JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Apparent temperature and cause-specific emergency hospital admissions in Greater Copenhagen, Denmark.
PUBLISHED: 01-27-2011
One of the key climate change factors, temperature, has potentially grave implications for human health. We report the first attempt to investigate the association between the daily 3-hour maximum apparent temperature (Tapp(max)) and respiratory (RD), cardiovascular (CVD), and cerebrovascular (CBD) emergency hospital admissions in Copenhagen, controlling for air pollution. The study period covered 1 January 2002-31 December 2006, stratified in warm and cold periods. A case-crossover design was applied. Susceptibility (effect modification) by age, sex, and socio-economic status was investigated. For an IQR (8°C) increase in the 5-day cumulative average of Tapp(max), a 7% (95% CI: 1%, 13%) increase in the RD admission rate was observed in the warm period whereas an inverse association was found with CVD (-8%, 95% CI: -13%, -4%), and none with CBD. There was no association between the 5-day cumulative average of Tapp(max) during the cold period and any of the cause-specific admissions, except in some susceptible groups: a negative association for RD in the oldest age group and a positive association for CVD in men and the second highest SES group. In conclusion, an increase in Tapp(max) is associated with a slight increase in RD and decrease in CVD admissions during the warmer months.
Authors: Patrick De Boever, Tijs Louwies, Eline Provost, Luc Int Panis, Tim S. Nawrot.
Published: 10-22-2014
The microcirculation consists of blood vessels with diameters less than 150 µm. It makes up a large part of the circulatory system and plays an important role in maintaining cardiovascular health. The retina is a tissue that lines the interior of the eye and it is the only tissue that allows for a non-invasive analysis of the microvasculature. Nowadays, high-quality fundus images can be acquired using digital cameras. Retinal images can be collected in 5 min or less, even without dilatation of the pupils. This unobtrusive and fast procedure for visualizing the microcirculation is attractive to apply in epidemiological studies and to monitor cardiovascular health from early age up to old age. Systemic diseases that affect the circulation can result in progressive morphological changes in the retinal vasculature. For example, changes in the vessel calibers of retinal arteries and veins have been associated with hypertension, atherosclerosis, and increased risk of stroke and myocardial infarction. The vessel widths are derived using image analysis software and the width of the six largest arteries and veins are summarized in the Central Retinal Arteriolar Equivalent (CRAE) and the Central Retinal Venular Equivalent (CRVE). The latter features have been shown useful to study the impact of modifiable lifestyle and environmental cardiovascular disease risk factors. The procedures to acquire fundus images and the analysis steps to obtain CRAE and CRVE are described. Coefficients of variation of repeated measures of CRAE and CRVE are less than 2% and within-rater reliability is very high. Using a panel study, the rapid response of the retinal vessel calibers to short-term changes in particulate air pollution, a known risk factor for cardiovascular mortality and morbidity, is reported. In conclusion, retinal imaging is proposed as a convenient and instrumental tool for epidemiological studies to study microvascular responses to cardiovascular disease risk factors.
27 Related JoVE Articles!
Play Button
Bronchial Thermoplasty: A Novel Therapeutic Approach to Severe Asthma
Authors: David R. Duhamel, Jeff B. Hales.
Institutions: Virginia Hospital Center, Virginia Hospital Center.
