JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The E92K melanocortin 1 receptor mutant induces cAMP production and arrestin recruitment but not ERK activity indicating biased constitutive signaling.
PUBLISHED: 02-03-2011
The melanocortin 1 receptor (MC1R) constitutes a key regulator of melanism. Consequently, many naturally-occurring MC1R mutations are associated with a change in color. An example is the Glu-to-Lys substitution found at position II:20/2.60 in the top of transmembrane helix II which has been identified in melanic mice and several other species. This mutation induces a pronounced increase in MC1R constitutive activity suggesting a link between constitutive activity and melanism which is corroborated by the attenuation of ?-melanocyte stimulating hormone (?MSH) induced activation. However, the mechanism by which the mutation induces constitutive activity is currently not known.
Authors: Alexandra Amaro-Ortiz, Jillian C. Vanover, Timothy L. Scott, John A. D'Orazio.
Published: 09-07-2013
Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection 1. Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.
25 Related JoVE Articles!
Play Button
Assaying β-amyloid Toxicity using a Transgenic C. elegans Model
Authors: Vishantie Dostal, Christopher D. Link.
Institutions: University of Colorado, University of Colorado.
Accumulation of the β-amyloid peptide (Aβ) is generally believed to be central to the induction of Alzheimer's disease, but the relevant mechanism(s) of toxicity are still unclear. Aβ is also deposited intramuscularly in Inclusion Body Myositis, a severe human myopathy. The intensely studied nematode worm Caenorhabditis elegans can be transgenically engineered to express human Aβ. Depending on the tissue or timing of Aβ expression, transgenic worms can have readily measurable phenotypes that serve as a read-out of Aβ toxicity. For example, transgenic worms with pan-neuronal Aβ expression have defects is associative learning (Dosanjh et al. 2009), while transgenic worms with constitutive muscle-specific expression show a progressive, age-dependent paralysis phenotype (Link, 1995; Cohen et al. 2006). One particularly useful C. elegans model employs a temperature-sensitive mutation in the mRNA surveillance system to engineer temperature-inducible muscle expression of an Aβ transgene, resulting in a reproducible paralysis phenotype upon temperature upshift (Link et al. 2003). Treatments that counter Aβ toxicity in this model [e.g., expression of a protective transgene (Hassan et al. 2009) or exposure to Ginkgo biloba extracts (Wu et al. 2006)] reproducibly alter the rate of paralysis induced by temperature upshift of these transgenic worms. Here we describe our protocol for measuring the rate of paralysis in this transgenic C. elegans model, with particular attention to experimental variables that can influence this measurement.
Neuroscience, Issue 44, Alzheimer's disease, paralysis, compound screening, Inclusion Body Myositis, invertebrate model
Play Button
Preparation of Cell-lines for Conditional Knockdown of Gene Expression and Measurement of the Knockdown Effects on E4orf4-Induced Cell Death
Authors: Anna Brestovitsky, Rakefet Sharf, Tamar Kleinberger.
Institutions: Technion - Israel Institute of Technology.
Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways1,2. However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time3-5. Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein6. Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured7-9. The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.
Genetics, Issue 68, Cellular Biology, Molecular Biology, Microbiology, Medicine, Cell death, adenovirus, E4orf4, DAPI assay, conditional knockdown, shRNA
Play Button
Transmembrane Domain Oligomerization Propensity determined by ToxR Assay
Authors: Catherine Joce, Alyssa Wiener, Hang Yin.
Institutions: University of Colorado at Boulder.
