JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
PI3Ks maintain the structural integrity of T-tubules in cardiac myocytes.
PUBLISHED: 05-12-2011
Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently.
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Published: 10-15-2014
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
23 Related JoVE Articles!
Play Button
Live Cell Imaging of Primary Rat Neonatal Cardiomyocytes Following Adenoviral and Lentiviral Transduction Using Confocal Spinning Disk Microscopy
Authors: Takashi Sakurai, Anthony Lanahan, Melissa J. Woolls, Na Li, Daniela Tirziu, Masahiro Murakami.
Institutions: Max-Planck-Institute for Molecular Biomedicine and Institute of Cell Biology, Yale Cardiovascular Research Center and Section of Cardiovascular Medicine.
Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope’s autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators.
Cellular Biology, Issue 88, live cell imaging, cardiomyocyte, primary cell culture, adenovirus, lentivirus, confocal spinning disk microscopy
Play Button
Cardiac Stress Test Induced by Dobutamine and Monitored by Cardiac Catheterization in Mice
Authors: Sebastián Dante Calligaris, Micaela Ricca, Paulette Conget.
Institutions: Clínica Alemana Universidad del Desarrollo.
Dobutamine is a β-adrenergic agonist with an affinity higher for receptor expressed in the heart (β1) than for receptors expressed in the arteries (β2). When systemically administered, it increases cardiac demand. Thus, dobutamine unmasks abnormal rhythm or ischemic areas potentially at risk of infarction. Monitoring of heart function during a cardiac stress test can be performed by either ecocardiography or cardiac catheterization. The latter is an invasive but more accurate and informative technique that the former. Cardiac stress test induced by dobutamine and monitored by cardiac catheterization accomplished as described here allows, in a single experiment, the measurement of the following hemodynamic parameters: heart rate (HR), systolic pressure, diastolic pressure, end-diastolic pressure, maximal positive pressure development (dP/dtmax) and maximal negative pressure development (dP/dtmin), at baseline conditions and under increasing doses of dobutamine. As expected, in normal mice we observed a dobutamine dose-related increase in HR, dP/dtmax and dP/dtmin. Moreover, at the highest dose tested (12 ng/g/min) the cardiac decompensation of high fat diet-induced obese mice was unmasked.
Medicine, Issue 72, Anatomy, Physiology, Cardiology, Surgery, Cardiovascular System, Cardiovascular Diseases, Life Sciences (General), Computer Programming and Software, cardiac stress test, dobutamine, cardiac catheterization, hemodynamic parameters, mice, animal model
Play Button
Transverse Aortic Constriction in Mice
Authors: Angela C. deAlmeida, Ralph J. van Oort, Xander H.T. Wehrens.
Institutions: Baylor College of Medicine (BCM), Baylor College of Medicine (BCM).
Transverse aortic constriction (TAC) in the mouse is a commonly used experimental model for pressure overload-induced cardiac hypertrophy and heart failure.1 TAC initially leads to compensated hypertrophy of the heart, which often is associated with a temporary enhancement of cardiac contractility. Over time, however, the response to the chronic hemodynamic overload becomes maladaptive, resulting in cardiac dilatation and heart failure.2 The murine TAC model was first validated by Rockman et al.1, and has since been extensively used as a valuable tool to mimic human cardiovascular diseases and elucidate fundamental signaling processes involved in the cardiac hypertrophic response and heart failure development. When compared to other experimental models of heart failure, such as complete occlusion of the left anterior descending (LAD) coronary artery, TAC provides a more reproducible model of cardiac hypertrophy and a more gradual time course in the development of heart failure. Here, we describe a step-by-step procedure to perform surgical TAC in mice. To determine the level of pressure overload produced by the aortic ligation, a high frequency Doppler probe is used to measure the ratio between blood flow velocities in the right and left carotid arteries.3, 4 With surgical survival rates of 80-90%, transverse aortic banding is an effective technique of inducing left ventricular hypertrophy and heart failure in mice.
Medicine, Issue 38, Aorta, heart failure, hypertrophy, mouse, pressure-overload
Play Button
Measures of Heart and Ventilatory Rates in Freely Moving Crayfish
Authors: Sonya M. Bierbower, Robin L. Cooper.
Institutions: University of Kentucky.
