JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Optogenetic manipulation of cerebellar Purkinje cell activity in vivo.
PUBLISHED: 05-11-2011
Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. We injected into rat cerebellar cortex lentiviruses expressing either the light-activated cationic channel channelrhodopsin-2 (ChR2) or light-driven chloride pump halorhodopsin (eNpHR) under the control of the PC-specific L7 promoter. Transgene expression was observed in most PCs (ChR2, 92.6%; eNpHR, 95.3%), as determined by immunohistochemical analysis. In vivo electrophysiological recordings showed that all light-responsive PCs in ChR2-transduced rats increased frequency of simple spike in response to blue laser illumination. Similarly, most light-responsive PCs (93.8%) in eNpHR-transduced rats decreased frequency of simple spike in response to orange laser illumination. We then applied these techniques to characterize the roles of rat cerebellar uvula, one of the cardiovascular regulatory regions in the cerebellum, in resting blood pressure (BP) regulation in anesthetized rats. ChR2-mediated photostimulation and eNpHR-mediated photoinhibition of the uvula had opposite effects on resting BP, inducing depressor and pressor responses, respectively. In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didnt affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum.
Authors: Shinya Nakamura, Michael V. Baratta, Donald C. Cooper.
Published: 09-02-2013
Optogenetic methods have emerged as a powerful tool for elucidating neural circuit activity underlying a diverse set of behaviors across a broad range of species. Optogenetic tools of microbial origin consist of light-sensitive membrane proteins that are able to activate (e.g., channelrhodopsin-2, ChR2) or silence (e.g., halorhodopsin, NpHR) neural activity ingenetically-defined cell types over behaviorally-relevant timescales. We first demonstrate a simple approach for adeno-associated virus-mediated delivery of ChR2 and NpHR transgenes to the dorsal subiculum and prelimbic region of the prefrontal cortex in rat. Because ChR2 and NpHR are genetically targetable, we describe the use of this technology to control the electrical activity of specific populations of neurons (i.e., pyramidal neurons) embedded in heterogeneous tissue with high temporal precision. We describe herein the hardware, custom software user interface, and procedures that allow for simultaneous light delivery and electrical recording from transduced pyramidal neurons in an anesthetized in vivo preparation. These light-responsive tools provide the opportunity for identifying the causal contributions of different cell types to information processing and behavior.
24 Related JoVE Articles!
Play Button
Selective Viral Transduction of Adult-born Olfactory Neurons for Chronic in vivo Optogenetic Stimulation
Authors: Gabriel Lepousez, Mariana Alonso, Sebastian Wagner, Benjamin W. Gallarda, Pierre-Marie Lledo.
Institutions: Institut Pasteur and Centre National de la Recherche Scientifique (CNRS).
Local interneurons are continuously regenerated in the olfactory bulb of adult rodents1-3. In this process, called adult neurogenesis, neural stem cells in the walls of the lateral ventricle give rise to neuroblasts that migrate for several millimeters along the rostral migratory stream (RMS) to reach and incorporate into the olfactory bulb. To study the different steps and the impact of adult-born neuron integration into preexisting olfactory circuits, it is necessary to selectively label and manipulate the activity of this specific population of neurons. The recent development of optogenetic technologies offers the opportunity to use light to precisely activate this specific cohort of neurons without affecting surrounding neurons4,5. Here, we present a series of procedures to virally express Channelrhodopsin2(ChR2)-YFP in a temporally restricted cohort of neuroblasts in the RMS before they reach the olfactory bulb and become adult-born neurons. In addition, we show how to implant and calibrate a miniature LED for chronic in vivo stimulation of ChR2-expressing neurons.
Neuroscience, Issue 58, Olfactory bulb, Olfactory neurons, in vivo, viral transduction, mouse, LED
Play Button
The Analysis of Purkinje Cell Dendritic Morphology in Organotypic Slice Cultures
Authors: Josef P. Kapfhammer, Olivia S. Gugger.
Institutions: University of Basel.
Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents 3. Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells 11 are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period 4. We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.
Neuroscience, Issue 61, dendritic development, dendritic branching, cerebellum, Purkinje cells
Play Button
Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration
Authors: Anna Holubowska, Chaitali Mukherjee, Mayur Vadhvani, Judith Stegmüller.
Institutions: Max Planck Institute of Experimental Medicine, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).
Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration.
Neuroscience, Issue 85, axons, dendrites, neuronal migration, cerebellum, cultured neurons, transfection, in vivo electroporation
Play Button
Slice It Hot: Acute Adult Brain Slicing in Physiological Temperature
Authors: Lea Ankri, Yosef Yarom, Marylka Y. Uusisaari.
Institutions: Hebrew University of Jerusalem.
Here we present a protocol for preparation of acute brain slices. This procedure is a critical element for electrophysiological patch-clamp experiments that largely determines the quality of results. It has been shown that omitting the cooling step during cutting procedure is beneficial in obtaining healthy slices and cells, especially when dealing with highly myelinated brain structures from mature animals. Even though the precise mechanism whereby elevated temperature supports neural health can only be speculated upon, it stands to reason that, whenever possible, the temperature in which the slicing is performed should be close to physiological conditions to prevent temperature related artifacts. Another important advantage of this method is the simplicity of the procedure and therefore the short preparation time. In the demonstrated method adult mice are used but the same procedure can be applied with younger mice as well as rats. Also, the following patch clamp experiment is performed on horizontal cerebellar slices, but the same procedure can also be used in other planes as well as other posterior areas of the brain.
Neuroscience, Issue 92, Acute brain slicing, electrophysiology, mice, rats, in vitro, cerebellum, adult, vibratome
Play Button
Wholemount Immunohistochemistry for Revealing Complex Brain Topography
Authors: Joshua J. White, Stacey L. Reeber, Richard Hawkes, Roy V. Sillitoe.
Institutions: Albert Einstein College of Medicine, Yeshiva University , University of Calgary .
The repeated and well-understood cellular architecture of the cerebellum make it an ideal model system for exploring brain topography. Underlying its relatively uniform cytoarchitecture is a complex array of parasagittal domains of gene and protein expression. The molecular compartmentalization of the cerebellum is mirrored by the anatomical and functional organization of afferent fibers. To fully appreciate the complexity of cerebellar organization we previously refined a wholemount staining approach for high throughput analysis of patterning defects in the mouse cerebellum. This protocol describes in detail the reagents, tools, and practical steps that are useful to successfully reveal protein expression patterns in the adult mouse cerebellum by using wholemount immunostaining. The steps highlighted here demonstrate the utility of this method using the expression of zebrinII/aldolaseC as an example of how the fine topography of the brain can be revealed in its native three-dimensional conformation. Also described are adaptations to the protocol that allow for the visualization of protein expression in afferent projections and large cerebella for comparative studies of molecular topography. To illustrate these applications, data from afferent staining of the rat cerebellum are included.
Neuroscience, Issue 62, Gene expression, antibodies, compartmentalization, brain topography, circuitry, neuroanatomy
Play Button
Organotypic Slice Cultures to Study Oligodendrocyte Dynamics and Myelination
Authors: Robert A. Hill, Jelena Medved, Kiran D. Patel, Akiko Nishiyama.
Institutions: University of Connecticut, University of Connecticut, Yale University School of Medicine.
NG2 expressing cells (polydendrocytes, oligodendrocyte precursor cells) are the fourth major glial cell population in the central nervous system. During embryonic and postnatal development they actively proliferate and generate myelinating oligodendrocytes. These cells have commonly been studied in primary dissociated cultures, neuron cocultures, and in fixed tissue. Using newly available transgenic mouse lines slice culture systems can be used to investigate proliferation and differentiation of oligodendrocyte lineage cells in both gray and white matter regions of the forebrain and cerebellum. Slice cultures are prepared from early postnatal mice and are kept in culture for up to 1 month. These slices can be imaged multiple times over the culture period to investigate cellular behavior and interactions. This method allows visualization of NG2 cell division and the steps leading to oligodendrocyte differentiation while enabling detailed analysis of region-dependent NG2 cell and oligodendrocyte functional heterogeneity. This is a powerful technique that can be used to investigate the intrinsic and extrinsic signals influencing these cells over time in a cellular environment that closely resembles that found in vivo.
Neuroscience, Issue 90, NG2, CSPG4, polydendrocyte, oligodendrocyte progenitor cell, oligodendrocyte, myelin, organotypic slice culture, time-lapse
Play Button
Laser Nanosurgery of Cerebellar Axons In Vivo
Authors: Anna L. Allegra Mascaro, Leonardo Sacconi, Francesco Saverio Pavone.