The oversimplified view of protein transmembrane domains as merely anchors in phospholipid bilayers has long since been disproven. In many cases membrane-spanning proteins have evolved highly sophisticated mechanisms of action.1-3 One way in which membrane proteins can modulate their structures and functions is by direct and specific contact of hydrophobic helices, forming structured transmembrane oligomers.4,5 Much recent work has focused on the distribution of amino acids preferentially found in the membrane environment in comparison to aqueous solution and the different intermolecular forces that drive protein association.6,7 Nevertheless, studies of molecular recognition at the transmembrane domain of proteins still lags behind those of water-soluble regions. A major hurdle remains: despite the remarkable specificity and affinity that transmembrane oligomerization can achieve,8 direct measurement of their association is challenging. Traditional methodologies applied to the study of integral membrane protein function can be hampered by the inherent insolubility of the sequences under examination. Biophysical insights gained from studying synthetic peptides representing transmembrane domains can provide useful structural insight. However, the biological relevance of the detergent micellar or liposome systems used in these studies to mimic cellular membranes is often questioned; do peptides adopt a native-like structure under these conditions and does their functional behaviour truly reflect the mode of action within a native membrane? In order to study the interactions of transmembrane sequences in natural phospholipid bilayers, the Langosch lab developed ToxR transcriptional reporter assays.9 The transmembrane domain of interest is expressed as a chimeric protein with maltose binding protein for location to the periplasm and ToxR to provide a report of the level of oligomerization (Figure 1). In the last decade, several other groups (e.g. Engelman, DeGrado, Shai) further optimized and applied this ToxR reporter assay.10-13 The various ToxR assays have become a gold standard to test protein-protein interactions in cell membranes. We herein demonstrate a typical experimental operation conducted in our laboratory that primarily follows protocols developed by Langosch. This generally applicable method is useful for the analysis of transmembrane domain self-association in E. coli, where β-galactosidase production is used to assess the TMD oligomerization propensity. Upon TMD-induced dimerization, ToxR binds to the ctx promoter causing up-regulation of the LacZ gene for β-galactosidase. A colorimetric readout is obtained by addition of ONPG to lyzed cells. Hydrolytic cleavage of ONPG by β-galactosidase results in the production of the light absorbing species o-nitrophenolate (ONP) (Figure 2).
Cellular Biology, Issue 51, Transmembrane domain, oligomerization, transcriptional reporter, ToxR, latent membrane protein-1
Play Button
Mutagenesis and Functional Analysis of Ion Channels Heterologously Expressed in Mammalian Cells
Authors: Bartosz Balana, Natalie Taylor, Paul A. Slesinger.
Institutions: Salk Institute for Biological Studies.
We will demonstrate how to study the functional effects of introducing a point mutation in an ion channel. We study G protein-gated inwardly rectifying potassium (referred to as GIRK) channels, which are important for regulating the excitability of neurons. There are four different mammalian GIRK channel subunits (GIRK1-GIRK4) - we focus on GIRK2 because it forms a homotetramer. Stimulation of different types of G protein-coupled receptors (GPCRs), such as the muscarinic receptor (M2R), leads to activation of GIRK channels. Alcohol also directly activates GIRK channels. We will show how to mutate one amino acid by specifically changing one or more nucleotides in the cDNA for the GIRK channel. This mutated cDNA sequence will be amplified in bacteria, purified, and the presence of the point mutation will be confirmed by DNA sequencing. The cDNAs for the mutated and wild-type GIRK channels will be transfected into human embryonic kidney HEK293T cells cultured in vitro. Lastly, whole-cell patch-clamp electrophysiology will be used to study the macroscopic potassium currents through the ectopically expressed wild-type or mutated GIRK channels. In this experiment, we will examine the effect of a L257W mutation in GIRK2 channels on M2R-dependent and alcohol-dependent activation.
Cellular Biology, Issue 44, Ion channels, electrophysiology, patch-clamping, site-directed mutagenesis, biophysics, neuroscience
Play Button
Drug-induced Sensitization of Adenylyl Cyclase: Assay Streamlining and Miniaturization for Small Molecule and siRNA Screening Applications
Authors: Jason M. Conley, Tarsis F. Brust, Ruqiang Xu, Kevin D. Burris, Val J. Watts.
Institutions: Purdue University, Eli Lilly and Company.