The fear, flight or fight response serves as the fundamental physiological basis for examining an organism's awareness of its environment under an impending predator attack. Although it is not known whether invertebrates posses an autonomic nervous system identical to that of vertebrates, evidence shows invertebrates have a sympathetic-like response to regulate the internal environment and ready the organism to act behaviorally to a given stimuli. Furthermore, this physiological response can be feasibly measured and it acts as a biological index for the animal's internal state. Measurements of the physiological response can be directly related to internal and external stressors through changes in the central nervous system controlled coordination of the cardio-vascular and respiratory systems. More specifically, monitoring heart and ventilation rates provide quantifiable measures of the stress response not always behaviorally observed. Crayfish are good model organisms for heart and ventilatory rate measurements due to the feasibility of recording, as well as the rich history known of the morphology of the crayfish, dating back to Huxley in 1888, and the well-studied typical behaviors.
Physiology, Issue 32, invertebrate, autonomic nervous system, behavior, crustacean
Play Button
Assessment of Cardiac Function and Energetics in Isolated Mouse Hearts Using 31P NMR Spectroscopy
Authors: Stephen C. Kolwicz Jr., Rong Tian.
Institutions: University of Washington School of Medicine.
Bioengineered mouse models have become powerful research tools in determining causal relationships between molecular alterations and models of cardiovascular disease. Although molecular biology is necessary in identifying key changes in the signaling pathway, it is not a surrogate for functional significance. While physiology can provide answers to the question of function, combining physiology with biochemical assessment of metabolites in the intact, beating heart allows for a complete picture of cardiac function and energetics. For years, our laboratory has utilized isolated heart perfusions combined with nuclear magnetic resonance (NMR) spectroscopy to accomplish this task. Left ventricular function is assessed by Langendorff-mode isolated heart perfusions while cardiac energetics is measured by performing 31P magnetic resonance spectroscopy of the perfused hearts. With these techniques, indices of cardiac function in combination with levels of phosphocreatine and ATP can be measured simultaneously in beating hearts. Furthermore, these parameters can be monitored while physiologic or pathologic stressors are instituted. For example, ischemia/reperfusion or high workload challenge protocols can be adopted. The use of aortic banding or other models of cardiac pathology are apt as well. Regardless of the variants within the protocol, the functional and energetic significance of molecular modifications of transgenic mouse models can be adequately described, leading to new insights into the associated enzymatic and metabolic pathways. Therefore, 31P NMR spectroscopy in the isolated perfused heart is a valuable research technique in animal models of cardiovascular disease.
Medicine, Issue 42, cardiac physiology, high energy phosphate, phosphocreatine, ATP
Play Button
Heart Dissection in Larval, Juvenile and Adult Zebrafish, Danio rerio
Authors: Corinna Singleman, Nathalia G. Holtzman.
Institutions: Queens College, City University of New York.
Zebrafish have become a beneficial and practical model organism for the study of embryonic heart development (see recent reviews1-6), however, work examining post-embryonic through adult cardiac development has been limited7-10. Examining the changing morphology of the maturing and aging heart are restricted by the lack of techniques available for staging and isolating juvenile and adult hearts. In order to analyze heart development over the fish's lifespan, we dissect zebrafish hearts at numerous stages and photograph them for further analysis11. The morphological features of the heart can easily be quantified and individual hearts can be further analyzed by a host of standard methods. Zebrafish grow at variable rates and maturation correlates better with fish size than age, thus, post-fixation, we photograph and measure fish length as a gauge of fish maturation. This protocol explains two distinct, size dependent dissection techniques for zebrafish, ranging from larvae 3.5mm standard length (SL) with hearts of 100μm ventricle length (VL), to adults, with SL of 30mm and VL 1mm or larger. Larval and adult fish have quite distinct body and organ morphology. Larvae are not only significantly smaller, they have less pigment and each organ is visually very difficult to identify. For this reason, we use distinct dissection techniques. We used pre-dissection fixation procedures, as we discovered that hearts dissected directly after euthanization have a more variable morphology, with very loose and balloon like atria compared with hearts removed following fixation. The fish fixed prior to dissection, retain in vivo morphology and chamber position (data not shown). In addition, for demonstration purposes, we take advantage of the heart (myocardial) specific GFP transgenic Tg(myl7:GFP)twu34 (12), which allows us to visualize the entire heart and is particularly useful at early stages in development when the cardiac morphology is less distinct from surrounding tissues. Dissection of the heart makes further analysis of the cell and molecular biology underlying heart development and maturation using in situ hybridization, immunohistochemistry, RNA extraction or other analytical methods easier in post-embryonic zebrafish. This protocol will provide a valuable technique for the study of cardiac development maturation and aging.