Institutions: University of Florence, National Research Council, University of Florence, International Center for Computational Neurophotonics (ICON Foundation).
Only a few neuronal populations in the central nervous system (CNS) of adult mammals show local regrowth upon dissection of their axon. In order to understand the mechanism that promotes neuronal regeneration, an in-depth analysis of the neuronal types that can remodel after injury is needed. Several studies showed that damaged climbing fibers are capable of regrowing also in adult animals1,2. The investigation of the time-lapse dynamics of degeneration and regeneration of these axons within their complex environment can be performed by time-lapse two-photon fluorescence (TPF) imaging in vivo3,4. This technique is here combined with laser surgery, which proved to be a highly selective tool to disrupt fluorescent structures in the intact mouse cortex5-9. This protocol describes how to perform TPF time-lapse imaging and laser nanosurgery of single axonal branches in the cerebellum in vivo. Olivocerebellar neurons are labeled by anterograde tracing with a dextran-conjugated dye and then monitored by TPF imaging through a cranial window. The terminal portion of their axons are then dissected by irradiation with a Ti:Sapphire laser at high power. The degeneration and potential regrowth of the damaged neuron are monitored by TPF in vivo imaging during the days following the injury.
Neuroscience, Issue 89, axonal labeling, neuronal tracing, in vivo imaging, two-photon microscopy, cerebellum, climbing fibers, laser axotomy, craniotomy
Play Button
Organotypic Cerebellar Cultures: Apoptotic Challenges and Detection
Authors: Tatiana Hurtado de Mendoza, Bartosz Balana, Paul A. Slesinger, Inder M. Verma.
Institutions: The Salk Institute for Biological Studies, The Salk Institute for Biological Studies.
Organotypic cultures of neuronal tissue were first introduced by Hogue in 1947 1,2 and have constituted a major breakthrough in the field of neuroscience. Since then, the technique was developed further and currently there are many different ways to prepare organotypic cultures. The method presented here was adapted from the one described by Stoppini et al. for the preparation of the slices and from Gogolla et al. for the staining procedure 3,4. A unique feature of this technique is that it allows you to study different parts of the brain such as hippocampus or cerebellum in their original structure, providing a big advantage over dissociated cultures in which all the cellular organization and neuronal networks are disrupted. In the case of the cerebellum it is even more advantageous because it allows the study of Purkinje cells, extremely difficult to obtain as dissociated primary culture. This method can be used to study certain developmental features of the cerebellum in vitro, as well as for electrophysiological and pharmacological experiments in both wild type and mutant mice. The method described here was designed to study the effect of apoptotic stimuli such as Fas ligand in the developing cerebellum, using TUNEL staining to measure apoptotic cell death. If TUNEL staining is combined with cell type specific markers, such as Calbindin for Purkinje cells, it is possible to evaluate cell death in a cell population specific manner. The Calbindin staining also serves the purpose of evaluating the quality of the cerebellar cultures.
Neuroscience, Issue 51, Cerebellum, Organotypic, Fas, Apoptosis, Purkinje cell
Play Button
Simultaneous Electroencephalography, Real-time Measurement of Lactate Concentration and Optogenetic Manipulation of Neuronal Activity in the Rodent Cerebral Cortex
Authors: William C. Clegern, Michele E. Moore, Michelle A. Schmidt, Jonathan Wisor.
Institutions: Washington State University.