Bronchial thermoplasty is a non-drug procedure for severe persistent asthma that delivers thermal energy to the airway wall in a precisely controlled manner to reduce excessive airway smooth muscle. Reducing airway smooth muscle decreases the ability of the airways to constrict, thereby reducing the frequency of asthma attacks. Bronchial thermoplasty is delivered by the Alair System and is performed in three outpatient procedure visits, each scheduled approximately three weeks apart. The first procedure treats the airways of the right lower lobe, the second treats the airways of the left lower lobe and the third and final procedure treats the airways in both upper lobes. After all three procedures are performed the bronchial thermoplasty treatment is complete. Bronchial thermoplasty is performed during bronchoscopy with the patient under moderate sedation. All accessible airways distal to the mainstem bronchi between 3 and 10 mm in diameter, with the exception of the right middle lobe, are treated under bronchoscopic visualization. Contiguous and non-overlapping activations of the device are used, moving from distal to proximal along the length of the airway, and systematically from airway to airway as described previously. Although conceptually straightforward, the actual execution of bronchial thermoplasty is quite intricate and procedural duration for the treatment of a single lobe is often substantially longer than encountered during routine bronchoscopy. As such, bronchial thermoplasty should be considered a complex interventional bronchoscopy and is intended for the experienced bronchoscopist. Optimal patient management is critical in any such complex and longer duration bronchoscopic procedure. This article discusses the importance of careful patient selection, patient preparation, patient management, procedure duration, postoperative care and follow-up to ensure that bronchial thermoplasty is performed safely. Bronchial thermoplasty is expected to complement asthma maintenance medications by providing long-lasting asthma control and improving asthma-related quality of life of patients with severe asthma. In addition, bronchial thermoplasty has been demonstrated to reduce severe exacerbations (asthma attacks) emergency rooms visits for respiratory symptoms, and time lost from work, school and other daily activities due to asthma.
Medicine, Issue 45, bronchial thermoplasty, severe asthma, airway smooth muscle, bronchoscopy, radiofrequency energy, patient management, moderate sedation
Play Button
C. elegans Positive Butanone Learning, Short-term, and Long-term Associative Memory Assays
Authors: Amanda Kauffman, Lance Parsons, Geneva Stein, Airon Wills, Rachel Kaletsky, Coleen Murphy.
Institutions: Princeton University, Princeton University.
The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors1, 2, and can associate nutritive states with chemical odors3, temperature4, and the pathogenicity of a food source5. Here, we describe assays of C. elegans associative learning and short- and long-term associative memory. We modified an aversive olfactory learning paradigm6 to instead produce a positive response; the assay involves starving ~400 worms, then feeding the worms in the presence of the AWC neuron-sensed volatile chemoattractant butanone at a concentration that elicits a low chemotactic index (similar to Toroyama et al.7). A standard population chemotaxis assay1 tests the worms' attraction to the odorant immediately or minutes to hours after conditioning. After conditioning, wild-type animals' chemotaxis to butanone increases ~0.6 Chemotaxis Index units, its "Learning Index". Associative learning is dependent on the presence of both food and butanone during training. Pairing food and butanone for a single conditioning period ("massed training") produces short-term associative memory that lasts ~2 hours. Multiple conditioning periods with rest periods between ("spaced training") yields long-term associative memory (<40 hours), and is dependent on the cAMP Response Element Binding protein (CREB),6 a transcription factor required for long-term memory across species.8 Our protocol also includes image analysis methods for quick and accurate determination of chemotaxis indices. High-contrast images of animals on chemotaxis assay plates are captured and analyzed by worm counting software in MatLab. The software corrects for uneven background using a morphological tophat transformation.9 Otsu's method is then used to determine a threshold to separate worms from the background.10 Very small particles are removed automatically and larger non-worm regions (plate edges or agar punches) are removed by manual selection. The software then estimates the size of single worm by ignoring regions that are above a specified maximum size and taking the median size of the remaining regions. The number of worms is then estimated by dividing the total area identified as occupied by worms by the estimated size of a single worm. We have found that learning and short- and long-term memory can be distinguished, and that these processes share similar key molecules with higher organisms.6,8 Our assays can quickly test novel candidate genes or molecules that affect learning and short- or long-term memory in C. elegans that are relevant across species.
Neuroscience, Issue 49, memory, associative learning, C. elegans, chemotaxis, spaced training, behavior
Play Button
Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)
Authors: Elena Ronander, Dominique C. Bengtsson, Louise Joergensen, Anja T. R. Jensen, David E. Arnot.
Institutions: University of Copenhagen, Copenhagen University Hospital (Rigshospitalet), University of Edinburgh .
Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE1. Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System2 (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription and regulation of a variety of genes expressed during the different stages of the P. falciparum life cycle and is adaptable to other malaria parasite species and other organisms and cell types.
