JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.
PUBLISHED: 07-11-2011
The current protocols for generation of induced pluripotent stem (iPS) cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs) using small molecules.
A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases. Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner.
22 Related JoVE Articles!
Play Button
In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors
Authors: Açelya Yilmazer, Irene de Lázaro, Cyrill Bussy, Kostas Kostarelos.
Institutions: University College London, University of Manchester.
Induced pluripotent stem (iPS) cells that result from the reprogramming of somatic cells to a pluripotent state by forced expression of defined factors are offering new opportunities for regenerative medicine. Such clinical applications of iPS cells have been limited so far, mainly due to the poor efficiency of the existing reprogramming methodologies and the risk of the generated iPS cells to form tumors upon implantation. We hypothesized that the reprogramming of somatic cells towards pluripotency could be achieved in vivo by gene transfer of reprogramming factors. In order to efficiently reprogram cells in vivo, high levels of the Yamanaka (OKSM) transcription factors need to be expressed at the target tissue. This can be achieved by using different viral or nonviral gene vectors depending on the target tissue. In this particular study, hydrodynamic tail-vein (HTV) injection of plasmid DNA was used to deliver the OKSM factors to mouse hepatocytes. This provided proof-of-evidence of in vivo reprogramming of adult, somatic cells towards a pluripotent state with high efficiency and fast kinetics. Furthermore no tumor or teratoma formation was observed in situ. It can be concluded that reprogramming somatic cells in vivo may offer a potential approach to induce enhanced pluripotency rapidly, efficiently, and safely compared to in vitro performed protocols and can be applied to different tissue types in the future.
Stem Cell Biology, Issue 82, Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Transcription Factors, General, Gene Therapy, Gene Expression, iPS, OKSM, regenerative medicine
Play Button
Efficient iPS Cell Generation from Blood Using Episomes and HDAC Inhibitors
Authors: Jesse J. Hubbard, Spencer K. Sullivan, Jason A. Mills, Brian J. Hayes, Beverly J. Torok-Storb, Aravind Ramakrishnan.
Institutions: Fred Hutchinson Cancer Research Center, The Children's Hospital of Philadelphia, The Children's Hospital of Philadelphia.
This manuscript illustrates a protocol for efficiently creating integration-free human induced pluripotent stem cells (iPSCs) from peripheral blood using episomal plasmids and histone deacetylase (HDAC) inhibitors. The advantages of this approach include: (1) the use of a minimal amount of peripheral blood as a source material; (2) nonintegrating reprogramming vectors; (3) a cost effective method for generating vector free iPSCs; (4) a single transfection; and (5) the use of small molecules to facilitate epigenetic reprogramming. Briefly, peripheral blood mononuclear cells (PBMCs) are isolated from routine phlebotomy samples and then cultured in defined growth factors to yield a highly proliferative erythrocyte progenitor cell population that is remarkably amenable to reprogramming. Nonintegrating, nontransmissible episomal plasmids expressing OCT4, SOX2, KLF4, MYCL, LIN28A, and a p53 short hairpin (sh)RNA are introduced into the derived erythroblasts via a single nucleofection. Cotransfection of an episome that expresses enhanced green fluorescent protein (eGFP) allows for easy identification of transfected cells. A separate replication-deficient plasmid expressing Epstein-Barr nuclear antigen 1 (EBNA1) is also added to the reaction mixture for increased expression of episomal proteins. Transfected cells are then plated onto a layer of irradiated mouse embryonic fibroblasts (iMEFs) for continued reprogramming. As soon as iPSC-like colonies appear at about twelve days after nucleofection, HDAC inhibitors are added to the medium to facilitate epigenetic remodeling. We have found that the inclusion of HDAC inhibitors routinely increases the generation of fully reprogrammed iPSC colonies by 2 fold. Once iPSC colonies exhibit typical human embryonic stem cell (hESC) morphology, they are gently transferred to individual iMEF-coated tissue culture plates for continued growth and expansion.