Although the brain represents less than 5% of the body by mass, it utilizes approximately one quarter of the glucose used by the body at rest1. The function of non rapid eye movement sleep (NREMS), the largest portion of sleep by time, is uncertain. However, one salient feature of NREMS is a significant reduction in the rate of cerebral glucose utilization relative to wakefulness2-4. This and other findings have led to the widely held belief that sleep serves a function related to cerebral metabolism. Yet, the mechanisms underlying the reduction in cerebral glucose metabolism during NREMS remain to be elucidated. One phenomenon associated with NREMS that might impact cerebral metabolic rate is the occurrence of slow waves, oscillations at frequencies less than 4 Hz, in the electroencephalogram5,6. These slow waves detected at the level of the skull or cerebral cortical surface reflect the oscillations of underlying neurons between a depolarized/up state and a hyperpolarized/down state7. During the down state, cells do not undergo action potentials for intervals of up to several hundred milliseconds. Restoration of ionic concentration gradients subsequent to action potentials represents a significant metabolic load on the cell8; absence of action potentials during down states associated with NREMS may contribute to reduced metabolism relative to wake. Two technical challenges had to be addressed in order for this hypothetical relationship to be tested. First, it was necessary to measure cerebral glycolytic metabolism with a temporal resolution reflective of the dynamics of the cerebral EEG (that is, over seconds rather than minutes). To do so, we measured the concentration of lactate, the product of aerobic glycolysis, and therefore a readout of the rate of glucose metabolism in the brains of mice. Lactate was measured using a lactate oxidase based real time sensor embedded in the frontal cortex. The sensing mechanism consists of a platinum-iridium electrode surrounded by a layer of lactate oxidase molecules. Metabolism of lactate by lactate oxidase produces hydrogen peroxide, which produces a current in the platinum-iridium electrode. So a ramping up of cerebral glycolysis provides an increase in the concentration of substrate for lactate oxidase, which then is reflected in increased current at the sensing electrode. It was additionally necessary to measure these variables while manipulating the excitability of the cerebral cortex, in order to isolate this variable from other facets of NREMS. We devised an experimental system for simultaneous measurement of neuronal activity via the elecetroencephalogram, measurement of glycolytic flux via a lactate biosensor, and manipulation of cerebral cortical neuronal activity via optogenetic activation of pyramidal neurons. We have utilized this system to document the relationship between sleep-related electroencephalographic waveforms and the moment-to-moment dynamics of lactate concentration in the cerebral cortex. The protocol may be useful for any individual interested in studying, in freely behaving rodents, the relationship between neuronal activity measured at the electroencephalographic level and cellular energetics within the brain.
Neuroscience, Issue 70, Physiology, Anatomy, Medicine, Pharmacology, Surgery, Sleep, rapid eye movement, glucose, glycolysis, pyramidal neurons, channelrhodopsin, optogenetics, optogenetic stimulation, electroencephalogram, EEG, EMG, brain, animal model
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
Play Button
Optogenetic Perturbation of Neural Activity with Laser Illumination in Semi-intact Drosophila Larvae in Motion
Authors: Teruyuki Matsunaga, Akira Fushiki, Akinao Nose, Hiroshi Kohsaka.
Institutions: The University of Tokyo, The University of Tokyo.
Drosophila larval locomotion is a splendid model system in developmental and physiological neuroscience, by virtue of the genetic accessibility of the underlying neuronal components in the circuits1-6. Application of optogenetics7,8 in the larval neural circuit allows us to manipulate neuronal activity in spatially and temporally patterned ways9-13. Typically, specimens are broadly illuminated with a mercury lamp or LED, so specificity of the target neurons is controlled by binary gene expression systems such as the Gal4-UAS system14,15. In this work, to improve the spatial resolution to "sub-genetic resolution", we locally illuminated a subset of neurons in the ventral nerve cord using lasers implemented in a conventional confocal microscope. While monitoring the motion of the body wall of the semi-intact larvae, we interactively activated or inhibited neural activity with channelrhodopsin16,17 or halorhodopsin18-20, respectively. By spatially and temporally restricted illumination of the neural tissue, we can manipulate the activity of specific neurons in the circuit at a specific phase of behavior. This method is useful for studying the relationship between the activities of a local neural assembly in the ventral nerve cord and the spatiotemporal pattern of motor output.
Neuroscience, Issue 77, Molecular Biology, Neurobiology, Developmental Biology, Bioengineering, Cellular Biology, Motor Neurons, Neurosciences, Drosophila, Optogenetics, Channelrhodopsin-2, Halorhodopsin, laser, confocal microscopy, animal model
Play Button
Using Affordable LED Arrays for Photo-Stimulation of Neurons
Authors: Matthew Valley, Sebastian Wagner, Benjamin W. Gallarda, Pierre-Marie Lledo.
Institutions: Institut Pasteur and Centre National de la Recherche Scientifique (CNRS).