Genetics, Issue 68, Infectious Diseases, Immunology, Molecular Biology, nuclei, transcription, var genes, PfEMP1, infected erythrocytes (IE), Plasmodium falciparum, fluorescent in situ hybridization (FISH)
Play Button
Prehospital Thrombolysis: A Manual from Berlin
Authors: Martin Ebinger, Sascha Lindenlaub, Alexander Kunz, Michal Rozanski, Carolin Waldschmidt, Joachim E. Weber, Matthias Wendt, Benjamin Winter, Philipp A. Kellner, Sabina Kaczmarek, Matthias Endres, Heinrich J. Audebert.
Institutions: Charité - Universitätsmedizin Berlin, Charité - Universitätsmedizin Berlin, Universitätsklinikum Hamburg - Eppendorf, Berliner Feuerwehr, STEMO-Consortium.
In acute ischemic stroke, time from symptom onset to intervention is a decisive prognostic factor. In order to reduce this time, prehospital thrombolysis at the emergency site would be preferable. However, apart from neurological expertise and laboratory investigations a computed tomography (CT) scan is necessary to exclude hemorrhagic stroke prior to thrombolysis. Therefore, a specialized ambulance equipped with a CT scanner and point-of-care laboratory was designed and constructed. Further, a new stroke identifying interview algorithm was developed and implemented in the Berlin emergency medical services. Since February 2011 the identification of suspected stroke in the dispatch center of the Berlin Fire Brigade prompts the deployment of this ambulance, a stroke emergency mobile (STEMO). On arrival, a neurologist, experienced in stroke care and with additional training in emergency medicine, takes a neurological examination. If stroke is suspected a CT scan excludes intracranial hemorrhage. The CT-scans are telemetrically transmitted to the neuroradiologist on-call. If coagulation status of the patient is normal and patient's medical history reveals no contraindication, prehospital thrombolysis is applied according to current guidelines (intravenous recombinant tissue plasminogen activator, iv rtPA, alteplase, Actilyse). Thereafter patients are transported to the nearest hospital with a certified stroke unit for further treatment and assessment of strokeaetiology. After a pilot-phase, weeks were randomized into blocks either with or without STEMO care. Primary end-point of this study is time from alarm to the initiation of thrombolysis. We hypothesized that alarm-to-treatment time can be reduced by at least 20 min compared to regular care.
Medicine, Issue 81, Telemedicine, Emergency Medical Services, Stroke, Tomography, X-Ray Computed, Emergency Treatment,[stroke, thrombolysis, prehospital, emergency medical services, ambulance
Play Button
Non-Terminal Blood Sampling Techniques in Guinea Pigs
Authors: Malene M. Birck, Pernille Tveden-Nyborg, Maiken M. Lindblad, Jens Lykkesfeldt.
Institutions: University of Copenhagen.
Guinea pigs possess several biological similarities to humans and are validated experimental animal models1-3. However, the use of guinea pigs currently represents a relatively narrow area of research and descriptive data on specific methodology is correspondingly scarce. The anatomical features of guinea pigs are slightly different from other rodent models, hence modulation of sampling techniques to accommodate for species-specific differences, e.g., compared to mice and rats, are necessary to obtain sufficient and high quality samples. As both long and short term in vivo studies often require repeated blood sampling the choice of technique should be well considered in order to reduce stress and discomfort in the animals but also to ensure survival as well as compliance with requirements of sample size and accessibility. Venous blood samples can be obtained at a number of sites in guinea pigs e.g., the saphenous and jugular veins, each technique containing both advantages and disadvantages4,5. Here, we present four different blood sampling techniques for either conscious or anaesthetized guinea pigs. The procedures are all non-terminal procedures provided that sample volumes and number of samples do not exceed guidelines for blood collection in laboratory animals6. All the described methods have been thoroughly tested and applied for repeated in vivo blood sampling in studies within our research facility.
