required for deciphering various cellular and molecular phenomena. To address this requirement, we have developed a plasma lithography technique to manipulate the cellular microenvironment by creating a patterned surface with feature sizes ranging from 100 nm to millimeters. The goal of this technique is to be able to study, in a controlled way, the behaviors of individual cells as well as groups of cells and their interactions. This plasma lithography method is based on selective modification of the surface chemistry on a substrate by means of shielding the contact of low-temperature plasma with a physical mold. This selective shielding leaves a chemical pattern which can guide cell attachment and movement. This pattern, or surface template, can then be used to create networks of cells whose structure can mimic that found in nature and produces a controllable environment for experimental investigations. The technique is well suited to studying biological phenomenon as it produces stable surface patterns on transparent polymeric substrates in a biocompatible manner. The surface patterns last for weeks to months and can thus guide interaction with cells for long time periods which facilitates the study of long-term cellular processes, such as differentiation and adaption. The modification to the surface is primarily chemical in nature and thus does not introduce topographical or physical interference for interpretation of results. It also does not involve any harsh or toxic substances to achieve patterning and is compatible for tissue culture. Furthermore, it can be applied to modify various types of polymeric substrates, which due to the ability to tune their properties are ideal for and are widely used in biological applications. The resolution achievable is also beneficial, as isolation of specific processes such as migration, adhesion, or binding allows for discrete, clear observations at the single to multicell level. This method has been employed to form diverse networks of different cell types for investigations involving migration, signaling, tissue formation, and the behavior and interactions of neurons arraigned in a network.
Bioengineering, Issue 52, Cell Network, Surface Patterning, Self-Organization, Developmental Biology, Tissue Engineering, Nanopattern, Micropattern, Self-Assembly, Cell Guidance, Neuron
3115
Play Button
Vascular Occlusion Training for Inclusion Body Myositis: A Novel Therapeutic Approach
Authors: Bruno Gualano, Carlos Ugrinowitsch, Manoel Neves Jr., Fernanda R. Lima, Ana Lúcia S. Pinto, Gilberto Laurentino, Valmor A.A. Tricoli, Antonio H. Lancha Jr., Hamilton Roschel.
Institutions: University of São Paulo, University of São Paulo.
Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy. It is known to produces remarkable muscle weakness and to greatly compromise function and quality of life. Moreover, clinical practice suggests that, unlike other inflammatory myopathies, the majority of IBM patients are not responsive to treatment with immunosuppressive or immunomodulatory drugs to counteract disease progression1. Additionally, conventional resistance training programs have been proven ineffective in restoring muscle function and muscle mass in these patients2,3. Nevertheless, we have recently observed that restricting muscle blood flow using tourniquet cuffs in association with moderate intensity resistance training in an IBM patient produced a significant gain in muscle mass and function, along with substantial benefits in quality of life4. Thus, a new non-pharmacological approach for IBM patients has been proposed. Herein, we describe the details of a proposed protocol for vascular occlusion associated with a resistance training program for this population.
Medicine, Issue 40, exercise training, therapeutical, myositis, vascular occlusion
1894
Play Button
Treatment of Osteochondral Defects in the Rabbit's Knee Joint by Implantation of Allogeneic Mesenchymal Stem Cells in Fibrin Clots
Authors: Markus T. Berninger, Gabriele Wexel, Ernst J. Rummeny, Andreas B. Imhoff, Martina Anton, Tobias D. Henning, Stephan Vogt.
Institutions: Klinikum rechts der Isar der Technischen Universität München, Klinikum rechts der Isar der Technischen Universität München, Klinikum rechts der Isar der Technischen Universität München, Uniklinik Köln.
