JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals.
PUBLISHED: 09-07-2011
The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates.
The rubber hand illusion (RHI) is a popular experimental paradigm. Participants view touch on an artificial rubber hand while the participants' own hidden hand is touched. If the viewed and felt touches are given at the same time then this is sufficient to induce the compelling experience that the rubber hand is one's own hand. The RHI can be used to investigate exactly how the brain constructs distinct body representations for one's own body. Such representations are crucial for successful interactions with the external world. To obtain a subjective measure of the RHI, researchers typically ask participants to rate statements such as "I felt as if the rubber hand were my hand". Here we demonstrate how the crossmodal congruency task can be used to obtain an objective behavioral measure within this paradigm. The variant of the crossmodal congruency task we employ involves the presentation of tactile targets and visual distractors. Targets and distractors are spatially congruent (i.e. same finger) on some trials and incongruent (i.e. different finger) on others. The difference in performance between incongruent and congruent trials - the crossmodal congruency effect (CCE) - indexes multisensory interactions. Importantly, the CCE is modulated both by viewing a hand as well as the synchrony of viewed and felt touch which are both crucial factors for the RHI. The use of the crossmodal congruency task within the RHI paradigm has several advantages. It is a simple behavioral measure which can be repeated many times and which can be obtained during the illusion while participants view the artificial hand. Furthermore, this measure is not susceptible to observer and experimenter biases. The combination of the RHI paradigm with the crossmodal congruency task allows in particular for the investigation of multisensory processes which are critical for modulations of body representations as in the RHI.
21 Related JoVE Articles!
Play Button
Measuring Attentional Biases for Threat in Children and Adults
Authors: Vanessa LoBue.
Institutions: Rutgers University.
Investigators have long been interested in the human propensity for the rapid detection of threatening stimuli. However, until recently, research in this domain has focused almost exclusively on adult participants, completely ignoring the topic of threat detection over the course of development. One of the biggest reasons for the lack of developmental work in this area is likely the absence of a reliable paradigm that can measure perceptual biases for threat in children. To address this issue, we recently designed a modified visual search paradigm similar to the standard adult paradigm that is appropriate for studying threat detection in preschool-aged participants. Here we describe this new procedure. In the general paradigm, we present participants with matrices of color photographs, and ask them to find and touch a target on the screen. Latency to touch the target is recorded. Using a touch-screen monitor makes the procedure simple and easy, allowing us to collect data in participants ranging from 3 years of age to adults. Thus far, the paradigm has consistently shown that both adults and children detect threatening stimuli (e.g., snakes, spiders, angry/fearful faces) more quickly than neutral stimuli (e.g., flowers, mushrooms, happy/neutral faces). Altogether, this procedure provides an important new tool for researchers interested in studying the development of attentional biases for threat.
Behavior, Issue 92, Detection, threat, attention, attentional bias, anxiety, visual search
Play Button
Using Chronic Social Stress to Model Postpartum Depression in Lactating Rodents
Authors: Lindsay M. Carini, Christopher A. Murgatroyd, Benjamin C. Nephew.
Institutions: Tufts University Cummings School of Veterinary Medicine, Manchester Metropolitan University.
Exposure to chronic stress is a reliable predictor of depressive disorders, and social stress is a common ethologically relevant stressor in both animals and humans. However, many animal models of depression were developed in males and are not applicable or effective in studies of postpartum females. Recent studies have reported significant effects of chronic social stress during lactation, an ethologically relevant and effective stressor, on maternal behavior, growth, and behavioral neuroendocrinology. This manuscript will describe this chronic social stress paradigm using repeated exposure of a lactating dam to a novel male intruder, and the assessment of the behavioral, physiological, and neuroendocrine effects of this model. Chronic social stress (CSS) is a valuable model for studying the effects of stress on the behavior and physiology of the dam as well as her offspring and future generations. The exposure of pups to CSS can also be used as an early life stress that has long term effects on behavior, physiology, and neuroendocrinology.
