JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Distribution of hyperpolarized xenon in the brain following sensory stimulation: preliminary MRI findings.
PUBLISHED: 01-06-2011
In hyperpolarized xenon magnetic resonance imaging (HP (129)Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP (129)Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP (129)Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animals forepaw. Areas of higher HP (129)Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. The percent increase in HP (129)Xe signal over baseline was 13-28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized (129)Xe should make feasible the emergence of HP (129)Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease.
Authors: Christopher Witte, Martin Kunth, Jörg Döpfert, Federica Rossella, Leif Schröder.
Published: 09-06-2012
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode.
21 Related JoVE Articles!
Play Button
Combining Transcranial Magnetic Stimulation and fMRI to Examine the Default Mode Network
Authors: Mark A. Halko, Mark C. Eldaief, Jared C. Horvath, Alvaro Pascual-Leone.
Institutions: Beth Israel Deaconess Medical Center.
The default mode network is a group of brain regions that are active when an individual is not focused on the outside world and the brain is at "wakeful rest."1,2,3 It is thought the default mode network corresponds to self-referential or "internal mentation".2,3 It has been hypothesized that, in humans, activity within the default mode network is correlated with certain pathologies (for instance, hyper-activation has been linked to schizophrenia 4,5,6 and autism spectrum disorders 7 whilst hypo-activation of the network has been linked to Alzheimer's and other neurodegenerative diseases 8). As such, noninvasive modulation of this network may represent a potential therapeutic intervention for a number of neurological and psychiatric pathologies linked to abnormal network activation. One possible tool to effect this modulation is Transcranial Magnetic Stimulation: a non-invasive neurostimulatory and neuromodulatory technique that can transiently or lastingly modulate cortical excitability (either increasing or decreasing it) via the application of localized magnetic field pulses.9 In order to explore the default mode network's propensity towards and tolerance of modulation, we will be combining TMS (to the left inferior parietal lobe) with functional magnetic resonance imaging (fMRI). Through this article, we will examine the protocol and considerations necessary to successfully combine these two neuroscientific tools.
Neuroscience, Issue 46, Transcranial Magnetic Stimulation, rTMS, fMRI, Default Mode Network, functional connectivity, resting state
Play Button
In vitro Labeling of Human Embryonic Stem Cells for Magnetic Resonance Imaging
Authors: Mayumi Yamada, Phillip Yang.
Institutions: Stanford University .
Human embryonic stem cells (hESC) have demonstrated the ability to restore the injured myocardium. Magnetic resonance imaging (MRI) has emerged as one of the predominant imaging modalities to assess the restoration of the injured myocardium. Furthermore, ex-vivo labeling agents, such as iron-oxide nanoparticles, have been employed to track and localize the transplanted stem cells. However, this method does not monitor a fundamental cellular biology property regarding the viability of transplanted cells. It has been known that manganese chloride (MnCl2) enters the cells via voltage-gated calcium (Ca2+) channels when the cells are biologically active, and accumulates intracellularly to generate T1 shortening effect. Therefore, we suggest that manganese-guided MRI can be useful to monitor cell viability after the transplantation of hESC into the myocardium. In this video, we will show how to label hESC with MnCl2 and how those cells can be clearly seen by using MRI in vitro. At the same time, biological activity of Ca2+-channels will be modulated utilizing both Ca2+-channel agonist and antagonist to evaluate concomitant signal changes.
Cell Biology, Issue 18, cellular MRI, manganese, human embryonic stem cells, cell labeling, cardiology
Play Button
Noninvasive In Vivo Small Animal MRI and MRS: Basic Experimental Procedures
Authors: Donghoon Lee, David Marcinek.
Institutions: University of Washington, University of Washington.
Small animal Magnetic Resonance (MR) research has emerged as an important element of modern biomedical research due to its non-invasive nature and the richness of biological information it provides. MR does not require any ionizing radiation and can noninvasively provide higher resolution and better signal-to-noise ratio in comparison to other tomographic or spectroscopic modalities. In this protocol, we will focus on small animal MR imaging and MR spectroscopy (MRI/MRS) to noninvasively acquire relaxation weighted 1H images of mouse and to obtain 31P spectra of mouse muscle. This work does not attempt to cover every aspect of small animal MRI/MRS but rather introduces basic procedures of mouse MRI/MRS experiments. The main goal of this work is to inform researchers of the basic procedures for in vivo MR experiments on small animals. The goal is to provide a better understanding of basic experimental procedures to allow researchers new to the MR field to better plan for non-MR components of their studies so that both MR and non-MR procedures are seamlessly integrated.