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations1,2. With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channelrhodopsin-2 (ChR2) allows researchers to activate neurons with light3,4. By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
Neuroscience, Issue 57, Adult neurogenesis, Channelrhodopsin, Neural stem cells, Plasticity, Synapses, Electrophysiology
Play Button
A Guide to In vivo Single-unit Recording from Optogenetically Identified Cortical Inhibitory Interneurons
Authors: Alexandra K. Moore, Michael Wehr.
Institutions: University of Oregon.
A major challenge in neurophysiology has been to characterize the response properties and function of the numerous inhibitory cell types in the cerebral cortex. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex using a method developed by Lima and colleagues1. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. This technique – termed “PINP”, or Photostimulation-assisted Identification of Neuronal Populations – can be implemented with standard extracellular recording equipment. It can serve as an inexpensive and accessible alternative to calcium imaging or visually-guided patching, for the purpose of targeting extracellular recordings to genetically-identified cells. Here we provide a set of guidelines for optimizing the method in everyday practice. We refined our strategy specifically for targeting parvalbumin-positive (PV+) cells, but have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons.
Neuroscience, Issue 93, Optogenetics, Channelrhodopsin, ChR2, cortex, in vivo recording, extracellular, Parvalbumin, interneuron, mouse, electrophysiology
Play Button
Laser-scanning Photostimulation of Optogenetically Targeted Forebrain Circuits
Authors: Charles C. Lee, Ying-Wan Lam, Kazuo Imaizumi, S. Murray Sherman.
Institutions: Louisiana State University, University of Chicago.
The sensory forebrain is composed of intricately connected cell types, of which functional properties have yet to be fully elucidated. Understanding the interactions of these forebrain circuits has been aided recently by the development of optogenetic methods for light-mediated modulation of neuronal activity. Here, we describe a protocol for examining the functional organization of forebrain circuits in vitro using laser-scanning photostimulation of channelrhodopsin, expressed optogenetically via viral-mediated transfection. This approach also exploits the utility of cre-lox recombination in transgenic mice to target expression in specific neuronal cell types. Following transfection, neurons are physiologically recorded in slice preparations using whole-cell patch clamp to measure their evoked responses to laser-scanning photostimulation of channelrhodopsin expressing fibers. This approach enables an assessment of functional topography and synaptic properties. Morphological correlates can be obtained by imaging the neuroanatomical expression of channelrhodopsin expressing fibers using confocal microscopy of the live slice or post-fixed tissue. These methods enable functional investigations of forebrain circuits that expand upon more conventional approaches.
Neuroscience, Issue 82, optogenetics, cortex, thalamus, channelrhodopsin, photostimulation, auditory, visual, somatosensory
Play Button
Optogenetic Stimulation of the Auditory Nerve
Authors: Victor H. Hernandez, Anna Gehrt, Zhizi Jing, Gerhard Hoch, Marcus Jeschke, Nicola Strenzke, Tobias Moser.
Institutions: University Medical Center Goettingen, University of Goettingen, University Medical Center Goettingen, University of Goettingen, University of Guanajuato.
Direct electrical stimulation of spiral ganglion neurons (SGNs) by cochlear implants (CIs) enables open speech comprehension in the majority of implanted deaf subjects1-6. Nonetheless, sound coding with current CIs has poor frequency and intensity resolution due to broad current spread from each electrode contact activating a large number of SGNs along the tonotopic axis of the cochlea7-9. Optical stimulation is proposed as an alternative to electrical stimulation that promises spatially more confined activation of SGNs and, hence, higher frequency resolution of coding. In recent years, direct infrared illumination of the cochlea has been used to evoke responses in the auditory nerve10. Nevertheless it requires higher energies than electrical stimulation10,11 and uncertainty remains as to the underlying mechanism12. Here we describe a method based on optogenetics to stimulate SGNs with low intensity blue light, using transgenic mice with neuronal expression of channelrhodopsin 2 (ChR2)13 or virus-mediated expression of the ChR2-variant CatCh14. We used micro-light emitting diodes (µLEDs) and fiber-coupled lasers to stimulate ChR2-expressing SGNs through a small artificial opening (cochleostomy) or the round window. We assayed the responses by scalp recordings of light-evoked potentials (optogenetic auditory brainstem response: oABR) or by microelectrode recordings from the auditory pathway and compared them with acoustic and electrical stimulation.
Neuroscience, Issue 92, hearing, cochlear implant, optogenetics, channelrhodopsin, optical stimulation, deafness
Play Button
Optogenetic Activation of Zebrafish Somatosensory Neurons using ChEF-tdTomato
Authors: Ana Marie S. Palanca, Alvaro Sagasti.