The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface 1. Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential 2. In the last decades, several surgical treatment options have emerged and have already been clinically established 3-6. Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface 3,7,8. Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects. New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation 9,10. However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral bone 11. The sandwich-technique combines bone grafting with current approaches in Tissue Engineering 5,6. This combination seems to be able to overcome the limitations seen in osteochondral grafts alone. After autologous bone grafting to the subchondral defect area, a membrane seeded with autologous chondrocytes is sutured above and facilitates to match the topology of the graft with the injured site. Of course, the previous bone reconstruction needs additional surgical time and often even an additional surgery. Moreover, to date, long-term data is missing 12. Tissue Engineering without additional bone grafting aims to restore the complex structure and properties of native articular cartilage by chondrogenic and osteogenic potential of the transplanted cells. However, again, it is usually only the cartilage tissue that is more or less regenerated. Additional osteochondral damage needs a specific further treatment. In order to achieve a regeneration of the multilayered structure of osteochondral defects, three-dimensional tissue engineered products seeded with autologous/allogeneic cells might provide a good regeneration capacity 11. Beside autologous chondrocytes, mesenchymal stem cells (MSC) seem to be an attractive alternative for the development of a full-thickness cartilage tissue. In numerous preclinical in vitro and in vivo studies, mesenchymal stem cells have displayed excellent tissue regeneration potential 13,14. The important advantage of mesenchymal stem cells especially for the treatment of osteochondral defects is that they have the capacity to differentiate in osteocytes as well as chondrocytes. Therefore, they potentially allow a multilayered regeneration of the defect. In recent years, several scaffolds with osteochondral regenerative potential have therefore been developed and evaluated with promising preliminary results 1,15-18. Furthermore, fibrin glue as a cell carrier became one of the preferred techniques in experimental cartilage repair and has already successfully been used in several animal studies 19-21 and even first human trials 22. The following protocol will demonstrate an experimental technique for isolating mesenchymal stem cells from a rabbit's bone marrow, for subsequent proliferation in cell culture and for preparing a standardized in vitro-model for fibrin-cell-clots. Finally, a technique for the implantation of pre-established fibrin-cell-clots into artificial osteochondral defects of the rabbit's knee joint will be described.
Biomedical Engineering, Issue 75, Medicine, Anatomy, Physiology, Cellular Biology, Molecular Biology, Stem Cell Biology, Tissue Engineering, Surgery, Mesenchymal stem cells, fibrin clot, cartilage, osteochondral defect, rabbit, experimental, subchondral bone, knee injury, bone grafting, regenerative therapy, chondrocytes, cell culture, isolation, transplantation, animal model
4423
Play Button
Induction and Analysis of Epithelial to Mesenchymal Transition
Authors: Yixin Tang, Greg Herr, Wade Johnson, Ernesto Resnik, Joy Aho.
Institutions: R&D Systems, Inc., R&D Systems, Inc..
Epithelial to mesenchymal transition (EMT) is essential for proper morphogenesis during development. Misregulation of this process has been implicated as a key event in fibrosis and the progression of carcinomas to a metastatic state. Understanding the processes that underlie EMT is imperative for the early diagnosis and clinical control of these disease states. Reliable induction of EMT in vitro is a useful tool for drug discovery as well as to identify common gene expression signatures for diagnostic purposes. Here we demonstrate a straightforward method for the induction of EMT in a variety of cell types. Methods for the analysis of cells pre- and post-EMT induction by immunocytochemistry are also included. Additionally, we demonstrate the effectiveness of this method through antibody-based array analysis and migration/invasion assays.
Molecular Biology, Issue 78, Cellular Biology, Biochemistry, Biomedical Engineering, Stem Cell Biology, Cancer Biology, Medicine, Bioengineering, Anatomy, Physiology, biology (general), Pathological Conditions, Signs and Symptoms, Wounds and Injuries, Neoplasms, Diagnosis, Therapeutics, Epithelial to mesenchymal transition, EMT, cancer, metastasis, cancer stem cell, cell, assay, immunohistochemistry
50478
Play Button
In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors
Authors: Chiara Greggio, Filippo De Franceschi, Manuel Figueiredo-Larsen, Anne Grapin-Botton.
Institutions: Swiss Institute for Experimental Cancer Research, University of Copenhagen.
The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells 1. The whole embryonic organ can be cultured at multiple stages of development 2-4. These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens. We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.
Developmental Biology, Issue 89, Pancreas, Progenitors, Branching Epithelium, Development, Organ Culture, 3D Culture, Diabetes, Differentiation, Morphogenesis, Cell organization, Beta Cell.
51725
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Cell Surface Marker Mediated Purification of iPS Cell Intermediates from a Reprogrammable Mouse Model
Authors: Christian M. Nefzger, Sara Alaei, Anja S. Knaupp, Melissa L. Holmes, Jose M. Polo.
Institutions: Monash University, Monash University.