Cellular Biology, Issue 92, Induced pluripotent stem cells, iPSC, iPSC generation, human, HDAC inhibitors, histone deacetylase inhibitors, reprogramming, episomes, integration-free
Play Button
Generation of Induced Pluripotent Stem Cells by Reprogramming Mouse Embryonic Fibroblasts with a Four Transcription Factor, Doxycycline Inducible Lentiviral Transduction System
Authors: Brad Hamilton, Qiang Feng, Mike Ye, G Grant Welstead.
Institutions: Stemgent, MIT - Massachusetts Institute of Technology.
Using a defined set of transcription factors and cell culture conditions, Yamanaka and colleagues demonstrated that retrovirus-mediated delivery and expression of Oct4, Sox2, c-Myc, and Klf4 is capable of inducing pluripotency in mouse fibroblasts.1 Subsequent reports have demonstrated the utility of the doxycycline (DOX) inducible lentiviral delivery system for the generation of both primary and secondary iPS cells from a variety of other adult mouse somatic cell types.2,3 Induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells in morphology, proliferation and ability to induce teratoma formation. Both types of cell can be used as the pluripotent starting material for the generation of differentiated cells or tissues in regenerative medicine.4-6 iPS cells also have a distinct advantage over ES cells as they exhibit key properties of ES cells without the ethical dilemma of embryo destruction. Here we demonstrate the protocol for reprogramming mouse embryonic fibroblast (MEF) cells with the Stemgent DOX Inducible Mouse TF Lentivirus Set. We also demonstrate that the Stemgent DOX Inducible Mouse TF Lentivirus Set is capable of expressing each of the four transcription factors upon transduction into MEFs thereby inducing a pluripotent stem cell state that displays the pluripotency markers characteristic of ES cells.
Developmental Biology, Issue 33, reprogramming, Doxycycline, DOX, iPS, induced pluripotent stem cells, lentivirus, pluripotency, transduction, stem cells
Play Button
Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral Vector with GFP
Authors: Kun-Yong Kim, Eriona Hysolli, In-Hyun Park.
Institutions: Yale School of Medicine.
Human embryonic stem cells (hESCs) are pluripotent and an invaluable cellular sources for in vitro disease modeling and regenerative medicine1. It has been previously shown that human somatic cells can be reprogrammed to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) and become induced pluripotent stem cells (iPSCs)2-4 . Like hESCs, human iPSCs are pluripotent and a potential source for autologous cells. Here we describe the protocol to reprogram human fibroblast cells with the four reprogramming factors cloned into GFP-containing retroviral backbone4. Using the following protocol, we generate human iPSCs in 3-4 weeks under human ESC culture condition. Human iPSC colonies closely resemble hESCs in morphology and display the loss of GFP fluorescence as a result of retroviral transgene silencing. iPSC colonies isolated mechanically under a fluorescence microscope behave in a similar fashion as hESCs. In these cells, we detect the expression of multiple pluripotency genes and surface markers.
Stem Cell Biology, Issue 62, Human iPS cells, iPSCs, Reprogramming, Retroviral vectors and Pluripotency
Play Button
Selecting and Isolating Colonies of Human Induced Pluripotent Stem Cells Reprogrammed from Adult Fibroblasts
Authors: Urszula Polak, Calley Hirsch, Sherman Ku, Joel Gottesfeld, Sharon Y.R. Dent, Marek Napierala.
Institutions: University of Texas M.D. Anderson Cancer Center, Poznan University of Medical Sciences, The Scripps Research Institute.