Medicine, Issue 32, Small animal, MRI, MRS, mouse, brain, skeletal muscle, tumor, ischemia
Play Button
Investigating the Neural Mechanisms of Aware and Unaware Fear Memory with fMRI
Authors: David C. Knight, Kimberly H. Wood.
Institutions: University of Alabama at Birmingham.
Pavlovian fear conditioning is often used in combination with functional magnetic resonance imaging (fMRI) in humans to investigate the neural substrates of associative learning 1-5. In these studies, it is important to provide behavioral evidence of conditioning to verify that differences in brain activity are learning-related and correlated with human behavior. Fear conditioning studies often monitor autonomic responses (e.g. skin conductance response; SCR) as an index of learning and memory 6-8. In addition, other behavioral measures can provide valuable information about the learning process and/or other cognitive functions that influence conditioning. For example, the impact unconditioned stimulus (UCS) expectancies have on the expression of the conditioned response (CR) and unconditioned response (UCR) has been a topic of interest in several recent studies 9-14. SCR and UCS expectancy measures have recently been used in conjunction with fMRI to investigate the neural substrates of aware and unaware fear learning and memory processes 15. Although these cognitive processes can be evaluated to some degree following the conditioning session, post-conditioning assessments cannot measure expectations on a trial-to-trial basis and are susceptible to interference and forgetting, as well as other factors that may distort results 16,17 . Monitoring autonomic and behavioral responses simultaneously with fMRI provides a mechanism by which the neural substrates that mediate complex relationships between cognitive processes and behavioral/autonomic responses can be assessed. However, monitoring autonomic and behavioral responses in the MRI environment poses a number of practical problems. Specifically, 1) standard behavioral and physiological monitoring equipment is constructed of ferrous material that cannot be safely used near the MRI scanner, 2) when this equipment is placed outside of the MRI scanning chamber, the cables projecting to the subject can carry RF noise that produces artifacts in brain images, 3) artifacts can be produced within the skin conductance signal by switching gradients during scanning, 4) the fMRI signal produced by the motor demands of behavioral responses may need to be distinguished from activity related to the cognitive processes of interest. Each of these issues can be resolved with modifications to the setup of physiological monitoring equipment and additional data analysis procedures. Here we present a methodology to simultaneously monitor autonomic and behavioral responses during fMRI, and demonstrate the use of these methods to investigate aware and unaware memory processes during fear conditioning.
Neuroscience, Issue 56, fMRI, conditioning, learning, memory, fear, contingency awareness, neuroscience, skin conductance
Play Button
Functional Magnetic Resonance Imaging (fMRI) with Auditory Stimulation in Songbirds
Authors: Lisbeth Van Ruijssevelt, Geert De Groof, Anne Van der Kant, Colline Poirier, Johan Van Audekerke, Marleen Verhoye, Annemie Van der Linden.
Institutions: University of Antwerp.
The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds 1-5 (for a review, see 6). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI 7,8 . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Medicine, Biophysics, Physiology, Anatomy, Functional MRI, fMRI, Magnetic Resonance Imaging, MRI, blood oxygenation level dependent fMRI, BOLD fMRI, Brain, Songbird, zebra finches, Taeniopygia guttata, Auditory Stimulation, stimuli, animal model, imaging
Play Button
Functional Neuroimaging Using Ultrasonic Blood-brain Barrier Disruption and Manganese-enhanced MRI
Authors: Gabriel P. Howles, Yi Qi, Stephen J. Rosenzweig, Kathryn R. Nightingale, G. Allan Johnson.
Institutions: Stanford University , Duke University Medical Center, Duke University .