Mature cells can be reprogrammed to a pluripotent state. These so called induced pluripotent stem (iPS) cells are able to give rise to all cell types of the body and consequently have vast potential for regenerative medicine applications. Traditionally iPS cells are generated by viral introduction of transcription factors Oct-4, Klf-4, Sox-2, and c-Myc (OKSM) into fibroblasts. However, reprogramming is an inefficient process with only 0.1-1% of cells reverting towards a pluripotent state, making it difficult to study the reprogramming mechanism. A proven methodology that has allowed the study of the reprogramming process is to separate the rare intermediates of the reaction from the refractory bulk population. In the case of mouse embryonic fibroblasts (MEFs), we and others have previously shown that reprogramming cells undergo a distinct series of changes in the expression profile of cell surface markers which can be used for the separation of these cells. During the early stages of OKSM expression successfully reprogramming cells lose fibroblast identity marker Thy-1.2 and up-regulate pluripotency associated marker Ssea-1. The final transition of a subset of Ssea-1 positive cells towards the pluripotent state is marked by the expression of Epcam during the late stages of reprogramming. Here we provide a detailed description of the methodology used to isolate reprogramming intermediates from cultures of reprogramming MEFs. In order to increase experimental reproducibility we use a reprogrammable mouse strain that has been engineered to express a transcriptional transactivator (m2rtTA) under control of the Rosa26 locus and OKSM under control of a doxycycline responsive promoter. Cells isolated from these mice are isogenic and express OKSM homogenously upon addition of doxycycline. We describe in detail the establishment of the reprogrammable mice, the derivation of MEFs, and the subsequent isolation of intermediates during reprogramming into iPS cells via fluorescent activated cells sorting (FACS).
Stem Cell Biology, Issue 91, Induced pluripotent stem cells; reprogramming; intermediates; fluorescent activated cells sorting; cell surface marker; reprogrammable mouse model; derivation of mouse embryonic fibroblasts
51728
Play Button
Engineering a Bilayered Hydrogel to Control ASC Differentiation
Authors: Shanmugasundaram Natesan, David O. Zamora, Laura J. Suggs, Robert J. Christy.
Institutions: United States Army Institute of Surgical Research, The University of Texas at Austin.
Natural polymers over the years have gained more importance because of their host biocompatibility and ability to interact with cells in vitro and in vivo. An area of research that holds promise in regenerative medicine is the combinatorial use of novel biomaterials and stem cells. A fundamental strategy in the field of tissue engineering is the use of three-dimensional scaffold (e.g., decellularized extracellular matrix, hydrogels, micro/nano particles) for directing cell function. This technology has evolved from the discovery that cells need a substrate upon which they can adhere, proliferate, and express their differentiated cellular phenotype and function 2-3. More recently, it has also been determined that cells not only use these substrates for adherence, but also interact and take cues from the matrix substrate (e.g., extracellular matrix, ECM)4. Therefore, the cells and scaffolds have a reciprocal connection that serves to control tissue development, organization, and ultimate function. Adipose-derived stem cells (ASCs) are mesenchymal, non-hematopoetic stem cells present in adipose tissue that can exhibit multi-lineage differentiation and serve as a readily available source of cells (i.e. pre-vascular endothelia and pericytes). Our hypothesis is that adipose-derived stem cells can be directed toward differing phenotypes simultaneously by simply co-culturing them in bilayered matrices1. Our laboratory is focused on dermal wound healing. To this end, we created a single composite matrix from the natural biomaterials, fibrin, collagen, and chitosan that can mimic the characteristics and functions of a dermal-specific wound healing ECM environment.
Bioengineering, Issue 63, Biomedical Engineering, Tissue Engineering, chitosan, microspheres, collagen, hydrogel, PEG fibrin, cell delivery, adipose-derived stem cells, ASC, CSM
3953
Play Button
Bioengineering Human Microvascular Networks in Immunodeficient Mice
Authors: Ruei-Zeng Lin, Juan M. Melero-Martin.
Institutions: Harvard Medical School.
The future of tissue engineering and cell-based therapies for tissue regeneration will likely rely on our ability to generate functional vascular networks in vivo. In this regard, the search for experimental models to build blood vessel networks in vivo is of utmost importance 1. The feasibility of bioengineering microvascular networks in vivo was first shown using human tissue-derived mature endothelial cells (ECs) 2-4; however, such autologous endothelial cells present problems for wide clinical use, because they are difficult to obtain in sufficient quantities and require harvesting from existing vasculature. These limitations have instigated the search for other sources of ECs. The identification of endothelial colony-forming cells (ECFCs) in blood presented an opportunity to non-invasively obtain ECs 5-7. We and other authors have shown that adult and cord blood-derived ECFCs have the capacity to form functional vascular networks in vivo 7-11. Importantly, these studies have also shown that to obtain stable and durable vascular networks, ECFCs require co-implantation with perivascular cells. The assay we describe here illustrates this concept: we show how human cord blood-derived ECFCs can be combined with bone marrow-derived mesenchymal stem cells (MSCs) as a single cell suspension in a collagen/fibronectin/fibrinogen gel to form a functional human vascular network within 7 days after implantation into an immunodeficient mouse. The presence of human ECFC-lined lumens containing host erythrocytes can be seen throughout the implants indicating not only the formation (de novo) of a vascular network, but also the development of functional anastomoses with the host circulatory system. This murine model of bioengineered human vascular network is ideally suited for studies on the cellular and molecular mechanisms of human vascular network formation and for the development of strategies to vascularize engineered tissues.