Medicine, Issue 92, guinea pig, animal model, blood sampling, non-terminal, saphenous, tarsal, jugular
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
Play Button
Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells
Authors: Martin Weiss Nielsen, Claus Sternberg, Søren Molin, Birgitte Regenberg.
Institutions: Danish Technical University, University of Copenhagen.
Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions1. Using a transparent substratum it is possible to device a system where simple biofilms can be examined in a non-destructive way in real-time: here we demonstrate the assembly and operation of a flow cell model system, for in vitro 3D studies of microbial biofilms generating high reproducibility under well-defined conditions2,3. The system consists of a flow cell that serves as growth chamber for the biofilm. The flow cell is supplied with nutrients and oxygen from a medium flask via a peristaltic pump and spent medium is collected in a waste container. This construction of the flow system allows a continuous supply of nutrients and administration of e.g. antibiotics with minimal disturbance of the cells grown in the flow chamber. Moreover, the flow conditions within the flow cell allow studies of biofilm exposed to shear stress. A bubble trapping device confines air bubbles from the tubing which otherwise could disrupt the biofilm structure in the flow cell. The flow cell system is compatible with Confocal Laser Scanning Microscopy (CLSM) and can thereby provide highly detailed 3D information about developing microbial biofilms. Cells in the biofilm can be labeled with fluorescent probes or proteins compatible with CLSM analysis. This enables online visualization and allows investigation of niches in the developing biofilm. Microbial interrelationship, investigation of antimicrobial agents or the expression of specific genes, are of the many experimental setups that can be investigated in the flow cell system.
Immunology, Issue 47, Biofilm, Pseudomonas aeruginosa, Bacteria, Yeast, Saccharomyces cerevisiae, Flow cell system, Confocal Lases Scanning Microscopy, Microbiology, FLO11, Systems biology
Play Button
A Calcium Bioluminescence Assay for Functional Analysis of Mosquito (Aedes aegypti) and Tick (Rhipicephalus microplus) G Protein-coupled Receptors
Authors: Hsiao-Ling Lu, Cymon N. Kersch, Suparna Taneja-Bageshwar, Patricia V. Pietrantonio.
Institutions: Texas A&M University (TAMU), Texas A&M University (TAMU).
Arthropod hormone receptors are potential targets for novel pesticides as they regulate many essential physiological and behavioral processes. The majority of them belong to the superfamily of G protein-coupled receptors (GPCRs). We have focused on characterizing arthropod kinin receptors from the tick and mosquito. Arthropod kinins are multifunctional neuropeptides with myotropic, diuretic, and neurotransmitter function. Here, a method for systematic analyses of structure-activity relationships of insect kinins on two heterologous kinin receptor-expressing systems is described. We provide important information relevant to the development of biostable kinin analogs with the potential to disrupt the diuretic, myotropic, and/or digestive processes in ticks and mosquitoes. The kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini), and the mosquito Aedes aegypti (Linnaeus), were stably expressed in the mammalian cell line CHO-K1. Functional analyses of these receptors were completed using a calcium bioluminescence plate assay that measures intracellular bioluminescence to determine cytoplasmic calcium levels upon peptide application to these recombinant cells. This method takes advantage of the aequorin protein, a photoprotein isolated from luminescent jellyfish. We transiently transfected the aequorin plasmid (mtAEQ/pcDNA1) in cell lines that stably expressed the kinin receptors. These cells were then treated with the cofactor coelenterazine, which complexes with intracellular aequorin. This bond breaks in the presence of calcium, emitting luminescence levels indicative of the calcium concentration. As the kinin receptor signals through the release of intracellular calcium, the intensity of the signal is related to the potency of the peptide. This protocol is a synthesis of several previously described protocols with modifications; it presents step-by-step instructions for the stable expression of GPCRs in a mammalian cell line through functional plate assays (Staubly et al., 2002 and Stables et al., 1997). Using this methodology, we were able to establish stable cell lines expressing the mosquito and the tick kinin receptors, compare the potency of three mosquito kinins, identify critical amino acid positions for the ligand-receptor interaction, and perform semi-throughput screening of a peptide library. Because insect kinins are susceptible to fast enzymatic degradation by endogenous peptidases, they are severely limited in use as tools for pest control or endocrinological studies. Therefore, we also tested kinin analogs containing amino isobutyric acid (Aib) to enhance their potency and biostability. This peptidase-resistant analog represents an important lead in the development of biostable insect kinin analogs and may aid in the development of neuropeptide-based arthropod control strategies.