Sensitization of adenylyl cyclase (AC) signaling has been implicated in a variety of neuropsychiatric and neurologic disorders including substance abuse and Parkinson's disease. Acute activation of Gαi/o-linked receptors inhibits AC activity, whereas persistent activation of these receptors results in heterologous sensitization of AC and increased levels of intracellular cAMP. Previous studies have demonstrated that this enhancement of AC responsiveness is observed both in vitro and in vivo following the chronic activation of several types of Gαi/o-linked receptors including D2 dopamine and μ opioid receptors. Although heterologous sensitization of AC was first reported four decades ago, the mechanism(s) that underlie this phenomenon remain largely unknown. The lack of mechanistic data presumably reflects the complexity involved with this adaptive response, suggesting that nonbiased approaches could aid in identifying the molecular pathways involved in heterologous sensitization of AC. Previous studies have implicated kinase and Gbγ signaling as overlapping components that regulate the heterologous sensitization of AC. To identify unique and additional overlapping targets associated with sensitization of AC, the development and validation of a scalable cAMP sensitization assay is required for greater throughput. Previous approaches to study sensitization are generally cumbersome involving continuous cell culture maintenance as well as a complex methodology for measuring cAMP accumulation that involves multiple wash steps. Thus, the development of a robust cell-based assay that can be used for high throughput screening (HTS) in a 384 well format would facilitate future studies. Using two D2 dopamine receptor cellular models (i.e. CHO-D2L and HEK-AC6/D2L), we have converted our 48-well sensitization assay (>20 steps 4-5 days) to a five-step, single day assay in 384-well format. This new format is amenable to small molecule screening, and we demonstrate that this assay design can also be readily used for reverse transfection of siRNA in anticipation of targeted siRNA library screening.
Bioengineering, Issue 83, adenylyl cyclase, cAMP, heterologous sensitization, superactivation, D2 dopamine, μ opioid, siRNA
Play Button
High-throughput Analysis of Mammalian Olfactory Receptors: Measurement of Receptor Activation via Luciferase Activity
Authors: Casey Trimmer, Lindsey L. Snyder, Joel D. Mainland.
Institutions: Monell Chemical Senses Center.
Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system.
Neuroscience, Issue 88, Firefly luciferase, Renilla Luciferase, Dual-Glo Luciferase Assay, olfaction, Olfactory receptor, Odorant, GPCR, High-throughput
Play Button
Real-time Imaging of Leukotriene B4 Mediated Cell Migration and BLT1 Interactions with β-arrestin
Authors: Venkatakrishna R. Jala, Bodduluri Haribabu.
Institutions: University of Louisville.
G-protein coupled receptors (GPCRs) belong to the seven transmembrane protein family and mediate the transduction of extracellular signals to intracellular responses. GPCRs control diverse biological functions such as chemotaxis, intracellular calcium release, gene regulation in a ligand dependent manner via heterotrimeric G-proteins1-2. Ligand binding induces a series of conformational changes leading to activation of heterotrimeric G-proteins that modulate levels of second messengers such as cyclic adenosine monophosphate (cAMP), inositol triphosphate (IP3) and diacyl glycerol (DG). Concomitant with activation of the receptor ligand binding also initiates a series of events to attenuate the receptor signaling via desensitization, sequestration and/or internalization. The desensitization process of GPCRs occurs via receptor phosphorylation by G-protein receptor kinases (GRKs) and subsequent binding of β-arrestins3. β-arrestins are cytosolic proteins and translocate to membrane upon GPCR activation, binding to phosphorylated receptors (most cases) there by facilitating receptor internalization 4-6. Leukotriene B4 (LTB4) is a pro-inflammatory lipid molecule derived from arachidonic acid pathway and mediates its actions via GPCRs, LTB4 receptor 1 (BLT1; a high affinity receptor) and LTB4 receptor 2 (BLT2; a low affinity receptor)7-9. The LTB4-BLT1 pathway has been shown to be critical in several inflammatory diseases including, asthma, arthritis and atherosclerosis10-17. The current paper describes the methodologies developed to monitor LTB4-induced leukocyte migration and the interactions of BLT1 with β-arrestin and , receptor translocation in live cells using microscopy imaging techniques18-19. Bone marrow derived dendritic cells from C57BL/6 mice were isolated and cultured as previously described 20-21. These cells were tested in live cell imaging methods to demonstrate LTB4 induced cell migration. The human BLT1 was tagged with red fluorescent protein (BLT1-RFP) at C-terminus and β-arrestin1 tagged with green fluorescent protein (β-arr-GFP) and transfected the both plasmids into Rat Basophilic Leukomia (RBL-2H3) cell lines18-19. The kinetics of interaction between these proteins and localization were monitored using live cell video microscopy. The methodologies in the current paper describe the use of microscopic techniques to investigate the functional responses of G-protein coupled receptors in live cells. The current paper also describes the use of Metamorph software to quantify the fluorescence intensities to determine the kinetics of receptor and cytosolic protein interactions.