Developmental Biology, Issue 55, zebrafish, Danio rerio, heart, dissection, cardiac, morphology, anatomy, juvenile, adult
Play Button
Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration
Authors: Emily E. Hesketh, Alicja Czopek, Michael Clay, Gary Borthwick, David Ferenbach, David Kluth, Jeremy Hughes.
Institutions: University of Edinburgh.
Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in patients and occlusion of renal blood flow is unavoidable during renal transplantation. Experimental models that accurately and reproducibly recapitulate renal IRI are crucial in dissecting the pathophysiology of AKI and the development of novel therapeutic agents. Presented here is a mouse model of renal IRI that results in reproducible AKI. This is achieved by a midline laparotomy approach for the surgery with one incision allowing both a right nephrectomy that provides control tissue and clamping of the left renal pedicle to induce ischaemia of the left kidney. By careful monitoring of the clamp position and body temperature during the period of ischaemia this model achieves reproducible functional and structural injury. Mice sacrificed 24 hr following surgery demonstrate loss of renal function with elevation of the serum or plasma creatinine level as well as structural kidney damage with acute tubular necrosis evident. Renal function improves and the acute tissue injury resolves during the course of 7 days following renal IRI such that this model may be used to study renal regeneration. This model of renal IRI has been utilized to study the molecular and cellular pathophysiology of AKI as well as analysis of the subsequent renal regeneration.
Medicine, Issue 88, Murine, Acute Kidney Injury, Ischaemia, Reperfusion, Nephrectomy, Regeneration, Laparotomy
Play Button
Isolation of Human Atrial Myocytes for Simultaneous Measurements of Ca2+ Transients and Membrane Currents
Authors: Niels Voigt, Xiao-Bo Zhou, Dobromir Dobrev.
Institutions: University of Duisburg-Essen , University of Heidelberg .
The study of electrophysiological properties of cardiac ion channels with the patch-clamp technique and the exploration of cardiac cellular Ca2+ handling abnormalities requires isolated cardiomyocytes. In addition, the possibility to investigate myocytes from patients using these techniques is an invaluable requirement to elucidate the molecular basis of cardiac diseases such as atrial fibrillation (AF).1 Here we describe a method for isolation of human atrial myocytes which are suitable for both patch-clamp studies and simultaneous measurements of intracellular Ca2+ concentrations. First, right atrial appendages obtained from patients undergoing open heart surgery are chopped into small tissue chunks ("chunk method") and washed in Ca2+-free solution. Then the tissue chunks are digested in collagenase and protease containing solutions with 20 μM Ca2+. Thereafter, the isolated myocytes are harvested by filtration and centrifugation of the tissue suspension. Finally, the Ca2+ concentration in the cell storage solution is adjusted stepwise to 0.2 mM. We briefly discuss the meaning of Ca2+ and Ca2+ buffering during the isolation process and also provide representative recordings of action potentials and membrane currents, both together with simultaneous Ca2+ transient measurements, performed in these isolated myocytes.
Cellular Biology, Issue 77, Medicine, Molecular Biology, Physiology, Anatomy, Cardiology, Pharmacology, human atrial myocytes, cell isolation, collagenase, calcium transient, calcium current, patch-clamp, ion currents, isolation, cell culture, myocytes, cardiomyocytes, electrophysiology, patch clamp
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Transthoracic Echocardiography in Mice
Authors: Jonathan L. Respress, Xander H.T. Wehrens.
Institutions: Baylor College of Medicine (BCM), Baylor College of Medicine (BCM).
In recent years, murine models have become the primary avenue for studying the molecular mechanisms of cardiac dysfunction resulting from changes in gene expression. Transgenic and gene targeting methods can be used to generate mice with altered cardiac size and function,1-3 and as a result, in vivo techniques are needed to evaluate their cardiac phenotype. Transthoracic echocardiography, pulse wave Doppler (PWD), and tissue Doppler imaging (TDI) can be used to provide dimensional measurements of the mouse heart and to quantify the degree of cardiac systolic and diastolic performance. Two-dimensional imaging is used to detect abnormal anatomy or movements of the left ventricle, whereas M-mode echo is used for quantification of cardiac dimensions and contractility.4,5 In addition, PWD is used to quantify localized velocity of turbulent flow,6 whereas TDI is used to measure the velocity of myocardial motion.7 Thus, transthoracic echocardiography offers a comprehensive method for the noninvasive evaluation of cardiac function in mice.