Immunology, Issue 50, Aequorin calcium reporter, coelenterazine, G protein-coupled receptor (GPCR), CHO-K1 cells, mammalian cell culture, neuropeptide SAR studies (SAR= structure-activity relationships), receptor-neuropeptide interaction, bioluminescence, drug discovery, semi-throughput screening in plates
Play Button
Isolation and Differentiation of Stromal Vascular Cells to Beige/Brite Cells
Authors: Ulrike Liisberg Aune, Lauren Ruiz, Shingo Kajimura.
Institutions: University of California, San Francisco , University of Copenhagen, Denmark, National Institute of Nutrition and Seafood Research, Bergen, Norway.
Brown adipocytes have the ability to uncouple the respiratory chain in mitochondria and dissipate chemical energy as heat. Development of UCP1-positive brown adipocytes in white adipose tissues (so called beige or brite cells) is highly induced by a variety of environmental cues such as chronic cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target for obesity treatment. Although most immortalized adipocyte lines cannot recapitulate the process of "browning" of white fat in culture, primary adipocytes isolated from stromal vascular fraction in subcutaneous white adipose tissue (WAT) provide a reliable cellular system to study the molecular control of beige/brite cell development. Here we describe a protocol for effective isolation of primary preadipocytes and for inducing differentiation to beige/brite cells in culture. The browning effect can be assessed by the expression of brown fat-selective markers such as UCP1.
Cellular Biology, Issue 73, Medicine, Anatomy, Physiology, Molecular Biology, Surgery, Adipose Tissue, Adipocytes, Transcription Factors, Cell Differentiation, Obesity, Diabetes, brown adipose tissue, beige/brite cells, primary adipocytes, stromal-vascular fraction, differentiation, uncoupling protein 1, rosiglitazone, differentiation, cells, isolation, fat, animal model
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
Play Button
Experimental Human Pneumococcal Carriage
Authors: Jenna F. Gritzfeld, Angie D. Wright, Andrea M. Collins, Shaun H. Pennington, Adam K.A. Wright, Aras Kadioglu, Daniela M. Ferreira, Stephen B. Gordon.
Institutions: Liverpool School of Tropical Medicine, University Hospital Trust, Comprehensive Local Research Network, Royal Liverpool and Broadgreen University Hospitals NHS Trust, University Hospitals of Leicester NHS Trust & University of Leicester, University of Liverpool .
Experimental human pneumococcal carriage (EHPC) is scientifically important because nasopharyngeal carriage of Streptococcus pneumoniae is both the major source of transmission and the prerequisite of invasive disease. A model of carriage will allow accurate determination of the immunological correlates of protection, the immunizing effect of carriage and the effect of host pressure on the pathogen in the nasopharyngeal niche. Further, methods of carriage detection useful in epidemiologic studies, including vaccine studies, can be compared. Aim We aim to develop an EHPC platform that is a safe and useful reproducible method that could be used to down-select candidate novel pneumococcal vaccines with prevention of carriage as a surrogate of vaccine induced immunity. It will work towards testing of candidate vaccines and descriptions of the mechanisms underlying EHPC and vaccine protection from carriage1. Current conjugate vaccines against pneumococcus protect children from invasive disease although new vaccines are urgently needed as the current vaccine does not confer optimal protection against non-bacteraemic pneumonia and there has been evidence of serotype replacement with non-vaccine serotypes2-4. Method We inoculate with S. pneumoniae suspended in 100 μl of saline. Safety is a major factor in the development of the EHPC model and is achieved through intensive volunteer screening and monitoring. A safety committee consisting of clinicians and scientists that are independent from the study provides objective feedback on a weekly basis. The bacterial inoculum is standardized and requires that no animal products are inoculated into volunteers (vegetable-based media and saline). The doses required for colonization (104-105) are much lower than those used in animal models (107)5. Detecting pneumococcal carriage is enhanced by a high volume (ideally >10 ml) nasal wash that is relatively mucus free. This protocol will deal with the most important parts of the protocol in turn. These are (a) volunteer selection, (b) pneumococcal inoculum preparation, (c) inoculation, (d) follow-up and (e) carriage detection. Results Our current protocol has been safe in over 100 volunteers at a range of doses using two different bacterial serotypes6. A dose ranging study using S. pneumoniae 6B and 23F is currently being conducted to determine the optimal inoculation dose for 50% carriage. A predicted 50% rate of carriage will allow the EHPC model to have high sensitivity for vaccine efficacy with small study numbers.