Immunology, Issue 46, Live cell imaging, Chemotaxis, G-protein coupled receptor, receptor internalization, leukotriene B4, leukotriene B4 receptor 1
Play Button
Visualizing Clathrin-mediated Endocytosis of G Protein-coupled Receptors at Single-event Resolution via TIRF Microscopy
Authors: Amanda L. Soohoo, Shanna L. Bowersox, Manojkumar A. Puthenveedu.
Institutions: Carnegie Mellon University.
Many important signaling receptors are internalized through the well-studied process of clathrin-mediated endocytosis (CME). Traditional cell biological assays, measuring global changes in endocytosis, have identified over 30 known components participating in CME, and biochemical studies have generated an interaction map of many of these components. It is becoming increasingly clear, however, that CME is a highly dynamic process whose regulation is complex and delicate. In this manuscript, we describe the use of Total Internal Reflection Fluorescence (TIRF) microscopy to directly visualize the dynamics of components of the clathrin-mediated endocytic machinery, in real time in living cells, at the level of individual events that mediate this process. This approach is essential to elucidate the subtle changes that can alter endocytosis without globally blocking it, as is seen with physiological regulation. We will focus on using this technique to analyze an area of emerging interest, the role of cargo composition in modulating the dynamics of distinct clathrin-coated pits (CCPs). This protocol is compatible with a variety of widely available fluorescence probes, and may be applied to visualizing the dynamics of many cargo molecules that are internalized from the cell surface.
Cellular Biology, Issue 92, Endocytosis, TIRF, total internal reflection fluorescence microscopy, clathrin, arrestin, receptors, live-cell microscopy, clathrin-mediated endocytosis
Play Button
A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Institutions: Delft University of Technology, Delft University of Technology.
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
Bioengineering, Issue 68, Microbiology, Biochemistry, Chemistry, Chemical Engineering, Oil remediation, alkane metabolism, alkane hydroxylase system, resting cell assay, prefoldin, Escherichia coli, synthetic biology, homologous interaction mapping, mathematical model, BioBrick, iGEM
Play Button
Characterization of G Protein-coupled Receptors by a Fluorescence-based Calcium Mobilization Assay
Authors: Jelle Caers, Katleen Peymen, Nick Suetens, Liesbet Temmerman, Tom Janssen, Liliane Schoofs, Isabel Beets.
Institutions: KU Leuven.
For more than 20 years, reverse pharmacology has been the preeminent strategy to discover the activating ligands of orphan G protein-coupled receptors (GPCRs). The onset of a reverse pharmacology assay is the cloning and subsequent transfection of a GPCR of interest in a cellular expression system. The heterologous expressed receptor is then challenged with a compound library of candidate ligands to identify the receptor-activating ligand(s). Receptor activation can be assessed by measuring changes in concentration of second messenger reporter molecules, like calcium or cAMP. The fluorescence-based calcium mobilization assay described here is a frequently used medium-throughput reverse pharmacology assay. The orphan GPCR is transiently expressed in human embryonic kidney 293T (HEK293T) cells and a promiscuous Gα16 construct is co-transfected. Following ligand binding, activation of the Gα16 subunit induces the release of calcium from the endoplasmic reticulum. Prior to ligand screening, the receptor-expressing cells are loaded with a fluorescent calcium indicator, Fluo-4 acetoxymethyl. The fluorescent signal of Fluo-4 is negligible in cells under resting conditions, but can be amplified more than a 100-fold upon the interaction with calcium ions that are released after receptor activation. The described technique does not require the time-consuming establishment of stably transfected cell lines in which the transfected genetic material is integrated into the host cell genome. Instead, a transient transfection, generating temporary expression of the target gene, is sufficient to perform the screening assay. The setup allows medium-throughput screening of hundreds of compounds. Co-transfection of the promiscuous Gα16, which couples to most GPCRs, allows the intracellular signaling pathway to be redirected towards the release of calcium, regardless of the native signaling pathway in endogenous settings. The HEK293T cells are easy to handle and have proven their efficacy throughout the years in receptor deorphanization assays. However, optimization of the assay for specific receptors may remain necessary.