Medicine, Issue 39, Echocardiography, pulse wave Doppler, tissue Doppler imaging, ultrasound
Play Button
Isolation and Culture of Neonatal Mouse Cardiomyocytes
Authors: Elisabeth Ehler, Thomas Moore-Morris, Stephan Lange.
Institutions: King’s College London, University of California San Diego .
Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.
Cellular Biology, Issue 79, Biomedical Engineering, Bioengineering, Molecular Biology, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Disease Models, Animal, Models, Cardiovascular, Cell Biology, neonatal mouse, cardiomyocytes, isolation, culture, primary cells, NMC, heart cells, animal model
Play Button
Training Rats to Voluntarily Dive Underwater: Investigations of the Mammalian Diving Response
Authors: Paul F. McCulloch.
Institutions: Midwestern University.
Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the mammalian diving response.
Behavior, Issue 93, Rat, Rattus norvegicus, voluntary diving, diving response, diving reflex, autonomic reflex, central integration
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
Play Button
Respirometric Oxidative Phosphorylation Assessment in Saponin-permeabilized Cardiac Fibers
Authors: Curtis C. Hughey, Dustin S. Hittel, Virginia L. Johnsen, Jane Shearer.
Institutions: University of Calgary, University of Calgary.
Investigation of mitochondrial function represents an important parameter of cardiac physiology as mitochondria are involved in energy metabolism, oxidative stress, apoptosis, aging, mitochondrial encephalomyopathies and drug toxicity. Given this, technologies to measure cardiac mitochondrial function are in demand. One technique that employs an integrative approach to measure mitochondrial function is respirometric oxidative phosphorylation (OXPHOS) analysis. The principle of respirometric OXPHOS assessment is centered around measuring oxygen concentration utilizing a Clark electrode. As the permeabilized fiber bundle consumes oxygen, oxygen concentration in the closed chamber declines. Using selected substrate-inhibitor-uncoupler titration protocols, electrons are provided to specific sites of the electron transport chain, allowing evaluation of mitochondrial function. Prior to respirometric analysis of mitochondrial function, mechanical and chemical preparatory techniques are utilized to permeabilize the sarcolemma of muscle fibers. Chemical permeabilization employs saponin to selectively perforate the cell membrane while maintaining cellular architecture. This paper thoroughly describes the steps involved in preparing saponin-skinned cardiac fibers for oxygen consumption measurements to evaluate mitochondrial OXPHOS. Additionally, troubleshooting advice as well as specific substrates, inhibitors and uncouplers that may be used to determine mitochondria function at specific sites of the electron transport chain are provided. Importantly, the described protocol may be easily applied to cardiac and skeletal tissue of various animal models and human samples.
Physiology, Issue 48, cardiac fibers, mitochondria, oxygen consumption, mouse, methodology
Play Button
Capillary Force Lithography for Cardiac Tissue Engineering
Authors: Jesse Macadangdang, Hyun Jung Lee, Daniel Carson, Alex Jiao, James Fugate, Lil Pabon, Michael Regnier, Charles Murry, Deok-Ho Kim.
Institutions: University of Washington, University of Washington.
Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5. A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9. Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14. Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA mold is placed on top. For UV-assisted CFL, the PU is then exposed to UV radiation (λ = 250-400 nm) for curing. For solvent-mediated CFL, the PLGA is embossed using heat (120 °C) and pressure (100 kPa). After curing, the PUA mold is peeled off, leaving behind an ANFS for cell culture. Primary cells, such as neonatal rat ventricular myocytes, as well as human pluripotent stem cell-derived cardiomyocytes, can be maintained on the ANFS2.
Bioengineering, Issue 88, Nanotopography, Anisotropic, Nanofabrication, Cell Culture, Cardiac Tissue Engineering
Play Button
Quantitative Analysis of Chromatin Proteomes in Disease
Authors: Emma Monte, Haodong Chen, Maria Kolmakova, Michelle Parvatiyar, Thomas M. Vondriska, Sarah Franklin.