Bioengineering, Issue 53, vascular network, blood vessel, vasculogenesis, angiogenesis, endothelial progenitor cells, endothelial colony-forming cells, mesenchymal stem cells, collagen gel, fibrin gel, tissue engineering, regenerative medicine
3065
Play Button
Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
Authors: Razieh Karamzadeh, Mohamadreza Baghaban Eslaminejad, Reza Aflatoonian.
Institutions: Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
Developing wisdom teeth are easy-accessible source of stem cells during the adulthood which could be obtained by routine orthodontic treatments. Human pulp-derived stem cells (hDPSCs) possess high proliferation potential with multi-lineage differentiation capacity compare to the ordinary source of adult stem cells1-8; therefore, hDPSCs could be the good candidates for autologous transplantation in tissue engineering and regenerative medicine. Along with these benefits, possessing the mesenchymal stem cells (MSC) features, such as immunolodulatory effect, make hDPSCs more valuable, even in the case of allograft transplantation6,9,10. Therefore, the primary step for using this source of stem cells is to select the best protocol for isolating hDPSCs from pulp tissue. In order to achieve this goal, it is crucial to investigate the effect of various isolation conditions on different cellular behaviors, such as their common surface markers & also their differentiation capacity. Thus, here we separate human pulp tissue from impacted third molar teeth, and then used both existing protocols based on literature, for isolating hDPSCs,11-13 i.e. enzymatic dissociation of pulp tissue (DPSC-ED) or outgrowth from tissue explants (DPSC-OG). In this regards, we tried to facilitate the isolation methods by using dental diamond disk. Then, these cells characterized in terms of stromal-associated Markers (CD73, CD90, CD105 & CD44), hematopoietic/endothelial Markers (CD34, CD45 & CD11b), perivascular marker, like CD146 and also STRO-1. Afterwards, these two protocols were compared based on the differentiation potency into odontoblasts by both quantitative polymerase chain reaction (QPCR) & Alizarin Red Staining. QPCR were used for the assessment of the expression of the mineralization-related genes (alkaline phosphatase; ALP, matrix extracellular phosphoglycoprotein; MEPE & dentin sialophosphoprotein; DSPP).14
Stem Cell Biology, Issue 69, Medicine, Developmental Biology, Cellular Biology, Bioengineering, Dental pulp tissue, Human third molar, Human dental pulp stem cells, hDPSC, Odontoblasts, Outgrown stem cells, MSC, differentiation
4372
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
50585
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
51673
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Super-resolution Imaging of the Cytokinetic Z Ring in Live Bacteria Using Fast 3D-Structured Illumination Microscopy (f3D-SIM)
Authors: Lynne Turnbull, Michael P. Strauss, Andrew T. F. Liew, Leigh G. Monahan, Cynthia B. Whitchurch, Elizabeth J. Harry.
Institutions: University of Technology, Sydney.
Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques – stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide.
Molecular Biology, Issue 91, super-resolution microscopy, fluorescence microscopy, OMX, 3D-SIM, Blaze, cell division, bacteria, Bacillus subtilis, Staphylococcus aureus, FtsZ, Z ring constriction
51469
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
2051
Play Button
Isolation & Characterization of Hoechstlow CD45negative Mouse Lung Mesenchymal Stem Cells
Authors: Kelsey S. Chow, DuHyun Jun, Karen M. Helm, David H. Wagner, Susan M. Majka.
Institutions: University of Colorado Denver, University of Colorado Denver, University of Colorado Denver, University of Colorado Denver.
Tissue resident mesenchymal stem cells (MSC) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Taken together these studies suggest that resident lung MSC play a role during pulmonary tissue homeostasis, injury and repair during diseases such as pulmonary fibrosis (PF) and arterial hypertension (PAH). Here we describe a technology to define a population of resident lung MSC. The definition of this population in vivo pulmonary tissue using a define set of markers facilitates the repeated isolation of a well-characterized stem cell population by flow cytometry and the study of a specific cell type and function.
Developmental Biology, Issue 56, mesenchymal stem cell, MSC, lung stem cell, resident lung mesenchymal stem cells, stem cells
3159
Play Button
Isolation and Enrichment of Rat Mesenchymal Stem Cells (MSCs) and Separation of Single-colony Derived MSCs
Authors: Linxia Zhang, Christina Chan.