Although mice are the dominant model system for studying the genetic and molecular underpinnings of neuroscience, functional neuroimaging in mice remains technically challenging. One approach, Activation-Induced Manganese-enhanced MRI (AIM MRI), has been used successfully to map neuronal activity in rodents 1-5. In AIM MRI, Mn2+ acts a calcium analog and accumulates in depolarized neurons 6,7. Because Mn2+ shortens the T1 tissue property, regions of elevated neuronal activity will enhance in MRI. Furthermore, Mn2+ clears slowly from the activated regions; therefore, stimulation can be performed outside the magnet prior to imaging, enabling greater experimental flexibility. However, because Mn2+ does not readily cross the blood-brain barrier (BBB), the need to open the BBB has limited the use of AIM MRI, especially in mice. One tool for opening the BBB is ultrasound. Though potentially damaging, if ultrasound is administered in combination with gas-filled microbubbles (i.e., ultrasound contrast agents), the acoustic pressure required for BBB opening is considerably lower. This combination of ultrasound and microbubbles can be used to reliably open the BBB without causing tissue damage 8-11. Here, a method is presented for performing AIM MRI by using microbubbles and ultrasound to open the BBB. After an intravenous injection of perflutren microbubbles, an unfocused pulsed ultrasound beam is applied to the shaved mouse head for 3 minutes. For simplicity, we refer to this technique of BBB Opening with Microbubbles and UltraSound as BOMUS 12. Using BOMUS to open the BBB throughout both cerebral hemispheres, manganese is administered to the whole mouse brain. After experimental stimulation of the lightly sedated mice, AIM MRI is used to map the neuronal response. To demonstrate this approach, herein BOMUS and AIM MRI are used to map unilateral mechanical stimulation of the vibrissae in lightly sedated mice 13. Because BOMUS can open the BBB throughout both hemispheres, the unstimulated side of the brain is used to control for nonspecific background stimulation. The resultant 3D activation map agrees well with published representations of the vibrissae regions of the barrel field cortex 14. The ultrasonic opening of the BBB is fast, noninvasive, and reversible; and thus this approach is suitable for high-throughput and/or longitudinal studies in awake mice.
Neuroscience, Issue 65, Molecular Biology, Biomedical Engineering, mouse, ultrasound, blood-brain barrier, functional MRI, fMRI, manganese-enhanced MRI, MEMRI
Play Button
Transcranial Direct Current Stimulation and Simultaneous Functional Magnetic Resonance Imaging
Authors: Marcus Meinzer, Robert Lindenberg, Robert Darkow, Lena Ulm, David Copland, Agnes Flöel.
Institutions: University of Queensland, Charité Universitätsmedizin.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses weak electrical currents administered to the scalp to manipulate cortical excitability and, consequently, behavior and brain function. In the last decade, numerous studies have addressed short-term and long-term effects of tDCS on different measures of behavioral performance during motor and cognitive tasks, both in healthy individuals and in a number of different patient populations. So far, however, little is known about the neural underpinnings of tDCS-action in humans with regard to large-scale brain networks. This issue can be addressed by combining tDCS with functional brain imaging techniques like functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). In particular, fMRI is the most widely used brain imaging technique to investigate the neural mechanisms underlying cognition and motor functions. Application of tDCS during fMRI allows analysis of the neural mechanisms underlying behavioral tDCS effects with high spatial resolution across the entire brain. Recent studies using this technique identified stimulation induced changes in task-related functional brain activity at the stimulation site and also in more distant brain regions, which were associated with behavioral improvement. In addition, tDCS administered during resting-state fMRI allowed identification of widespread changes in whole brain functional connectivity. Future studies using this combined protocol should yield new insights into the mechanisms of tDCS action in health and disease and new options for more targeted application of tDCS in research and clinical settings. The present manuscript describes this novel technique in a step-by-step fashion, with a focus on technical aspects of tDCS administered during fMRI.
Behavior, Issue 86, noninvasive brain stimulation, transcranial direct current stimulation (tDCS), anodal stimulation (atDCS), cathodal stimulation (ctDCS), neuromodulation, task-related fMRI, resting-state fMRI, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), inferior frontal gyrus (IFG)
Play Button
Flash Photolysis of Caged Compounds in the Cilia of Olfactory Sensory Neurons
Authors: Anna Boccaccio, Claudia Sagheddu, Anna Menini.
Institutions: International School for Advanced Studies, Consiglio Nazionale delle Ricerche, Italian Institute of Technology.
Photolysis of caged compounds allows the production of rapid and localized increases in the concentration of various physiologically active compounds1. Caged compounds are molecules made physiologically inactive by a chemical cage that can be broken by a flash of ultraviolet light. Here, we show how to obtain patch-clamp recordings combined with photolysis of caged compounds for the study of olfactory transduction in dissociated mouse olfactory sensory neurons. The process of olfactory transduction (Figure 1) takes place in the cilia of olfactory sensory neurons, where odorant binding to receptors leads to the increase of cAMP that opens cyclic nucleotide-gated (CNG) channels2. Ca entry through CNG channels activates Ca-activated Cl channels. We show how to dissociate neurons from the mouse olfactory epithelium3 and how to activate CNG channels or Ca-activated Cl channels by photolysis of caged cAMP4 or caged Ca5. We use a flash lamp6,7 to apply ultraviolet flashes to the ciliary region to uncage cAMP or Ca while patch-clamp recordings are taken to measure the current in the whole-cell voltage-clamp configuration8-11.