Institutions: University of California, Los Angeles .
Larval zebrafish are emerging as a model for describing the development and function of simple neural circuits. Due to their external fertilization, rapid development, and translucency, zebrafish are particularly well suited for optogenetic approaches to investigate neural circuit function. In this approach, light-sensitive ion channels are expressed in specific neurons, enabling the experimenter to activate or inhibit them at will and thus assess their contribution to specific behaviors. Applying these methods in larval zebrafish is conceptually simple but requires the optimization of technical details. Here we demonstrate a procedure for expressing a channelrhodopsin variant in larval zebrafish somatosensory neurons, photo-activating single cells, and recording the resulting behaviors. By introducing a few modifications to previously established methods, this approach could be used to elicit behavioral responses from single neurons activated up to at least 4 days post-fertilization (dpf). Specifically, we created a transgene using a somatosensory neuron enhancer, CREST3, to drive the expression of the tagged channelrhodopsin variant, ChEF-tdTomato. Injecting this transgene into 1-cell stage embryos results in mosaic expression in somatosensory neurons, which can be imaged with confocal microscopy. Illuminating identified cells in these animals with light from a 473 nm DPSS laser, guided through a fiber optic cable, elicits behaviors that can be recorded with a high-speed video camera and analyzed quantitatively. This technique could be adapted to study behaviors elicited by activating any zebrafish neuron. Combining this approach with genetic or pharmacological perturbations will be a powerful way to investigate circuit formation and function.
Neuroscience, Issue 71, Developmental Biology, Molecular Biology, Cellular Biology, Biochemistry, Bioengineering, Anatomy, Physiology, Zebrafish, Behavior, Animal, Touch, optogenetics, channelrhodopsin, ChEF, sensory neuron, Rohon-Beard, Danio rerio, somatosensory, neurons, microinjection, confocal microscopy, high speed video, animal model
Play Button
Whole-cell Patch-clamp Recordings from Morphologically- and Neurochemically-identified Hippocampal Interneurons
Authors: Sam A. Booker, Jie Song, Imre Vida.
Institutions: Charité Universitätmedizin.
GABAergic inhibitory interneurons play a central role within neuronal circuits of the brain. Interneurons comprise a small subset of the neuronal population (10-20%), but show a high level of physiological, morphological, and neurochemical heterogeneity, reflecting their diverse functions. Therefore, investigation of interneurons provides important insights into the organization principles and function of neuronal circuits. This, however, requires an integrated physiological and neuroanatomical approach for the selection and identification of individual interneuron types. Whole-cell patch-clamp recording from acute brain slices of transgenic animals, expressing fluorescent proteins under the promoters of interneuron-specific markers, provides an efficient method to target and electrophysiologically characterize intrinsic and synaptic properties of specific interneuron types. Combined with intracellular dye labeling, this approach can be extended with post-hoc morphological and immunocytochemical analysis, enabling systematic identification of recorded neurons. These methods can be tailored to suit a broad range of scientific questions regarding functional properties of diverse types of cortical neurons.
Neuroscience, Issue 91, electrophysiology, acute slice, whole-cell patch-clamp recording, neuronal morphology, immunocytochemistry, parvalbumin, hippocampus, inhibition, GABAergic interneurons, synaptic transmission, IPSC, GABA-B receptor
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents
Authors: Mikhail Kislin, Ekaterina Mugantseva, Dmitry Molotkov, Natalia Kulesskaya, Stanislav Khirug, Ilya Kirilkin, Evgeny Pryazhnikov, Julia Kolikova, Dmytro Toptunov, Mikhail Yuryev, Rashid Giniatullin, Vootele Voikar, Claudio Rivera, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki, Neurotar LTD, University of Eastern Finland, University of Helsinki.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal’s brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Empty Value, Issue 88, awake, in vivo two-photon microscopy, blood vessels, dendrites, dendritic spines, Ca2+ imaging, intrinsic optical imaging, patch-clamp
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Optogenetic Stimulation of Escape Behavior in Drosophila melanogaster
Authors: Saskia E.J. de Vries, Tom Clandinin.
Institutions: Stanford University .