Behavior, Issue 76, Neuroscience, Neurobiology, Physiology, Anatomy, Medicine, Biomedical Engineering, Neurobehavioral Manifestations, Mental Health, Mood Disorders, Depressive Disorder, Anxiety Disorders, behavioral sciences, Behavior and Behavior Mechanisms, Mental Disorders, Stress, Depression, Anxiety, Postpartum, Maternal Behavior, Nursing, Growth, Transgenerational, animal model
Play Button
Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding
Authors: Thomas C. Bulea, Atilla Kilicarslan, Recep Ozdemir, William H. Paloski, Jose L. Contreras-Vidal.
Institutions: National Institutes of Health, University of Houston, University of Houston, University of Houston, University of Houston.
Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG.
Behavior, Issue 77, Neuroscience, Neurobiology, Medicine, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Electroencephalography, EEG, Electromyography, EMG, electroencephalograph, gait, brain-computer interface, brain machine interface, neural decoding, over-ground walking, robotic gait, brain, imaging, clinical techniques
Play Button
Studying Food Reward and Motivation in Humans
Authors: Hisham Ziauddeen, Naresh Subramaniam, Victoria C. Cambridge, Nenad Medic, Ismaa Sadaf Farooqi, Paul C. Fletcher.
Institutions: University of Cambridge, University of Cambridge, University of Cambridge, Addenbrooke's Hospital.
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Behavior, Issue 85, Food reward, motivation, grip force, willingness to pay, subliminal motivation
Play Button
Visualizing the Effects of a Positive Early Experience, Tactile Stimulation, on Dendritic Morphology and Synaptic Connectivity with Golgi-Cox Staining
Authors: Richelle Mychasiuk, Robbin Gibb, Bryan Kolb.
Institutions: University of Lethbridge.
To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity.
Neuroscience, Issue 79, Brain, Prefrontal Cortex, Neurons, Massage, Staining and Labeling, mPFC, spine density, methodology, enrichment
Play Button
Correlating Behavioral Responses to fMRI Signals from Human Prefrontal Cortex: Examining Cognitive Processes Using Task Analysis
Authors: Joseph F.X. DeSouza, Shima Ovaysikia, Laura K. Pynn.
Institutions: Centre for Vision Research, York University, Centre for Vision Research, York University.
The aim of this methods paper is to describe how to implement a neuroimaging technique to examine complementary brain processes engaged by two similar tasks. Participants' behavior during task performance in an fMRI scanner can then be correlated to the brain activity using the blood-oxygen-level-dependent signal. We measure behavior to be able to sort correct trials, where the subject performed the task correctly and then be able to examine the brain signals related to correct performance. Conversely, if subjects do not perform the task correctly, and these trials are included in the same analysis with the correct trials we would introduce trials that were not only for correct performance. Thus, in many cases these errors can be used themselves to then correlate brain activity to them. We describe two complementary tasks that are used in our lab to examine the brain during suppression of an automatic responses: the stroop1 and anti-saccade tasks. The emotional stroop paradigm instructs participants to either report the superimposed emotional 'word' across the affective faces or the facial 'expressions' of the face stimuli1,2. When the word and the facial expression refer to different emotions, a conflict between what must be said and what is automatically read occurs. The participant has to resolve the conflict between two simultaneously competing processes of word reading and facial expression. Our urge to read out a word leads to strong 'stimulus-response (SR)' associations; hence inhibiting these strong SR's is difficult and participants are prone to making errors. Overcoming this conflict and directing attention away from the face or the word requires the subject to inhibit bottom up processes which typically directs attention to the more salient stimulus. Similarly, in the anti-saccade task3,4,5,6, where an instruction cue is used to direct only attention to a peripheral stimulus location but then the eye movement is made to the mirror opposite position. Yet again we measure behavior by recording the eye movements of participants which allows for the sorting of the behavioral responses into correct and error trials7 which then can be correlated to brain activity. Neuroimaging now allows researchers to measure different behaviors of correct and error trials that are indicative of different cognitive processes and pinpoint the different neural networks involved.