Neuroscience, Issue 55, caged compounds, caged cAMP, caged Ca, olfactory sensory neuron, olfaction, whole-cell patch-clamp, flash photolysis, flash lampc
Play Button
Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
Authors: David A. Goss, Richard L. Hoffman, Brian C. Clark.
Institutions: Ohio University.
Transcranial magnetic stimulation (TMS) has been in use for more than 20 years 1, and has grown exponentially in popularity over the past decade. While the use of TMS has expanded to the study of many systems and processes during this time, the original application and perhaps one of the most common uses of TMS involves studying the physiology, plasticity and function of the human neuromuscular system. Single pulse TMS applied to the motor cortex excites pyramidal neurons transsynaptically 2 (Figure 1) and results in a measurable electromyographic response that can be used to study and evaluate the integrity and excitability of the corticospinal tract in humans 3. Additionally, recent advances in magnetic stimulation now allows for partitioning of cortical versus spinal excitability 4,5. For example, paired-pulse TMS can be used to assess intracortical facilitatory and inhibitory properties by combining a conditioning stimulus and a test stimulus at different interstimulus intervals 3,4,6-8. In this video article we will demonstrate the methodological and technical aspects of these techniques. Specifically, we will demonstrate single-pulse and paired-pulse TMS techniques as applied to the flexor carpi radialis (FCR) muscle as well as the erector spinae (ES) musculature. Our laboratory studies the FCR muscle as it is of interest to our research on the effects of wrist-hand cast immobilization on reduced muscle performance6,9, and we study the ES muscles due to these muscles clinical relevance as it relates to low back pain8. With this stated, we should note that TMS has been used to study many muscles of the hand, arm and legs, and should iterate that our demonstrations in the FCR and ES muscle groups are only selected examples of TMS being used to study the human neuromuscular system.
Medicine, Issue 59, neuroscience, muscle, electromyography, physiology, TMS, strength, motor control. sarcopenia, dynapenia, lumbar
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
A Dual Tracer PET-MRI Protocol for the Quantitative Measure of Regional Brain Energy Substrates Uptake in the Rat
Authors: Maggie Roy, Scott Nugent, Sébastien Tremblay, Maxime Descoteaux, Jean-François Beaudoin, Luc Tremblay, Roger Lecomte, Stephen C Cunnane.
Institutions: Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke.
We present a method for comparing the uptake of the brain's two key energy substrates: glucose and ketones (acetoacetate [AcAc] in this case) in the rat. The developed method is a small-animal positron emission tomography (PET) protocol, in which 11C-AcAc and 18F-fluorodeoxyglucose (18F-FDG) are injected sequentially in each animal. This dual tracer PET acquisition is possible because of the short half-life of 11C (20.4 min). The rats also undergo a magnetic resonance imaging (MRI) acquisition seven days before the PET protocol. Prior to image analysis, PET and MRI images are coregistered to allow the measurement of regional cerebral uptake (cortex, hippocampus, striatum, and cerebellum). A quantitative measure of 11C-AcAc and 18F-FDG brain uptake (cerebral metabolic rate; μmol/100 g/min) is determined by kinetic modeling using the image-derived input function (IDIF) method. Our new dual tracer PET protocol is robust and flexible; the two tracers used can be replaced by different radiotracers to evaluate other processes in the brain. Moreover, our protocol is applicable to the study of brain fuel supply in multiple conditions such as normal aging and neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases.
Neuroscience, Issue 82, positron emission tomography (PET), 18F-fluorodeoxyglucose, 11C-acetoacetate, magnetic resonance imaging (MRI), kinetic modeling, cerebral metabolic rate, rat
Play Button
Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI
Authors: Trecia A. Brown, Joseph S. Gati, Sarah M. Hughes, Pam L. Nixon, Ravi S. Menon, Stephen G. Lomber.
Institutions: University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario.