Institutions: David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah.
In the nucleus reside the proteomes whose functions are most intimately linked with gene regulation. Adult mammalian cardiomyocyte nuclei are unique due to the high percentage of binucleated cells,1 the predominantly heterochromatic state of the DNA, and the non-dividing nature of the cardiomyocyte which renders adult nuclei in a permanent state of interphase.2 Transcriptional regulation during development and disease have been well studied in this organ,3-5 but what remains relatively unexplored is the role played by the nuclear proteins responsible for DNA packaging and expression, and how these proteins control changes in transcriptional programs that occur during disease.6 In the developed world, heart disease is the number one cause of mortality for both men and women.7 Insight on how nuclear proteins cooperate to regulate the progression of this disease is critical for advancing the current treatment options. Mass spectrometry is the ideal tool for addressing these questions as it allows for an unbiased annotation of the nuclear proteome and relative quantification for how the abundance of these proteins changes with disease. While there have been several proteomic studies for mammalian nuclear protein complexes,8-13 until recently14 there has been only one study examining the cardiac nuclear proteome, and it considered the entire nucleus, rather than exploring the proteome at the level of nuclear sub compartments.15 In large part, this shortage of work is due to the difficulty of isolating cardiac nuclei. Cardiac nuclei occur within a rigid and dense actin-myosin apparatus to which they are connected via multiple extensions from the endoplasmic reticulum, to the extent that myocyte contraction alters their overall shape.16 Additionally, cardiomyocytes are 40% mitochondria by volume17 which necessitates enrichment of the nucleus apart from the other organelles. Here we describe a protocol for cardiac nuclear enrichment and further fractionation into biologically-relevant compartments. Furthermore, we detail methods for label-free quantitative mass spectrometric dissection of these fractions-techniques amenable to in vivo experimentation in various animal models and organ systems where metabolic labeling is not feasible.
Medicine, Issue 70, Molecular Biology, Immunology, Genetics, Genomics, Physiology, Protein, DNA, Chromatin, cardiovascular disease, proteomics, mass spectrometry
Play Button
Isolation and Physiological Analysis of Mouse Cardiomyocytes
Authors: Gretchen M. Roth, David M. Bader, Elise R. Pfaltzgraff.
Institutions: Vanderbilt University, Vanderbilt University.
Cardiomyocytes, the workhorse cell of the heart, contain exquisitely organized cytoskeletal and contractile elements that generate the contractile force used to pump blood. Individual cardiomyocytes were first isolated over 40 years ago in order to better study the physiology and structure of heart muscle. Techniques have rapidly improved to include enzymatic digestion via coronary perfusion. More recently, analyzing the contractility and calcium flux of isolated myocytes has provided a vital tool in the cellular and sub-cellular analysis of heart failure. Echocardiography and EKGs provide information about the heart at an organ level only. Cardiomyocyte cell culture systems exist, but cells lack physiologically essential structures such as organized sarcomeres and t-tubules required for myocyte function within the heart. In the protocol presented here, cardiomyocytes are isolated via Langendorff perfusion. The heart is removed from the mouse, mounted via the aorta to a cannula, perfused with digestion enzymes, and cells are introduced to increasing calcium concentrations. Edge and sarcomere detection software is used to analyze contractility, and a calcium binding fluorescent dye is used to visualize calcium transients of electrically paced cardiomyocytes; increasing understanding of the role cellular changes play in heart dysfunction. Traditionally used to test drug effects on cardiomyocytes, we employ this system to compare myocytes from WT mice and mice with a mutation that causes dilated cardiomyopathy. This protocol is unique in its comparison of live cells from mice with known heart function and known genetics. Many experimental conditions are reliably compared, including genetic or environmental manipulation, infection, drug treatment, and more. Beyond physiologic data, isolated cardiomyocytes are easily fixed and stained for cytoskeletal elements. Isolating cardiomyocytes via perfusion is an extremely versatile method, useful in studying cellular changes that accompany or lead to heart failure in a variety of experimental conditions.
Cellular Biology, Issue 91, cardiomyocyte isolation, Langendorff, contractility, calcium transients
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Isolation, Culture, and Functional Characterization of Adult Mouse Cardiomyoctyes
Authors: Evan Lee Graham, Cristina Balla, Hannabeth Franchino, Yonathan Melman, Federica del Monte, Saumya Das.