Herein we present a protocol of reprogramming human adult fibroblasts into human induced pluripotent stem cells (hiPSC) using retroviral vectors encoding Oct3/4, Sox2, Klf4 and c-myc (OSKM) in the presence of sodium butyrate 1-3. We used this method to reprogram late passage (>p10) human adult fibroblasts derived from Friedreich's ataxia patient (GM03665, Coriell Repository). The reprogramming approach includes highly efficient transduction protocol using repetitive centrifugation of fibroblasts in the presence of virus-containing media. The reprogrammed hiPSC colonies were identified using live immunostaining for Tra-1-81, a surface marker of pluripotent cells, separated from non-reprogrammed fibroblasts and manually passaged 4,5. These hiPSC were then transferred to Matrigel plates and grown in feeder-free conditions, directly from the reprogramming plate. Starting from the first passage, hiPSC colonies demonstrate characteristic hES-like morphology. Using this protocol more than 70% of selected colonies can be successfully expanded and established into cell lines. The established hiPSC lines displayed characteristic pluripotency markers including surface markers TRA-1-60 and SSEA-4, as well as nuclear markers Oct3/4, Sox2 and Nanog. The protocol presented here has been established and tested using adult fibroblasts obtained from Friedreich's ataxia patients and control individuals 6, human newborn fibroblasts, as well as human keratinocytes.
Developmental Biology, Issue 60, stem cells, induced pluripotent stem cells, iPSC, somatic cell reprogramming, pluripotency, retroviral transduction
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Isolation, Culture, and Transplantation of Muscle Satellite Cells
Authors: Norio Motohashi, Yoko Asakura, Atsushi Asakura.
Institutions: University of Minnesota Medical School.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors. However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.
Cellular Biology, Issue 86, skeletal muscle, muscle stem cell, satellite cell, regeneration, myoblast transplantation, muscular dystrophy, self-renewal, differentiation, myogenesis
Play Button
Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons
Authors: Marisa Karow, Christian Schichor, Ruth Beckervordersandforth, Benedikt Berninger.
Institutions: Ludwig Maximilians University Munich, Ludwig-Maximilians University Munich, Friedrich-Alexander-Universität Erlangen-Nürnberg, Johannes Gutenberg University Mainz.
Direct lineage-reprogramming of non-neuronal cells into induced neurons (iNs) may provide insights into the molecular mechanisms underlying neurogenesis and enable new strategies for in vitro modeling or repairing the diseased brain. Identifying brain-resident non-neuronal cell types amenable to direct conversion into iNs might allow for launching such an approach in situ, i.e. within the damaged brain tissue. Here we describe a protocol developed in the attempt of identifying cells derived from the adult human brain that fulfill this premise. This protocol involves: (1) the culturing of human cells from the cerebral cortex obtained from adult human brain biopsies; (2) the in vitro expansion (approximately requiring 2-4 weeks) and characterization of the culture by immunocytochemistry and flow cytometry; (3) the enrichment by fluorescence-activated cell sorting (FACS) using anti-PDGF receptor-β and anti-CD146 antibodies; (4) the retrovirus-mediated transduction with the neurogenic transcription factors sox2 and ascl1; (5) and finally the characterization of the resultant pericyte-derived induced neurons (PdiNs) by immunocytochemistry (14 days to 8 weeks following retroviral transduction). At this stage, iNs can be probed for their electrical properties by patch-clamp recording. This protocol provides a highly reproducible procedure for the in vitro lineage conversion of brain-resident pericytes into functional human iNs.
Neuroscience, Issue 87, Pericytes, lineage-reprogramming, induced neurons, cerebral cortex
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
Play Button
Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Authors: Xuejun H. Parsons, Yang D. Teng, James F. Parsons, Evan Y. Snyder, David B. Smotrich, Dennis A. Moore.
Institutions: San Diego Regenerative Medicine Institute, Xcelthera, Harvard Medical School, VA Boston Healthcare System, Sanford-Burnham Medical Research Institute, La Jolla IVF.
To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering1-3. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart1-3. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery1-3. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration4,5. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity6-8 (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic9-11. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules12 (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics.
Developmental Biology, Issue 57, human embryonic stem cell, human, cardiac progenitor, cardiomyocytes, human pluripotent cell, cardiac differentiation, small molecule induction, cell culture, cell therapy
Play Button
Generation of Induced Pluripotent Stem Cells by Reprogramming Human Fibroblasts with the Stemgent Human TF Lentivirus Set
Authors: Dongmei Wu, Brad Hamilton, Charles Martin, Yan Gao, Mike Ye, Shuyuan Yao.
Institutions: Stemgent.