Neuroscience, Issue 64, fMRI, eyetracking, BOLD, attention, inhibition, Magnetic Resonance Imaging, MRI
Play Button
Lensless Fluorescent Microscopy on a Chip
Authors: Ahmet F. Coskun, Ting-Wei Su, Ikbal Sencan, Aydogan Ozcan.
Institutions: University of California, Los Angeles .
On-chip lensless imaging in general aims to replace bulky lens-based optical microscopes with simpler and more compact designs, especially for high-throughput screening applications. This emerging technology platform has the potential to eliminate the need for bulky and/or costly optical components through the help of novel theories and digital reconstruction algorithms. Along the same lines, here we demonstrate an on-chip fluorescent microscopy modality that can achieve e.g., <4μm spatial resolution over an ultra-wide field-of-view (FOV) of >0.6-8 cm2 without the use of any lenses, mechanical-scanning or thin-film based interference filters. In this technique, fluorescent excitation is achieved through a prism or hemispherical-glass interface illuminated by an incoherent source. After interacting with the entire object volume, this excitation light is rejected by total-internal-reflection (TIR) process that is occurring at the bottom of the sample micro-fluidic chip. The fluorescent emission from the excited objects is then collected by a fiber-optic faceplate or a taper and is delivered to an optoelectronic sensor array such as a charge-coupled-device (CCD). By using a compressive-sampling based decoding algorithm, the acquired lensfree raw fluorescent images of the sample can be rapidly processed to yield e.g., <4μm resolution over an FOV of >0.6-8 cm2. Moreover, vertically stacked micro-channels that are separated by e.g., 50-100 μm can also be successfully imaged using the same lensfree on-chip microscopy platform, which further increases the overall throughput of this modality. This compact on-chip fluorescent imaging platform, with a rapid compressive decoder behind it, could be rather valuable for high-throughput cytometry, rare-cell research and microarray-analysis.
Bioengineering, Issue 54, Lensless Microscopy, Fluorescent On-chip Imaging, Wide-field Microscopy, On-Chip Cytometry, Compressive Sampling/Sensing
Play Button
A Method for Investigating Age-related Differences in the Functional Connectivity of Cognitive Control Networks Associated with Dimensional Change Card Sort Performance
Authors: Bianca DeBenedictis, J. Bruce Morton.
Institutions: University of Western Ontario.
The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages.
Behavior, Issue 87, Neurosciences, fMRI, Cognitive Control, Development, Functional Connectivity
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Training Rats to Voluntarily Dive Underwater: Investigations of the Mammalian Diving Response
Authors: Paul F. McCulloch.
Institutions: Midwestern University.
Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the mammalian diving response.
Behavior, Issue 93, Rat, Rattus norvegicus, voluntary diving, diving response, diving reflex, autonomic reflex, central integration
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
Play Button
Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience
Authors: Hagit Turm, Diptendu Mukherjee, Doron Haritan, Maayan Tahor, Ami Citri.
Institutions: The Hebrew University of Jerusalem.
The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies.
Behavior, Issue 90, Brain, behavior, RNA, transcription, nucleus accumbens, cocaine, high-throughput qPCR, experience-dependent plasticity, gene regulatory networks, microdissection
Play Button
Assessment of Ultrasonic Vocalizations During Drug Self-administration in Rats
Authors: Esther Y. Maier, Sean T. Ma, Allison Ahrens, Timothy J. Schallert, Christine L. Duvauchelle.
Institutions: University of Texas at Austin, University of Texas at Austin, University of Michigan, University of Texas at Austin, University of Texas at Austin.