Institutions: Beth Israel Deaconess Medical Center, Harvard Medical School, Sapienza University.
The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease.
Cellular Biology, Issue 79, Medicine, Cardiology, Cellular Biology, Anatomy, Physiology, Mice, Ion Channels, Primary Cell Culture, Cardiac Electrophysiology, adult mouse cardiomyocytes, cell isolation, IonOptix, Cell Culture, adenoviral transfection, patch clamp, fluorescent nanosensor
Play Button
Anatomical Reconstructions of the Human Cardiac Venous System using Contrast-computed Tomography of Perfusion-fixed Specimens
Authors: Julianne Spencer, Emily Fitch, Paul A. Iaizzo.
Institutions: University of Minnesota , University of Minnesota , University of Minnesota , University of Minnesota , University of Minnesota .
A detailed understanding of the complexity and relative variability within the human cardiac venous system is crucial for the development of cardiac devices that require access to these vessels. For example, cardiac venous anatomy is known to be one of the key limitations for the proper delivery of cardiac resynchronization therapy (CRT)1 Therefore, the development of a database of anatomical parameters for human cardiac venous systems can aid in the design of CRT delivery devices to overcome such a limitation. In this research project, the anatomical parameters were obtained from 3D reconstructions of the venous system using contrast-computed tomography (CT) imaging and modeling software (Materialise, Leuven, Belgium). The following parameters were assessed for each vein: arc length, tortuousity, branching angle, distance to the coronary sinus ostium, and vessel diameter. CRT is a potential treatment for patients with electromechanical dyssynchrony. Approximately 10-20% of heart failure patients may benefit from CRT2. Electromechanical dyssynchrony implies that parts of the myocardium activate and contract earlier or later than the normal conduction pathway of the heart. In CRT, dyssynchronous areas of the myocardium are treated with electrical stimulation. CRT pacing typically involves pacing leads that stimulate the right atrium (RA), right ventricle (RV), and left ventricle (LV) to produce more resynchronized rhythms. The LV lead is typically implanted within a cardiac vein, with the aim to overlay it within the site of latest myocardial activation. We believe that the models obtained and the analyses thereof will promote the anatomical education for patients, students, clinicians, and medical device designers. The methodologies employed here can also be utilized to study other anatomical features of our human heart specimens, such as the coronary arteries. To further encourage the educational value of this research, we have shared the venous models on our free access website:
Biomedical Engineering, Issue 74, Medicine, Bioengineering, Anatomy, Physiology, Surgery, Cardiology, Coronary Vessels, Heart, Heart Conduction System, Heart Ventricles, Myocardium, cardiac veins, coronary veins, perfusion-fixed human hearts, Computed Tomography, CT, CT scan, contrast injections, 3D modeling, Device Development, vessel parameters, imaging, clinical techniques
Play Button
Drawing Blood from Rats through the Saphenous Vein and by Cardiac Puncture
Authors: Christine Beeton, Adriana Garcia, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Drawing blood from rodents is necessary for a large number of both in vitro and in vivo studies. Sites of blood draws are numerous in rodents: retro-orbital sinus, jugular vein, maxillary vein, saphenous vein, heart. Each technique has its advantages and disadvantages, and some are not approved any more in some countries (e.g., retro-orbital draws in Holland). A discussion of different techniques for drawing blood are available 1-3. Here, we present two techniques for drawing blood from rats, each with its specific applications. Blood draw from the saphenous vein, provided it is done properly, induces minimal distress in animals and does not require anesthesia. This technique allows repeated draws of small amounts of blood, such as needed for pharmacokinetic studies 4,5, determining plasma chemistry, or blood counts 6. Cardiac puncture allows the collection of large amounts of blood from a single animal (up to 10 ml of blood can be drawn from a 150 g rat). This technique is therefore very useful as a terminal procedure when drawing blood from the saphenous would not provide a large enough sample. We use cardiac puncture when we need sufficient amounts of serum from a specific strain of rats to grow T lymphocyte lines in vitro 4-9.