In 2006, Yamanaka and colleagues first demonstrated that retrovirus-mediated delivery and expression of Oct4, Sox2, c-Myc and Klf4 is capable of inducing the pluripotent state in mouse fibroblasts.1 The same group also reported the successful reprogramming of human somatic cells into induced pluripotent stem (iPS) cells using human versions of the same transcription factors delivered by retroviral vectors.2 Additionally, James Thomson et al. reported that the lentivirus-mediated co-expression of another set of factors (Oct4, Sox2, Nanog and Lin28) was capable of reprogramming human somatic cells into iPS cells.3 iPS cells are similar to ES cells in morphology, proliferation and the ability to differentiate into all tissue types of the body. Human iPS cells have a distinct advantage over ES cells as they exhibit key properties of ES cells without the ethical dilemma of embryo destruction. The generation of patient-specific iPS cells circumvents an important roadblock to personalized regenerative medicine therapies by eliminating the potential for immune rejection of non-autologous transplanted cells. Here we demonstrate the protocol for reprogramming human fibroblast cells using the Stemgent Human TF Lentivirus Set. We also show that cells reprogrammed with this set begin to show iPS morphology four days post-transduction. Using the Stemolecule Y27632, we selected for iPS cells and observed correct morphology after three sequential rounds of colony picking and passaging. We also demonstrate that after reprogramming cells displayed the pluripotency marker AP, surface markers TRA-1-81, TRA-1-60, SSEA-4, and SSEA-3, and nuclear markers Oct4, Sox2 and Nanog.
Developmental Biology, Issue 34, iPS, reprogramming, lentivirus, stem cell, induced pluripotent cell, pluripotency, fibroblast, embryonic stem cells, ES cells, iPS cells
Play Button
In Vitro Synthesis of Modified mRNA for Induction of Protein Expression in Human Cells
Authors: Meltem Avci-Adali, Andreas Behring, Heidrun Steinle, Timea Keller, Stefanie Krajeweski, Christian Schlensak, Hans P. Wendel.
Institutions: University Hospital Tuebingen.
The exogenous delivery of coding synthetic messenger RNA (mRNA) for induction of protein synthesis in desired cells has enormous potential in the fields of regenerative medicine, basic cell biology, treatment of diseases, and reprogramming of cells. Here, we describe a step by step protocol for generation of modified mRNA with reduced immune activation potential and increased stability, quality control of produced mRNA, transfection of cells with mRNA and verification of the induced protein expression by flow cytometry. Up to 3 days after a single transfection with eGFP mRNA, the transfected HEK293 cells produce eGFP. In this video article, the synthesis of eGFP mRNA is described as an example. However, the procedure can be applied for production of other desired mRNA. Using the synthetic modified mRNA, cells can be induced to transiently express the desired proteins, which they normally would not express.
Genetics, Issue 93, mRNA synthesis, in vitro transcription, modification, transfection, protein synthesis, eGFP, flow cytometry
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
Play Button
Cell Surface Marker Mediated Purification of iPS Cell Intermediates from a Reprogrammable Mouse Model
Authors: Christian M. Nefzger, Sara Alaei, Anja S. Knaupp, Melissa L. Holmes, Jose M. Polo.
Institutions: Monash University, Monash University.
Mature cells can be reprogrammed to a pluripotent state. These so called induced pluripotent stem (iPS) cells are able to give rise to all cell types of the body and consequently have vast potential for regenerative medicine applications. Traditionally iPS cells are generated by viral introduction of transcription factors Oct-4, Klf-4, Sox-2, and c-Myc (OKSM) into fibroblasts. However, reprogramming is an inefficient process with only 0.1-1% of cells reverting towards a pluripotent state, making it difficult to study the reprogramming mechanism. A proven methodology that has allowed the study of the reprogramming process is to separate the rare intermediates of the reaction from the refractory bulk population. In the case of mouse embryonic fibroblasts (MEFs), we and others have previously shown that reprogramming cells undergo a distinct series of changes in the expression profile of cell surface markers which can be used for the separation of these cells. During the early stages of OKSM expression successfully reprogramming cells lose fibroblast identity marker Thy-1.2 and up-regulate pluripotency associated marker Ssea-1. The final transition of a subset of Ssea-1 positive cells towards the pluripotent state is marked by the expression of Epcam during the late stages of reprogramming. Here we provide a detailed description of the methodology used to isolate reprogramming intermediates from cultures of reprogramming MEFs. In order to increase experimental reproducibility we use a reprogrammable mouse strain that has been engineered to express a transcriptional transactivator (m2rtTA) under control of the Rosa26 locus and OKSM under control of a doxycycline responsive promoter. Cells isolated from these mice are isogenic and express OKSM homogenously upon addition of doxycycline. We describe in detail the establishment of the reprogrammable mice, the derivation of MEFs, and the subsequent isolation of intermediates during reprogramming into iPS cells via fluorescent activated cells sorting (FACS).