Drug self-administration procedures are commonly used to study behavioral and neurochemical changes associated with human drug abuse, addiction and relapse. Various types of behavioral activity are commonly utilized as measures of drug motivation in animals. However, a crucial component of drug abuse relapse in abstinent cocaine users is "drug craving", which is difficult to model in animals, as it often occurs in the absence of overt behaviors. Yet, it is possible that a class of ultrasonic vocalizations (USVs) in rats may be a useful marker for affective responses to drug administration, drug anticipation and even drug craving. Rats vocalize in ultrasonic frequencies that serve as a communicatory function and express subjective emotional states. Several studies have shown that different call frequency ranges are associated with negative and positive emotional states. For instance, high frequency calls ("50-kHz") are associated with positive affect, whereas low frequency calls ("22-kHz") represent a negative emotional state. This article describes a procedure to assess rat USVs associated with daily cocaine self-administration. For this procedure, we utilized standard single-lever operant chambers housed within sound-attenuating boxes for cocaine self-administration sessions and utilized ultrasonic microphones, multi-channel recording hardware and specialized software programs to detect and analyze USVs. USVs measurements reflect emotionality of rats before, during and after drug availability and can be correlated with commonly assessed drug self-administration behavioral data such lever responses, inter-response intervals and locomotor activity. Since USVs can be assessed during intervals prior to drug availability (e.g., anticipatory USVs) and during drug extinction trials, changes in affect associated with drug anticipation and drug abstinence can also be determined. In addition, determining USV changes over the course of short- and long-term drug exposure can provide a more detailed interpretation of drug exposure effects on affective functioning.
JoVE Neuroscience, Issue 41, ultrasound, behavior, self-administration, emotionality, anticipation, reward
Play Button
Morris Water Maze Experiment
Authors: Joseph Nunez.
Institutions: Michigan State University (MSU).
The Morris water maze is widely used to study spatial memory and learning. Animals are placed in a pool of water that is colored opaque with powdered non-fat milk or non-toxic tempera paint, where they must swim to a hidden escape platform. Because they are in opaque water, the animals cannot see the platform, and cannot rely on scent to find the escape route. Instead, they must rely on external/extra-maze cues. As the animals become more familiar with the task, they are able to find the platform more quickly. Developed by Richard G. Morris in 1984, this paradigm has become one of the "gold standards" of behavioral neuroscience.
Behavior, Issue 19, Declarative, Hippocampus, Memory, Procedural, Rodent, Spatial Learning
Play Button
Brain Imaging Investigation of the Neural Correlates of Emotion Regulation
Authors: Sanda Dolcos, Keen Sung, Ekaterina Denkova, Roger A. Dixon, Florin Dolcos.
Institutions: University of Illinois, Urbana-Champaign, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Alberta, Edmonton, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign.
The ability to control/regulate emotions is an important coping mechanism in the face of emotionally stressful situations. Although significant progress has been made in understanding conscious/deliberate emotion regulation (ER), less is known about non-conscious/automatic ER and the associated neural correlates. This is in part due to the problems inherent in the unitary concepts of automatic and conscious processing1. Here, we present a protocol that allows investigation of the neural correlates of both deliberate and automatic ER using functional magnetic resonance imaging (fMRI). This protocol allows new avenues of inquiry into various aspects of ER. For instance, the experimental design allows manipulation of the goal to regulate emotion (conscious vs. non-conscious), as well as the intensity of the emotional challenge (high vs. low). Moreover, it allows investigation of both immediate (emotion perception) and long-term effects (emotional memory) of ER strategies on emotion processing. Therefore, this protocol may contribute to better understanding of the neural mechanisms of emotion regulation in healthy behaviour, and to gaining insight into possible causes of deficits in depression and anxiety disorders in which emotion dysregulation is often among the core debilitating features.
Neuroscience, Issue 54, Emotion Suppression, Automatic Emotion Control, Deliberate Emotion Control, Goal Induction, Neuroimaging
Play Button
Brain Imaging Investigation of the Neural Correlates of Emotional Autobiographical Recollection
Authors: Ekaterina Denkova, Trisha Chakrabarty, Sanda Dolcos, Florin Dolcos.
Institutions: University of Alberta, Edmonton, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign.