Current knowledge of sensory processing in the mammalian auditory system is mainly derived from electrophysiological studies in a variety of animal models, including monkeys, ferrets, bats, rodents, and cats. In order to draw suitable parallels between human and animal models of auditory function, it is important to establish a bridge between human functional imaging studies and animal electrophysiological studies. Functional magnetic resonance imaging (fMRI) is an established, minimally invasive method of measuring broad patterns of hemodynamic activity across different regions of the cerebral cortex. This technique is widely used to probe sensory function in the human brain, is a useful tool in linking studies of auditory processing in both humans and animals and has been successfully used to investigate auditory function in monkeys and rodents. The following protocol describes an experimental procedure for investigating auditory function in anesthetized adult cats by measuring stimulus-evoked hemodynamic changes in auditory cortex using fMRI. This method facilitates comparison of the hemodynamic responses across different models of auditory function thus leading to a better understanding of species-independent features of the mammalian auditory cortex.
Neuroscience, Issue 84, Central Nervous System, Ear, Animal Experimentation, Models, Animal, Functional Neuroimaging, Brain Mapping, Nervous System, Sense Organs, auditory cortex, BOLD signal change, hemodynamic response, hearing, acoustic stimuli
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Best Current Practice for Obtaining High Quality EEG Data During Simultaneous fMRI
Authors: Karen J. Mullinger, Pierluigi Castellone, Richard Bowtell.
Institutions: University of Nottingham , Brain Products GmbH.
Simultaneous EEG-fMRI allows the excellent temporal resolution of EEG to be combined with the high spatial accuracy of fMRI. The data from these two modalities can be combined in a number of ways, but all rely on the acquisition of high quality EEG and fMRI data. EEG data acquired during simultaneous fMRI are affected by several artifacts, including the gradient artefact (due to the changing magnetic field gradients required for fMRI), the pulse artefact (linked to the cardiac cycle) and movement artifacts (resulting from movements in the strong magnetic field of the scanner, and muscle activity). Post-processing methods for successfully correcting the gradient and pulse artifacts require a number of criteria to be satisfied during data acquisition. Minimizing head motion during EEG-fMRI is also imperative for limiting the generation of artifacts. Interactions between the radio frequency (RF) pulses required for MRI and the EEG hardware may occur and can cause heating. This is only a significant risk if safety guidelines are not satisfied. Hardware design and set-up, as well as careful selection of which MR sequences are run with the EEG hardware present must therefore be considered. The above issues highlight the importance of the choice of the experimental protocol employed when performing a simultaneous EEG-fMRI experiment. Based on previous research we describe an optimal experimental set-up. This provides high quality EEG data during simultaneous fMRI when using commercial EEG and fMRI systems, with safety risks to the subject minimized. We demonstrate this set-up in an EEG-fMRI experiment using a simple visual stimulus. However, much more complex stimuli can be used. Here we show the EEG-fMRI set-up using a Brain Products GmbH (Gilching, Germany) MRplus, 32 channel EEG system in conjunction with a Philips Achieva (Best, Netherlands) 3T MR scanner, although many of the techniques are transferable to other systems.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Biophysics, Medicine, Neuroimaging, Functional Neuroimaging, Investigative Techniques, neurosciences, EEG, functional magnetic resonance imaging, fMRI, magnetic resonance imaging, MRI, simultaneous, recording, imaging, clinical techniques
Play Button
Mapping the After-effects of Theta Burst Stimulation on the Human Auditory Cortex with Functional Imaging
Authors: Jamila Andoh, Robert J. Zatorre.
Institutions: McGill University .
Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing1. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function 2. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions 3. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated 4. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS 5-7. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex 8,9, premotor cortex 10, primary somatosensory cortex 11,12 and language-related areas 13, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task 2. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders.
Neuroscience, Issue 67, Physiology, Physics, Theta burst stimulation, functional magnetic resonance imaging, MRI, auditory cortex, frameless stereotaxy, sound, transcranial magnetic stimulation
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
Play Button
Simultaneous fMRI and Electrophysiology in the Rodent Brain
Authors: Wen-ju Pan, Garth Thompson, Matthew Magnuson, Waqas Majeed, Dieter Jaeger, Shella Keilholz.
Institutions: Emory University, Georgia Institute of Technology, Emory University.