Stem Cell Biology, Issue 91, Induced pluripotent stem cells; reprogramming; intermediates; fluorescent activated cells sorting; cell surface marker; reprogrammable mouse model; derivation of mouse embryonic fibroblasts
Play Button
Derivation and Characterization of a Transgene-free Human Induced Pluripotent Stem Cell Line and Conversion into Defined Clinical-grade Conditions
Authors: Jason P. Awe, Agustin Vega-Crespo, James A. Byrne.
Institutions: University of California, Los Angeles (UCLA), University of California, Los Angeles (UCLA).
Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications1. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context2. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences3. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology—provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications—for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.
Stem Cell Biology, Issue 93, Human induced pluripotent stem cells, STEMCCA, factor-free, GMP, xeno-free, quantitative PCR
Play Button
Generation of Mice Derived from Induced Pluripotent Stem Cells
Authors: Michael J. Boland, Jennifer L. Hazen, Kristopher L. Nazor, Alberto R. Rodriguez, Greg Martin, Sergey Kupriyanov, Kristin K. Baldwin.
Institutions: The Scripps Research Institute , The Scripps Research Institute .
The production of induced pluripotent stem cells (iPSCs) from somatic cells provides a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. iPSCs may be generated using multiple protocols and derived from multiple cell sources. Once generated, iPSCs are tested using a variety of assays including immunostaining for pluripotency markers, generation of three germ layers in embryoid bodies and teratomas, comparisons of gene expression with embryonic stem cells (ESCs) and production of chimeric mice with or without germline contribution2. Importantly, iPSC lines that pass these tests still vary in their capacity to produce different differentiated cell types2. This has made it difficult to establish which iPSC derivation protocols, donor cell sources or selection methods are most useful for different applications. The most stringent test of whether a stem cell line has sufficient developmental potential to generate all tissues required for survival of an organism (termed full pluripotency) is tetraploid embryo complementation (TEC)3-5. Technically, TEC involves electrofusion of two-cell embryos to generate tetraploid (4n) one-cell embryos that can be cultured in vitro to the blastocyst stage6. Diploid (2n) pluripotent stem cells (e.g. ESCs or iPSCs) are then injected into the blastocoel cavity of the tetraploid blastocyst and transferred to a recipient female for gestation (see Figure 1). The tetraploid component of the complemented embryo contributes almost exclusively to the extraembryonic tissues (placenta, yolk sac), whereas the diploid cells constitute the embryo proper, resulting in a fetus derived entirely from the injected stem cell line. Recently, we reported the derivation of iPSC lines that reproducibly generate adult mice via TEC1. These iPSC lines give rise to viable pups with efficiencies of 5-13%, which is comparable to ESCs3,4,7 and higher than that reported for most other iPSC lines8-12. These reports show that direct reprogramming can produce fully pluripotent iPSCs that match ESCs in their developmental potential and efficiency of generating pups in TEC tests. At present, it is not clear what distinguishes between fully pluripotent iPSCs and less potent lines13-15. Nor is it clear which reprogramming methods will produce these lines with the highest efficiency. Here we describe one method that produces fully pluripotent iPSCs and "all- iPSC" mice, which may be helpful for investigators wishing to compare the pluripotency of iPSC lines or establish the equivalence of different reprogramming methods.