Recollection of emotional autobiographical memories (AMs) is important to healthy cognitive and affective functioning 1 - remembering positive AMs is associated with increased personal well-being and self-esteem 2, whereas remembering and ruminating on negative AMs may lead to affective disorders 3. Although significant progress has been made in understanding the brain mechanisms underlying AM retrieval in general (reviewed in 4, 5), less is known about the effect of emotion on the subjective re-experience of AMs and the associated neural correlates. This is in part due to the fact that, unlike the investigations of the emotion effect on memory for laboratory-based microevents (reviewed in 6, 7-9), often times AM studies do not have a clear focus on the emotional aspects of remembering personal events (but see 10). Here, we present a protocol that allows investigation of the neural correlates of recollecting emotional AMs using functional magnetic resonance imaging (fMRI). Cues for these memories are collected prior to scanning by means of an autobiographical memory questionnaire (AMQ), therefore allowing for proper selection of emotional AMs based on their phenomenological properties (i.e., intensity, vividness, personal significance). This protocol can be used in healthy and clinical populations alike.
Neuroscience, Issue 54, Personal Memories, Retrieval Focus, Cognitive Distraction, Emotion Regulation, Neuroimaging
Play Button
Brain Imaging Investigation of the Impairing Effect of Emotion on Cognition
Authors: Gloria Wong, Sanda Dolcos, Ekaterina Denkova, Rajendra Morey, Lihong Wang, Gregory McCarthy, Florin Dolcos.
Institutions: University of Alberta, University of Alberta, University of Illinois, Duke University , Duke University , VA Medical Center, Yale University, University of Illinois, University of Illinois.
Emotions can impact cognition by exerting both enhancing (e.g., better memory for emotional events) and impairing (e.g., increased emotional distractibility) effects (reviewed in 1). Complementing our recent protocol 2 describing a method that allows investigation of the neural correlates of the memory-enhancing effect of emotion (see also 1, 3-5), here we present a protocol that allows investigation of the neural correlates of the detrimental impact of emotion on cognition. The main feature of this method is that it allows identification of reciprocal modulations between activity in a ventral neural system, involved in 'hot' emotion processing (HotEmo system), and a dorsal system, involved in higher-level 'cold' cognitive/executive processing (ColdEx system), which are linked to cognitive performance and to individual variations in behavior (reviewed in 1). Since its initial introduction 6, this design has proven particularly versatile and influential in the elucidation of various aspects concerning the neural correlates of the detrimental impact of emotional distraction on cognition, with a focus on working memory (WM), and of coping with such distraction 7,11, in both healthy 8-11 and clinical participants 12-14.
Neuroscience, Issue 60, Emotion-Cognition Interaction, Cognitive/Emotional Interference, Task-Irrelevant Distraction, Neuroimaging, fMRI, MRI
Play Button
Brain Imaging Investigation of the Memory-Enhancing Effect of Emotion
Authors: Andrea Shafer, Alexandru Iordan, Roberto Cabeza, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, Urbana-Champaign, Duke University, University of Illinois, Urbana-Champaign.
Emotional events tend to be better remembered than non-emotional events1,2. One goal of cognitive and affective neuroscientists is to understand the neural mechanisms underlying this enhancing effect of emotion on memory. A method that has proven particularly influential in the investigation of the memory-enhancing effect of emotion is the so-called subsequent memory paradigm (SMP). This method was originally used to investigate the neural correlates of non-emotional memories3, and more recently we and others also applied it successfully to studies of emotional memory (reviewed in4, 5-7). Here, we describe a protocol that allows investigation of the neural correlates of the memory-enhancing effect of emotion using the SMP in conjunction with event-related functional magnetic resonance imaging (fMRI). An important feature of the SMP is that it allows separation of brain activity specifically associated with memory from more general activity associated with perception. Moreover, in the context of investigating the impact of emotional stimuli, SMP allows identification of brain regions whose activity is susceptible to emotional modulation of both general/perceptual and memory-specific processing. This protocol can be used in healthy subjects8-15, as well as in clinical patients where there are alterations in the neural correlates of emotion perception and biases in remembering emotional events, such as those suffering from depression and post-traumatic stress disorder (PTSD)16, 17.
Neuroscience, Issue 51, Affect, Recognition, Recollection, Dm Effect, Neuroimaging
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.