Immunology, Issue 7, Blood Sampling Method, Rodent, Blood Draw, Heart, Pharmacokinetics, Serum, Plasma, Blood Collection, Bleeding, Hematology
Play Button
Isolation of Mononuclear Cells from the Central Nervous System of Rats with EAE
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Whether studying an autoimmune disease directed to the central nervous system (CNS), such as experimental autoimmune encephalomyelitis (EAE, 1), or the immune response to an infection of the CNS, such as poliomyelitis, Lyme neuroborreliosis, or neurosyphilis, it is often necessary to isolate the CNS-infiltrating immune cells. In this video-protocol we demonstrate how to isolate mononuclear cells (MNCs) from the CNS of a rat with EAE. The first step of this procedure requires a cardiac perfusion of the rodent with a saline solution to ensure that no blood remains in the blood vessels irrigating the CNS. Any blood contamination will artificially increase the number of apparent CNS-infiltrating MNCs and may alter the apparent composition of the immune infiltrate. We then demonstrate how to remove the brain and spinal cord of the rat for subsequent dilaceration to prepare a single-cell suspension. This suspension is separated on a two-layer Percoll gradient to isolate the MNCs. After washing, these cells are then ready to undergo any required procedure. Mononuclear cells isolated using this procedure are viable and can be used for electrophysiology, flow cytometry (FACS), or biochemistry. If the technique is performed under sterile conditions (using sterile instruments in a tissue culture hood) the cells can also be grown in tissue culture medium. A given cell population can be further purified using either magnetic separation procedures or a FACS.
Neuroscience, Issue 10, Immunology, brain, spinal cord, lymphocyte, infiltrate, experimental autoimmune encephalomyelitis, CNS, inflammation, mouse
Play Button
Methods for ECG Evaluation of Indicators of Cardiac Risk, and Susceptibility to Aconitine-induced Arrhythmias in Rats Following Status Epilepticus
Authors: Steven L. Bealer, Cameron S. Metcalf, Jason G. Little.
Institutions: University of Utah.
Lethal cardiac arrhythmias contribute to mortality in a number of pathological conditions. Several parameters obtained from a non-invasive, easily obtained electrocardiogram (ECG) are established, well-validated prognostic indicators of cardiac risk in patients suffering from a number of cardiomyopathies. Increased heart rate, decreased heart rate variability (HRV), and increased duration and variability of cardiac ventricular electrical activity (QT interval) are all indicative of enhanced cardiac risk 1-4. In animal models, it is valuable to compare these ECG-derived variables and susceptibility to experimentally induced arrhythmias. Intravenous infusion of the arrhythmogenic agent aconitine has been widely used to evaluate susceptibility to arrhythmias in a range of experimental conditions, including animal models of depression 5 and hypertension 6, following exercise 7 and exposure to air pollutants 8, as well as determination of the antiarrhythmic efficacy of pharmacological agents 9,10. It should be noted that QT dispersion in humans is a measure of QT interval variation across the full set of leads from a standard 12-lead ECG. Consequently, the measure of QT dispersion from the 2-lead ECG in the rat described in this protocol is different than that calculated from human ECG records. This represents a limitation in the translation of the data obtained from rodents to human clinical medicine. Status epilepticus (SE) is a single seizure or series of continuously recurring seizures lasting more than 30 min 11,12 11,12, and results in mortality in 20% of cases 13. Many individuals survive the SE, but die within 30 days 14,15. The mechanism(s) of this delayed mortality is not fully understood. It has been suggested that lethal ventricular arrhythmias contribute to many of these deaths 14-17. In addition to SE, patients experiencing spontaneously recurring seizures, i.e. epilepsy, are at risk of premature sudden and unexpected death associated with epilepsy (SUDEP) 18. As with SE, the precise mechanisms mediating SUDEP are not known. It has been proposed that ventricular abnormalities and resulting arrhythmias make a significant contribution 18-22. To investigate the mechanisms of seizure-related cardiac death, and the efficacy of cardioprotective therapies, it is necessary to obtain both ECG-derived indicators of risk and evaluate susceptibility to cardiac arrhythmias in animal models of seizure disorders 23-25. Here we describe methods for implanting ECG electrodes in the Sprague-Dawley laboratory rat (Rattus norvegicus), following SE, collection and analysis of ECG recordings, and induction of arrhythmias during iv infusion of aconitine. These procedures can be used to directly determine the relationships between ECG-derived measures of cardiac electrical activity and susceptibility to ventricular arrhythmias in rat models of seizure disorders, or any pathology associated with increased risk of sudden cardiac death.
Medicine, Issue 50, cardiac, seizure disorders, QTc, QTd, cardiac arrhythmias, rat
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.