A growing number of genetically encoded tools are becoming available that allow non-invasive manipulation of the neural activity of specific neurons in Drosophila melanogaster1. Chief among these are optogenetic tools, which enable the activation or silencing of specific neurons in the intact and freely moving animal using bright light. Channelrhodopsin (ChR2) is a light-activated cation channel that, when activated by blue light, causes depolarization of neurons that express it. ChR2 has been effective for identifying neurons critical for specific behaviors, such as CO2 avoidance, proboscis extension and giant-fiber mediated startle response2-4. However, as the intense light sources used to stimulate ChR2 also stimulate photoreceptors, these optogenetic techniques have not previously been used in the visual system. Here, we combine an optogenetic approach with a mutation that impairs phototransduction to demonstrate that activation of a cluster of loom-sensitive neurons in the fly's optic lobe, Foma-1 neurons, can drive an escape behavior used to avoid collision. We used a null allele of a critical component of the phototransduction cascade, phospholipase C-β, encoded by the norpA gene, to render the flies blind and also use the Gal4-UAS transcriptional activator system to drive expression of ChR2 in the Foma-1 neurons. Individual flies are placed on a small platform surrounded by blue LEDs. When the LEDs are illuminated, the flies quickly take-off into flight, in a manner similar to visually driven loom-escape behavior. We believe that this technique can be easily adapted to examine other behaviors in freely moving flies.
Neurobiology, Issue 71, Neuroscience, Genetics, Anatomy, Physiology, Molecular Biology, Cellular Biology, Behavior, optogenetics, channelrhodopsin, ChR2, escape behavior, neurons, fruit fly, Drosophila melanogaster, animal model
Play Button
Isolation and Culture of Post-Natal Mouse Cerebellar Granule Neuron Progenitor Cells and Neurons
Authors: Hae Young Lee, Lloyd A. Greene, Carol A. Mason, M. Chiara Manzini.
Institutions: Columbia University , Columbia University , Columbia University , Harvard Medical School.
The cerebellar cortex is a well described structure that provides unique opportunities for studying neuronal properties and development1,2. Of the cerebellar neuronal types (granule cells, Purkinje cells and inhibitory interneurons), granule neurons are by far the most numerous and are the most abundant type of neurons in the mammalian brain. In rodents, cerebellar granule neurons are generated during the first two post-natal weeks from progenitor cells in the outermost layer of the cerebellar cortex, the external granule layer (EGL). The protocol presented here describes techniques to enrich and culture granule neurons and their progenitor cells from post-natal mouse cerebellum. We will describe procedures to obtain cultures of increasing purity3,4, which can be used to study the differentiation of proliferating progenitor cells into granule neurons5,6. Once the progenitor cells differentiate, the cultures also provide a homogenous population of granule neurons for experimental manipulation and characterization of phenomena such as synaptogenesis, glutamate receptor function7, interaction with other purified cerebellar cells8,9 or cell death7.
Neuroscience, Issue 23, cerebellum, cerebellar granule neuron progenitors, cerebellar granule neurons, external granule layer, culture, cell purification
Play Button
Electrophysiological Measurements and Analysis of Nociception in Human Infants
Authors: L. Fabrizi, A. Worley, D. Patten, S. Holdridge, L. Cornelissen, J. Meek, S. Boyd, R. Slater.
Institutions: University College London, Great Ormond Street Hospital, University College Hospital, University of Oxford.
Pain is an unpleasant sensory and emotional experience. Since infants cannot verbally report their experiences, current methods of pain assessment are based on behavioural and physiological body reactions, such as crying, body movements or changes in facial expression. While these measures demonstrate that infants mount a response following noxious stimulation, they are limited: they are based on activation of subcortical somatic and autonomic motor pathways that may not be reliably linked to central sensory processing in the brain. Knowledge of how the central nervous system responds to noxious events could provide an insight to how nociceptive information and pain is processed in newborns. The heel lancing procedure used to extract blood from hospitalised infants offers a unique opportunity to study pain in infancy. In this video we describe how electroencephalography (EEG) and electromyography (EMG) time-locked to this procedure can be used to investigate nociceptive activity in the brain and spinal cord. This integrative approach to the measurement of infant pain has the potential to pave the way for an effective and sensitive clinical measurement tool.
Neuroscience, Issue 58, pain, infant, electrophysiology, human development
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.