To examine the neural basis of the blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) signal, we have developed a rodent model in which functional MRI data and in vivo intracortical recording can be performed simultaneously. The combination of MRI and electrical recording is technically challenging because the electrodes used for recording distort the MRI images and the MRI acquisition induces noise in the electrical recording. To minimize the mutual interference of the two modalities, glass microelectrodes were used rather than metal and a noise removal algorithm was implemented for the electrophysiology data. In our studies, two microelectrodes were separately implanted in bilateral primary somatosensory cortices (SI) of the rat and fixed in place. One coronal slice covering the electrode tips was selected for functional MRI. Electrode shafts and fixation positions were not included in the image slice to avoid imaging artifacts. The removed scalp was replaced with toothpaste to reduce susceptibility mismatch and prevent Gibbs ringing artifacts in the images. The artifact structure induced in the electrical recordings by the rapidly-switching magnetic fields during image acquisition was characterized by averaging all cycles of scans for each run. The noise structure during imaging was then subtracted from original recordings. The denoised time courses were then used for further analysis in combination with the fMRI data. As an example, the simultaneous acquisition was used to determine the relationship between spontaneous fMRI BOLD signals and band-limited intracortical electrical activity. Simultaneous fMRI and electrophysiological recording in the rodent will provide a platform for many exciting applications in neuroscience in addition to elucidating the relationship between the fMRI BOLD signal and neuronal activity.
Neuroscience, Issue 42, fMRI, electrophysiology, rat, BOLD, brain, resting state
Play Button
High-resolution Functional Magnetic Resonance Imaging Methods for Human Midbrain
Authors: Sucharit Katyal, Clint A. Greene, David Ress.
Institutions: The University of Texas at Austin.
Functional MRI (fMRI) is a widely used tool for non-invasively measuring correlates of human brain activity. However, its use has mostly been focused upon measuring activity on the surface of cerebral cortex rather than in subcortical regions such as midbrain and brainstem. Subcortical fMRI must overcome two challenges: spatial resolution and physiological noise. Here we describe an optimized set of techniques developed to perform high-resolution fMRI in human SC, a structure on the dorsal surface of the midbrain; the methods can also be used to image other brainstem and subcortical structures. High-resolution (1.2 mm voxels) fMRI of the SC requires a non-conventional approach. The desired spatial sampling is obtained using a multi-shot (interleaved) spiral acquisition1. Since, T2* of SC tissue is longer than in cortex, a correspondingly longer echo time (TE ~ 40 msec) is used to maximize functional contrast. To cover the full extent of the SC, 8-10 slices are obtained. For each session a structural anatomy with the same slice prescription as the fMRI is also obtained, which is used to align the functional data to a high-resolution reference volume. In a separate session, for each subject, we create a high-resolution (0.7 mm sampling) reference volume using a T1-weighted sequence that gives good tissue contrast. In the reference volume, the midbrain region is segmented using the ITK-SNAP software application2. This segmentation is used to create a 3D surface representation of the midbrain that is both smooth and accurate3. The surface vertices and normals are used to create a map of depth from the midbrain surface within the tissue4. Functional data is transformed into the coordinate system of the segmented reference volume. Depth associations of the voxels enable the averaging of fMRI time series data within specified depth ranges to improve signal quality. Data is rendered on the 3D surface for visualization. In our lab we use this technique for measuring topographic maps of visual stimulation and covert and overt visual attention within the SC1. As an example, we demonstrate the topographic representation of polar angle to visual stimulation in SC.
Neuroscience, Issue 63, fMRI, midbrain, brainstem, colliculus, BOLD, brain, Magentic Resonance Imaging, MRI
Play Button
Functional Mapping with Simultaneous MEG and EEG
Authors: Hesheng Liu, Naoaki Tanaka, Steven Stufflebeam, Seppo Ahlfors, Matti Hämäläinen.
Institutions: MGH - Massachusetts General Hospital.
We use magnetoencephalography (MEG) and electroencephalography (EEG) to locate and determine the temporal evolution in brain areas involved in the processing of simple sensory stimuli. We will use somatosensory stimuli to locate the hand somatosensory areas, auditory stimuli to locate the auditory cortices, visual stimuli in four quadrants of the visual field to locate the early visual areas. These type of experiments are used for functional mapping in epileptic and brain tumor patients to locate eloquent cortices. In basic neuroscience similar experimental protocols are used to study the orchestration of cortical activity. The acquisition protocol includes quality assurance procedures, subject preparation for the combined MEG/EEG study, and acquisition of evoked-response data with somatosensory, auditory, and visual stimuli. We also demonstrate analysis of the data using the equivalent current dipole model and cortically-constrained minimum-norm estimates. Anatomical MRI data are employed in the analysis for visualization and for deriving boundaries of tissue boundaries for forward modeling and cortical location and orientation constraints for the minimum-norm estimates.
JoVE neuroscience, Issue 40, neuroscience, brain, MEG, EEG, functional imaging
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.