Infection, Issue 72, Medicine, Immmunology, Microbiology, Infectious Diseases, Anatomy, Physiology, Biomedical Engineering, Streptococcus pneumoniae, carriage, nasal wash, inoculation, human, vaccine studies, pneumonia, volunteer selection, clinical
Play Button
Cardiac Stress Test Induced by Dobutamine and Monitored by Cardiac Catheterization in Mice
Authors: Sebastián Dante Calligaris, Micaela Ricca, Paulette Conget.
Institutions: Clínica Alemana Universidad del Desarrollo.
Dobutamine is a β-adrenergic agonist with an affinity higher for receptor expressed in the heart (β1) than for receptors expressed in the arteries (β2). When systemically administered, it increases cardiac demand. Thus, dobutamine unmasks abnormal rhythm or ischemic areas potentially at risk of infarction. Monitoring of heart function during a cardiac stress test can be performed by either ecocardiography or cardiac catheterization. The latter is an invasive but more accurate and informative technique that the former. Cardiac stress test induced by dobutamine and monitored by cardiac catheterization accomplished as described here allows, in a single experiment, the measurement of the following hemodynamic parameters: heart rate (HR), systolic pressure, diastolic pressure, end-diastolic pressure, maximal positive pressure development (dP/dtmax) and maximal negative pressure development (dP/dtmin), at baseline conditions and under increasing doses of dobutamine. As expected, in normal mice we observed a dobutamine dose-related increase in HR, dP/dtmax and dP/dtmin. Moreover, at the highest dose tested (12 ng/g/min) the cardiac decompensation of high fat diet-induced obese mice was unmasked.
Medicine, Issue 72, Anatomy, Physiology, Cardiology, Surgery, Cardiovascular System, Cardiovascular Diseases, Life Sciences (General), Computer Programming and Software, cardiac stress test, dobutamine, cardiac catheterization, hemodynamic parameters, mice, animal model
Play Button
In vitro Uncoating of HIV-1 Cores
Authors: Vaibhav B. Shah, Christopher Aiken.
Institutions: Vanderbilt University School of Medicine.
The genome of the retroviruses is encased in a capsid surrounded by a lipid envelope. For lentiviruses, such as HIV-1, the conical capsid shell is composed of CA protein arranged as a lattice of hexagon. The capsid is closed by 7 pentamers at the broad end and 5 at the narrow end of the cone1, 2. Encased in this capsid shell is the viral ribonucleoprotein complex, and together they comprise the core. Following fusion of the viral membrane with the target cell membrane, the HIV-1 is released into the cytoplasm. The capsid then disassembles releasing free CA in the soluble form3 in a process referred to as uncoating. The intracellular location and timing of HIV-1 uncoating are poorly understood. Single amino-acid substitutions in CA that alter the stability of the capsid also impair the ability of HIV-1 to infect cells4. This indicates that the stability of the capsid is critical for HIV-1 infection. HIV-1 uncoating has been difficult to study due to lack of availability of sensitive and reliable assays for this process. Here we describe a quantitative method for studying uncoating in vitro using cores isolated from infectious HIV-1 particles. The approach involves isolation of cores by sedimentation of concentrated virions through a layer of detergent and into a linear sucrose gradient, in the cold. To quantify uncoating, the isolated cores are incubated at 37°C for various timed intervals and subsequently pelleted by ultracentrifugation. The extent of uncoating is analyzed by quantifying the fraction of CA in the supernatant. This approach has been employed to analyze effects of viral mutations on HIV-1 capsid stability4, 5, 6. It should also be useful for studying the role of cellular factors in HIV-1 uncoating.