Institutions: City of Hope Cancer Center.
MSCs are a population of adult stem cells that is a promising source for therapeutic applications. These cells can be isolated from the bone marrow and can be easily separated from the hematopoietic stem cells (HSCs) due to their plastic adherence. This protocol describes how to isolate MSCs from rat femurs and tibias. The isolated cells were further enriched against two MSCs surface markers CD54 and CD90 by magnetic cell sorting. Expression of surface markers CD54 and CD90 were then confirmed by flow cytometry analysis. HSC marker CD45 was also included to check if the sorted MSCs were depleted of HSCs. MSCs are naturally quite heterogeneous. There are subpopulations of cells that have different shapes, proliferation and differentiation abilities. These subpopulations all express the known MSCs markers and no unique marker has yet been identified for the different subpopulations. Therefore, an alternative approach to separate out the different subpopulations is using cloning cylinders to separate out single-colony derived cells. The cells derived from the single-colonies can then be cultured and evaluated separately.
Cellular Biology, Issue 37, mesenchymal stem cells, magnetic cell sorting, flow cytometry, cloning cylinder
1852
Play Button
Reaggregate Thymus Cultures
Authors: Andrea White, Eric Jenkinson, Graham Anderson.
Institutions: University of Birmingham .
Stromal cells within lymphoid tissues are organized into three-dimensional structures that provide a scaffold that is thought to control the migration and development of haemopoeitic cells. Importantly, the maintenance of this three-dimensional organization appears to be critical for normal stromal cell function, with two-dimensional monolayer cultures often being shown to be capable of supporting only individual fragments of lymphoid tissue function. In the thymus, complex networks of cortical and medullary epithelial cells act as a framework that controls the recruitment, proliferation, differentiation and survival of lymphoid progenitors as they undergo the multi-stage process of intrathymic T-cell development. Understanding the functional role of individual stromal compartments in the thymus is essential in determining how the thymus imposes self/non-self discrimination. Here we describe a technique in which we exploit the plasticity of fetal tissues to re-associate into intact three-dimensional structures in vitro, following their enzymatic disaggregation. The dissociation of fetal thymus lobes into heterogeneous cellular mixtures, followed by their separation into individual cellular components, is then combined with the in vitro re-association of these desired cell types into three-dimensional reaggregate structures at defined ratios, thereby providing an opportunity to investigate particular aspects of T-cell development under defined cellular conditions. (This article is based on work first reported Methods in Molecular Biology 2007, Vol. 380 pages 185-196).
Immunology, Issue 18, Springer Protocols, Thymus, 2-dGuo, Thymus Organ Cultures, Immune Tolerance, Positive and Negative Selection, Lymphoid Development
905
Play Button
Interview: Bioreactors and Surfaced-Modified 3D-Scaffolds for Stem Cell Research
Authors: Karl-Friedrich Weibezahn.
Institutions: Karlsruhe Institute of Technology.
A Nature Editorial in 2003 asked the question "Good-bye, flat biology?" What does this question imply? In the past, many in vitro culture systems, mainly monolayer cultures, often suffered from the disadvantage that differentiated primary cells had a relatively short life-span and de-differentiated during culture. As a consequence, most of their organ-specific functions were lost rapidly. Thus, in order to reproduce better conditions for these cells in vitro, modifications and adaptations have been made to conventional monolayer cultures. The last generation of CellChips -- micro-thermoformed containers -- a specific technology was developed, which offers the additional possibility to modify the whole surface of the 3D formed containers. This allows a surface-patterning on a submicron scale with distinct signalling molecules. Sensors and signal electrodes may be incorporated. Applications range from basic research in cell biology to toxicology and pharmacology. Using biodegradable polymers, clinical applications become a possibility. Furthermore, the last generation of micro-thermoformed chips has been optimized to allow for cheap mass production.
Cellular Biology, Issue 15, Interview, bioreactors, cell culture systems, 3D cell culture, stem cells
792
Play Button
Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling
Authors: John Marshall, Koji Morikawa, Nicholas Manoukis, Charles Taylor.
Institutions: University of California, Los Angeles.
Charles Taylor and John Marshall explain the utility of mathematical modeling for evaluating the effectiveness of population replacement strategy. Insight is given into how computational models can provide information on the population dynamics of mosquitoes and the spread of transposable elements through A. gambiae subspecies. The ethical considerations of releasing genetically modified mosquitoes into the wild are discussed.
Cellular Biology, Issue 5, mosquito, malaria, popuulation, replacement, modeling, infectious disease
227
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.