Stem Cell Biology, Issue 69, Molecular Biology, Developmental Biology, Medicine, Cellular Biology, Induced pluripotent stem cells, iPSC, stem cells, reprogramming, developmental potential, tetraploid embryo complementation, mouse
Play Button
MicroRNA Expression Profiles of Human iPS Cells, Retinal Pigment Epithelium Derived From iPS, and Fetal Retinal Pigment Epithelium
Authors: Whitney A. Greene, Alberto. Muñiz, Mark L. Plamper, Ramesh R. Kaini, Heuy-Ching Wang.
Institutions: JBSA Fort Sam Houston.
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.
Molecular Biology, Issue 88, microRNA, microarray, human induced-pluripotent stem cells, retinal pigmented epithelium
Play Button
Generation of Myospheres From hESCs by Epigenetic Reprogramming
Authors: Sonia Albini, Pier Lorenzo Puri.
Institutions: Sanford-Burnham Institute for Medical Research, IRCCS Fondazione Santa Lucia.
Generation of a homogeneous and abundant population of skeletal muscle cells from human embryonic stem cells (hESCs) is a requirement for cell-based therapies and for a "disease in a dish" model of human neuromuscular diseases. Major hurdles, such as low abundance and heterogeneity of the population of interest, as well as a lack of protocols for the formation of three-dimensional contractile structures, have limited the applications of stem cells for neuromuscular disorders. We have designed a protocol that overcomes these limits by ectopic introduction of defined factors in hESCs - the muscle determination factor MyoD and SWI/SNF chromatin remodeling complex component BAF60C - that are able to reprogram hESCs into skeletal muscle cells. Here we describe the protocol established to generate hESC-derived myoblasts and promote their clustering into tridimensional miniaturized structures (myospheres) that functionally mimic miniaturized skeletal muscles7.
Bioengineering, Issue 88, Tissues, Cells, Embryonic Structures, Musculoskeletal System, Musculoskeletal Diseases, hESC, epinegetics, Skeletal Myogenesis, Myosphere, Chromatin, Lentivirus, Infection
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Targeted Expression of GFP in the Hair Follicle Using Ex Vivo Viral Transduction
Authors: Robert M. Hoffman, Lingna Li.
Institutions: AntiCancer, Inc..
There are many cell types in the hair follicle, including hair matrix cells which form the hair shaft and stem cells which can initiate the hair shaft during early anagen, the growth phase of the hair cycle, as well as pluripotent stem cells that play a role in hair follicle growth but have the potential to differentiate to non-follicle cells such as neurons. These properties of the hair follicle are discussed. The various cell types of the hair follicle are potential targets for gene therapy. Gene delivery system for the hair follicle using viral vectors or liposomes for gene targeting to the various cell types in the hair follicle and the results obtained are also discussed.
Cellular Biology, Issue 13, Springer Protocols, hair follicles, liposomes, adenovirus, genes, stem cells
Play Button
Generating iPS Cells from MEFS through Forced Expression of Sox-2, Oct-4, c-Myc, and Klf4
Authors: G. Grant Welstead, Tobias Brambrink, Rudolf Jaenisch.
Institutions: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology.
Pluripotency can be induced in differentiated murine by viral transduction of Oct4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006; Wernig, et al., 2007; Okita, et al., 2007; Maherali, et al., 2007). We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors (Brambrink et al., 2008). Using these inducible constructs, we can derive induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs). In this video, we demonstrate the procedure for the generation of inducible lentiviruses that express the four transcription factors and show how to infect MEFs with these viruses in order to produce iPS cells. By using inducible lentiviruses, the expression of the four factors in controlled by the addition of doxycyline to the culture medium. The advantage of this system over the traditional retroviral infection is the ability to turn the genes on and off so that the kinetics of reprogramming and gene expression requirements can be analyzed in detail.
Cell Biology, Issue 14, Reprogramming, inducible lentiviruses, iPS cells, MEFs, ES cells, virus transduction, doxycycline
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.