Immunology, Issue 57, Lentivirus, HIV, virus, infection, capsid, virons, 293T Cells, T Cells
Play Button
Nanomoulding of Functional Materials, a Versatile Complementary Pattern Replication Method to Nanoimprinting
Authors: Corsin Battaglia, Karin Söderström, Jordi Escarré, Franz-Josef Haug, Matthieu Despeisse, Christophe Ballif.
Institutions: Ecole Polytechnique Fédérale de Lausanne (EPFL), University of California, Berkeley .
We describe a nanomoulding technique which allows low-cost nanoscale patterning of functional materials, materials stacks and full devices. Nanomoulding combined with layer transfer enables the replication of arbitrary surface patterns from a master structure onto the functional material. Nanomoulding can be performed on any nanoimprinting setup and can be applied to a wide range of materials and deposition processes. In particular we demonstrate the fabrication of patterned transparent zinc oxide electrodes for light trapping applications in solar cells.
Materials Science, Issue 71, Nanotechnology, Mechanical Engineering, Electrical Engineering, Computer Sciences, Physics, dielectrics (electronic application), light emitting diodes (LED), lithography (circuit fabrication), nanodevices (electronic), optoelectronics (applications), photoelectric devices, semiconductor devices, solar cells (electrical design), Surface patterning, nanoimprinting, nanomoulding, transfer moulding, functional materials, transparent conductive oxides, microengineering, photovoltaics
Play Button
A Method to Study the Impact of Chemically-induced Ovarian Failure on Exercise Capacity and Cardiac Adaptation in Mice
Authors: Hao Chen, Jessica N. Perez, Eleni Constantopoulos, Laurel McKee, Jessica Regan, Patricia B. Hoyer, Heddwen L. Brooks, John Konhilas.
Institutions: University of Arizona.
The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.
Medicine, Issue 86, VCD, menopause, voluntary wheel running, forced treadmill exercise, exercise capacity, adaptive cardiac adaptation
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Assaying Locomotor Activity to Study Circadian Rhythms and Sleep Parameters in Drosophila
Authors: Joanna C. Chiu, Kwang Huei Low, Douglas H. Pike, Evrim Yildirim, Isaac Edery.
Institutions: Rutgers University, University of California, Davis, Rutgers University.
Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties.
Neuroscience, Issue 43, circadian rhythm, locomotor activity, Drosophila, period, sleep, Trikinetics
Play Button
Perspectives on Neuroscience
Authors: Wolf Singer.
Institutions: Max Planck Institute (MPI).
Neuroscience, Issue 6, brain, neuron, complexity
Play Button
The Organotypic Hippocampal Slice Culture Model for Examining Neuronal Injury
Authors: Qian Wang, Katrin Andreasson.
Institutions: Stanford University School of Medicine.
Organotypic hippocampal slice culture is an in vitro method to examine mechanisms of neuronal injury in which the basic architecture and composition of the hippocampus is relatively preserved 1. The organotypic culture system allows for the examination of neuronal, astrocytic and microglial effects, but as an ex vivo preparation, does not address effects of blood flow, or recruitment of peripheral inflammatory cells. To that end, this culture method is frequently used to examine excitotoxic and hypoxic injury to pyramidal neurons of the hippocampus, but has also been used to examine the inflammatory response. Herein we describe the methods for generating hippocampal slice cultures from postnatal rodent brain, administering toxic stimuli to induce neuronal injury, and assaying and quantifying hippocampal neuronal death.
Neuroscience, Issue 44, Organotypic slice culture, excitotoxicity, NMDA
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.