JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.
PUBLISHED: 02-19-2011
Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H(+)-ATPase-rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+)-Cl(-) co-transporter-rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso × Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.
Authors: Paul T. Kroeger Jr., Shahram Jevin Poureetezadi, Robert McKee, Jonathan Jou, Rachel Miceli, Rebecca A. Wingert.
Published: 07-14-2014
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.
24 Related JoVE Articles!
Play Button
Recording Electrical Activity from Identified Neurons in the Intact Brain of Transgenic Fish
Authors: Yali Zhao, Nancy L. Wayne.
Institutions: University of California, Los Angeles .
Understanding the cell physiology of neural circuits that regulate complex behaviors is greatly enhanced by using model systems in which this work can be performed in an intact brain preparation where the neural circuitry of the CNS remains intact. We use transgenic fish in which gonadotropin-releasing hormone (GnRH) neurons are genetically tagged with green fluorescent protein for identification in the intact brain. Fish have multiple populations of GnRH neurons, and their functions are dependent on their location in the brain and the GnRH gene that they express1 . We have focused our demonstration on GnRH3 neurons located in the terminal nerves (TN) associated with the olfactory bulbs using the intact brain of transgenic medaka fish (Figure 1B and C). Studies suggest that medaka TN-GnRH3 neurons are neuromodulatory, acting as a transmitter of information from the external environment to the central nervous system; they do not play a direct role in regulating pituitary-gonadal functions, as do the well-known hypothalamic GnRH1 neurons2, 3 .The tonic pattern of spontaneous action potential firing of TN-GnRH3 neurons is an intrinsic property4-6, the frequency of which is modulated by visual cues from conspecifics2 and the neuropeptide kisspeptin 15. In this video, we use a stable line of transgenic medaka in which TN-GnRH3 neurons express a transgene containing the promoter region of Gnrh3 linked to enhanced green fluorescent protein7 to show you how to identify neurons and monitor their electrical activity in the whole brain preparation6.
Neuroscience, Issue 74, Neurobiology, Cellular Biology, Molecular Biology, Anatomy, Physiology, Neuroendocrinology, Neurophysiology, Electrophysiology, Comparative, action potential, gonadotropin-releasing hormone, neuron, brain, teleost, animal model
Play Button
Gavaging Adult Zebrafish
Authors: Chereen Collymore, Skye Rasmussen, Ravi J. Tolwani.
Institutions: The Rockefeller University, The Rockefeller University.
The zebrafish has become an important in vivo model in biomedical research. Effective methods must be developed and utilized to deliver compounds or agents in solutions for scientific research. Current methods for administering compounds orally to adult zebrafish are inaccurate due to variability in voluntary consumption by the fish. A gavage procedure was developed to deliver precise quantities of infectious agents to zebrafish for study in biomedical research. Adult zebrafish over 6 months of age were anesthetized with 150 mg/L of buffered MS-222 and gavaged with 5 μl of solution using flexible catheter implantation tubing attached to a cut 22-G needle tip. The flexible tubing was lowered into the oral cavity of the zebrafish until the tip of the tubing extended past the gills (approximately 1 cm). The solution was then injected slowly into the intestinal tract. This method was effective 88% of the time, with fish recovering uneventfully. This procedure is also efficient as one person can gavage 20-30 fish in one hour. This method can be used to precisely administer agents for infectious diseases studies, or studies of other compounds in adult zebrafish.
Basic Protocols, Issue 78, Developmental Biology, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Intestines, animal biology, animal models, zebrafish, gavage, Danio rerio, medaka, animal model
Play Button
Dechorionation of Medaka Embryos and Cell Transplantation for the Generation of Chimeras
Authors: Sean R. Porazinski, Huijia Wang, Makoto Furutani-Seiki.
Institutions: University of Bath.
Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out 1. Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species 2, thus medaka and zebrafish are complementary for genetic dissection of the vertebrate genome functions. Manipulation of medaka embryos, such as dechorionation, mounting embryos for imaging and cell transplantation, are key procedures to work on both medaka and zebrafish in a laboratory. Cell transplantation examines cell autonomy of medaka mutations. Chimeras are generated by transplanting labeled cells from donor embryos into unlabeled recipient embryos. Donor cells can be transplanted to specific areas of the recipient embryos based on the fate maps 3 so that clones from transplanted cells can be integrated in the tissue of interest during development. Due to the hard chorion and soft embryos, manipulation of medaka embryos is more involved than in zebrafish. In this video, we show detailed procedures to manipulate medaka embryos.
Developmental Biology, Issue 46, medaka , zebrafish, evolution, mutant, vertebrate, genome function, development, genetics
Play Button
Using the optokinetic response to study visual function of zebrafish
Authors: Su-Qi Zou, Wu Yin, Ming-Jing Zhang, Chun-Rui Hu, Yu-Bin Huang, Bing Hu.
Institutions: University of Science and Technology of China (USTC).
Optokinetic response (OKR) is a behavior that an animal vibrates its eyes to follow a rotating grating around it. It has been widely used to assess the visual functions of larval zebrafish1-5. Nevertheless, the standard protocol for larval fish is not yet readily applicable in adult zabrafish. Here, we introduce how to measure the OKR of adult zebrafish with our simple custom-built apparatus using a new protocol which is established in our lab. Both our apparatus and step-by-step procedure of OKR in adult zebrafish are illustrated in this video. In addition, the measurements of the larval OKR, as well as the optomotor response (OMR) test of adult zebrafish, are also demonstrated in this video. This OKR assay of adult zebrafish in our experiment may last for up to 4 hours. Such OKR test applied in adult fish will benefit to visual function investigation more efficiently when the adult fish vision system is manipulated. Su-Qi Zou and Wu Yin contributed equally to this paper.
Neuroscience, Issue 36, Zebrafish, OKR, OMR, behavior, optokinetic, vision
Play Button
A Novel Light Damage Paradigm for Use in Retinal Regeneration Studies in Adult Zebrafish
Authors: Jennifer L. Thomas, Ryan Thummel.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
Neuroscience, Issue 80, Zebrafish, Retinal Degeneration, Retina, Photoreceptor, Müller glia, Light damage
Play Button
Micromanipulation of Gene Expression in the Adult Zebrafish Brain Using Cerebroventricular Microinjection of Morpholino Oligonucleotides
Authors: Caghan Kizil, Anne Iltzsche, Jan Kaslin, Michael Brand.
Institutions: Cluster of Excellence (CRTD) and Biotechnology Center (BIOTEC) of the Technische Universität Dresden.
Manipulation of gene expression in tissues is required to perform functional studies. In this paper, we demonstrate the cerebroventricular microinjection (CVMI) technique as a means to modulate gene expression in the adult zebrafish brain. By using CVMI, substances can be administered into the cerebroventricular fluid and be thoroughly distributed along the rostrocaudal axis of the brain. We particularly focus on the use of antisense morpholino oligonucleotides, which are potent tools for knocking down gene expression in vivo. In our method, when applied, morpholino molecules are taken up by the cells lining the ventricular surface. These cells include the radial glial cells, which act as neurogenic progenitors. Therefore, knocking down gene expression in the radial glial cells is of utmost importance to analyze the widespread neurogenesis response in zebrafish, and also would provide insight into how vertebrates could sustain adult neurogenesis response. Such an understanding would also help the efforts for clinical applications in human neurodegenerative disorders and central nervous system regeneration. Thus, we present the cerebroventricular microinjection method as a quick and efficient way to alter gene expression and neurogenesis response in the adult zebrafish forebrain. We also provide troubleshooting tips and other useful information on how to carry out the CVMI procedure.
Neurobiology, Issue 75, Neuroscience, Genetics, Molecular Biology, Cellular Biology, Developmental Biology, Biochemistry, Brain, Zebrafish, Morpholinos, Gene Knockdown Techniques, morpholino oligonucleotides, cerebroventricular microinjection, neurosciences, radial glial cells, microinjection, gene expression, Danio rerio, animal model
Play Button
Stab Wound Injury of the Zebrafish Adult Telencephalon: A Method to Investigate Vertebrate Brain Neurogenesis and Regeneration
Authors: Rebecca Schmidt, Tanja Beil, Uwe Strähle, Sepand Rastegar.
Institutions: Karlsruhe Institute of Technology.
Adult zebrafish have an amazing capacity to regenerate their central nervous system after injury. To investigate the cellular response and the molecular mechanisms involved in zebrafish adult central nervous system (CNS) regeneration and repair, we developed a zebrafish model of adult telencephalic injury. In this approach, we manually generate an injury by pushing an insulin syringe needle into the zebrafish adult telencephalon. At different post injury days, fish are sacrificed, their brains are dissected out and stained by immunohistochemistry and/or in situ hybridization (ISH) with appropriate markers to observe cell proliferation, gliogenesis, and neurogenesis. The contralateral unlesioned hemisphere serves as an internal control. This method combined for example with RNA deep sequencing can help to screen for new genes with a role in zebrafish adult telencephalon neurogenesis, regeneration, and repair.
Neuroscience, Issue 90, zebrafish, adult neurogenesis, telencephalon regeneration, stab wound, central nervous system, adult neural stem cell
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Microinjection of Medaka Embryos for use as a Model Genetic Organism
Authors: Sean R. Porazinski, Huijia Wang, Makoto Furutani-Seiki.
Institutions: University of Bath.
In this video, we demonstrate the technique of microinjection into one-cell stage medaka embryos. Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out 1, as in zebrafish and the mouse. Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species 2, thus medaka and zebrafish are complementary for genetic dissection of vertebrate genome functions. To take advantage of medaka fish whose embryos are transparent and develop externally, microinjection is an essential technique to inject cell-tracers for labeling cells, mRNAs or anti-sense oligonucleotides for over-expressing and knocking-down genes of interest, and DNAs for making transgenic lines.
Developmental Biology, Issue 46, medaka , zebrafish, evolution, mutant, vertebrate, genome function
Play Button
Motor Nerve Transection and Time-lapse Imaging of Glial Cell Behaviors in Live Zebrafish
Authors: Gwendolyn M. Lewis, Sarah Kucenas.
Institutions: University of Virginia .
The nervous system is often described as a hard-wired component of the body even though it is a considerably fluid organ system that reacts to external stimuli in a consistent, stereotyped manner, while maintaining incredible flexibility and plasticity. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) is capable of significant repair, but we have only just begun to understand the cellular and molecular mechanisms that govern this phenomenon. Using zebrafish as a model system, we have the unprecedented opportunity to couple regenerative studies with in vivo imaging and genetic manipulation. Peripheral nerves are composed of axons surrounded by layers of glia and connective tissue. Axons are ensheathed by myelinating or non-myelinating Schwann cells, which are in turn wrapped into a fascicle by a cellular sheath called the perineurium. Following an injury, adult peripheral nerves have the remarkable capacity to remove damaged axonal debris and re-innervate targets. To investigate the roles of all peripheral glia in PNS regeneration, we describe here an axon transection assay that uses a commercially available nitrogen-pumped dye laser to axotomize motor nerves in live transgenic zebrafish. We further describe the methods to couple these experiments to time-lapse imaging of injured and control nerves. This experimental paradigm can be used to not only assess the role that glia play in nerve regeneration, but can also be the platform for elucidating the molecular mechanisms that govern nervous system repair.
Neuroscience, Issue 76, Neurobiology, Cellular Biology, Molecular Biology, Genetics, Developmental Biology, Neuroglia, Zebrafish, Danio rerio, Nerve Regeneration, laser transection, nerve injury, glia, glial cell, in vivo imaging, imaging, nerves, embryos, CNS, PNS, confocal microscopy, microdissection, animal model
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish
Authors: Hans Maaswinkel, Liqun Zhu, Wei Weng.
Institutions: xyZfish.
Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.
Behavior, Issue 82, neuroscience, Zebrafish, Danio rerio, anxiety, Shoaling, Pharmacology, 3D-tracking, MK801
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization
Authors: Christina N. Cheng, Yue Li, Amanda N. Marra, Valerie Verdun, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Developmental Biology, Issue 89, animals, vertebrates, fishes, zebrafish, growth and development, morphogenesis, embryonic and fetal development, organogenesis, natural science disciplines, embryo, whole mount in situ hybridization, flat mount, deyolking, imaging
Play Button
Whole Mount in Situ Hybridization of E8.5 to E11.5 Mouse Embryos
Authors: Qiaozhi Wei, Nancy R. Manley, Brian G. Condie.
Institutions: University of Georgia.
Whole mount in situ hybridization is a very informative approach for defining gene expression patterns in embryos. The in situ hybridization procedures are lengthy and technically demanding with multiple important steps that collectively contribute to the quality of the final result. This protocol describes in detail several key quality control steps for optimizing probe labeling and performance. Overall, our protocol provides a detailed description of the critical steps necessary to reproducibly obtain high quality results. First, we describe the generation of digoxygenin (DIG) labeled RNA probes via in vitro transcription of DNA templates generated by PCR. We describe three critical quality control assays to determine the amount, integrity and specific activity of the DIG-labeled probes. These steps are important for generating a probe of sufficient sensitivity to detect endogenous mRNAs in a whole mouse embryo. In addition, we describe methods for the fixation and storage of E8.5-E11.5 day old mouse embryos for in situ hybridization. Then, we describe detailed methods for limited proteinase K digestion of the rehydrated embryos followed by the details of the hybridization conditions, post-hybridization washes and RNase treatment to remove non-specific probe hybridization. An AP-conjugated antibody is used to visualize the labeled probe and reveal the expression pattern of the endogenous transcript. Representative results are shown from successful experiments and typical suboptimal experiments.
Developmental Biology, Issue 56, transcriptome, in situ hybridization, mouse embryo, gene expression, transcripts, mRNA, in vitro transcription, riboprobe
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
An Assay for Lateral Line Regeneration in Adult Zebrafish
Authors: Gina C. Pisano, Samantha M. Mason, Nyembezi Dhliwayo, Robert V. Intine, Michael P. Sarras, Jr..
Institutions: Dr. William M Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Rosalind Franklin University of Medicine and Science.
Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al.17 that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.
Developmental Biology, Issue 86, Zebrafish, lateral line regeneration, lateral line development, neuromasts, hair cell regeneration, disease models
Play Button
Dissection, Culture, and Analysis of Xenopus laevis Embryonic Retinal Tissue
Authors: Molly J. McDonough, Chelsea E. Allen, Ng-Kwet-Leok A. Ng-Sui-Hing, Brian A. Rabe, Brittany B. Lewis, Margaret S. Saha.
Institutions: College of William and Mary.
The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation1-16. The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates 12,14-18. While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells 7,19-23. For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues 8,19-22,24-33. Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level 5,8,21,24,27-30,33-39. Xenopus laevis, a classic model system for the study of early neural development 19,27,29,31-32,40-42, serves as a particularly suitable system for retinal primary cell culture 10,38,43-45. Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction 25,38,43. In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of incubation or other sera-based products 10,24,44-45. However, the isolation of the retinal tissue from surrounding tissues and the subsequent processing is challenging. Here, we present a method for the dissection and dissociation of retinal cells in Xenopus laevis that will be used to prepare primary cell cultures that will, in turn, be analyzed for calcium activity and gene expression at the resolution of single cells. While the topic presented in this paper is the analysis of spontaneous calcium transients, the technique is broadly applicable to a wide array of research questions and approaches (Figure 1).
Developmental Biology, Issue 70, Neuroscience, Cellular Biology, Surgery, Anatomy, Physiology, Ophthalmology, retina, primary cell culture, dissection, confocal microscopy, calcium imaging, fluorescent in situ hybridization, FISH, Xenopus laevis, animal model
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
Play Button
In Vitro Nuclear Assembly Using Fractionated Xenopus Egg Extracts
Authors: Marie Cross, Maureen Powers.
Institutions: Emory University.
Nuclear membrane assembly is an essential step in the cell division cycle; this process can be replicated in the test tube by combining Xenopus sperm chromatin, cytosol, and light membrane fractions. Complete nuclei are formed, including nuclear membranes with pore complexes, and these reconstituted nuclei are capable of normal nuclear processes.
Cellular Biology, Issue 19, Current Protocols Wiley, Xenopus Egg Extracts, Nuclear Assembly, Nuclear Membrane
Play Button
Transplantation of Whole Kidney Marrow in Adult Zebrafish
Authors: Jocelyn LeBlanc, Teresa Venezia Bowman, Leonard Zon.
Institutions: Harvard Medical School.
Hematopoietic stem cells (HSC) are a rare population of pluripotent cells that maintain all the differentiated blood lineages throughout the life of an organism. The functional definition of a HSC is a transplanted cell that has the ability to reconstitute all the blood lineages of an irradiated recipient long term. This designation was established by decades of seminal work in mammalian systems. Using hematopoietic cell transplantation (HCT) and reverse genetic manipulations in the mouse, the underlying regulatory factors of HSC biology are beginning to be unveiled, but are still largely under-explored. Recently, the zebrafish has emerged as a powerful genetic model to study vertebrate hematopoiesis. Establishing HCT in zebrafish will allow scientists to utilize the large-scale genetic and chemical screening methodologies available in zebrafish to reveal novel mechanisms underlying HSC regulation. In this article, we demonstrate a method to perform HCT in adult zebrafish. We show the dissection and preparation of zebrafish whole kidney marrow, the site of adult hematopoiesis in the zebrafish, and the introduction of these donor cells into the circulation of irradiated recipient fish via intracardiac injection. Additionally, we describe the post-transplant care of fish in an "ICU" to increase their long-term health. In general, gentle care of the fish before, during, and after the transplant is critical to increase the number of fish that will survive more than one month following the procedure, which is essential for assessment of long term (<3 month) engraftment. The experimental data used to establish this protocol will be published elsewhere. The establishment of this protocol will allow for the merger of large-scale zebrafish genetics and transplant biology.
Developmental Biology, Issue 2, zebrafish, HSC, stem cells, transplant
Play Button
Mosaic Zebrafish Transgenesis for Evaluating Enhancer Sequences
Authors: Erika Kague, Christopher Weber, Shannon Fisher.
Institutions: University of Pennsylvania .
The completion of the human genome sequence, along with that of many other species, has highlighted the challenge of ascribing specific function to non coding sequences. One prominent function carried out by the non coding fraction of the genome is to regulate gene transcription; however, there are no effective methods to broadly predict cis-regulatory elements from primary DNA sequence. We have developed an efficient protocol to functionally evaluate potential cis-regulatory elements through zebrafish transgenesis. Our approach offers significant advantages over cell-culture based techniques for developmentally important genes, since it provides information on spatial and temporal gene regulation. Conversely, it is faster and less expensive than similar experiments in transgenic mice, and we routinely apply it to sequences isolated from the human genome. Here we demonstrate our approach to selecting elements for testing based on sequence conservation and our protocol for cloning sequences and microinjecting them into zebrafish embryos.
Cellular Biology, Issue 41, zebrafish, transgenesis, microinjection, GFP, enhancers, transposon
Play Button
Preparation and Fractionation of Xenopus laevis Egg Extracts
Authors: Marie K. Cross, Maureen Powers.
Institutions: Emory University.
Crude and fractionated Xenopus egg extracts can be used to provide ingredients for reconstituting cellular processes for morphological and biochemical analysis. Egg lysis and differential centrifugation are used to prepare the crude extract which in turn in used to prepare fractionated extracts and light membrane preparations.
Cellular Biology, Issue 18, Current Protocols Wiley, Xenopus laevis, Egg Extracts, Density Gradient Centrifugation, Light Membrane Fraction, Nuclear Fraction
Play Button
Obtaining Eggs from Xenopus laevis Females
Authors: Marie K. Cross, Maureen Powers.
Institutions: Emory University.
The eggs of Xenopus laevis intact, lysed, and/or fractionated are useful for a wide variety of experiments. This protocol shows how to induce egg laying, collect and dejelly the eggs, and sort the eggs to remove any damaged eggs.
Basic Protocols, Issue 18, Current Protocols Wiley, Eggs, Xenopus laevis
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.