Cellular Biology, Issue 89, G protein-coupled receptor (GPCR), calcium mobilization assay, reverse pharmacology, deorphanization, cellular expression system, HEK293T, Fluo-4, FlexStation
Play Button
Imaging G-protein Coupled Receptor (GPCR)-mediated Signaling Events that Control Chemotaxis of Dictyostelium Discoideum
Authors: Xuehua Xu, Tian Jin.
Institutions: National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Many eukaryotic cells can detect gradients of chemical signals in their environments and migrate accordingly 1. This guided cell migration is referred as chemotaxis, which is essential for various cells to carry out their functions such as trafficking of immune cells and patterning of neuronal cells 2, 3. A large family of G-protein coupled receptors (GPCRs) detects variable small peptides, known as chemokines, to direct cell migration in vivo 4. The final goal of chemotaxis research is to understand how a GPCR machinery senses chemokine gradients and controls signaling events leading to chemotaxis. To this end, we use imaging techniques to monitor, in real time, spatiotemporal concentrations of chemoattractants, cell movement in a gradient of chemoattractant, GPCR mediated activation of heterotrimeric G-protein, and intracellular signaling events involved in chemotaxis of eukaryotic cells 5-8. The simple eukaryotic organism, Dictyostelium discoideum, displays chemotaxic behaviors that are similar to those of leukocytes, and D. discoideum is a key model system for studying eukaryotic chemotaxis. As free-living amoebae, D. discoideum cells divide in rich medium. Upon starvation, cells enter a developmental program in which they aggregate through cAMP-mediated chemotaxis to form multicullular structures. Many components involved in chemotaxis to cAMP have been identified in D. discoideum. The binding of cAMP to a GPCR (cAR1) induces dissociation of heterotrimeric G-proteins into Gγ and Gβγ subunits 7, 9, 10. Gβγ subunits activate Ras, which in turn activates PI3K, converting PIP2 into PIP3 on the cell membrane 11-13. PIP3 serve as binding sites for proteins with pleckstrin Homology (PH) domains, thus recruiting these proteins to the membrane 14, 15. Activation of cAR1 receptors also controls the membrane associations of PTEN, which dephosphorylates PIP3 to PIP2 16, 17. The molecular mechanisms are evolutionarily conserved in chemokine GPCR-mediated chemotaxis of human cells such as neutrophils 18. We present following methods for studying chemotaxis of D. discoideum cells. 1. Preparation of chemotactic component cells. 2. Imaging chemotaxis of cells in a cAMP gradient. 3. Monitoring a GPCR induced activation of heterotrimeric G-protein in single live cells. 4. Imaging chemoattractant-triggered dynamic PIP3 responses in single live cells in real time. Our developed imaging methods can be applied to study chemotaxis of human leukocytes.
Molecular Biology, Issue 55, Chemotaxis, directional sensing, GPCR, PCR, G-proteins, signal transduction, Dictyostelium discoideum
Play Button
Homemade Site Directed Mutagenesis of Whole Plasmids
Authors: Mark Laible, Kajohn Boonrod.
Institutions: Johannes Gutenberg-University Mainz, Germany, Neustadt an der Weinstrasse, Germany.
Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensive. Applying this protocol can reduce the total cost of a reaction to an eighth of what it costs using some of the commercial kits. In this video we also comment on critical steps during the process and give detailed instructions on how to design the mutagenic primers.
Basic Protocols, Issue 27, Site directed Mutagenesis, Mutagenesis, Mutation, Plasmid, Thermocycling, PCR, Pfu-Polymerase, Dpn1, cost saving
Play Button
The Tomato/GFP-FLP/FRT Method for Live Imaging of Mosaic Adult Drosophila Photoreceptor Cells
Authors: Pierre Dourlen, Clemence Levet, Alexandre Mejat, Alexis Gambis, Bertrand Mollereau.
Institutions: Ecole Normale Supérieure de Lyon, Université Lille-Nord de France, The Rockefeller University.
The Drosophila eye is widely used as a model for studies of development and neuronal degeneration. With the powerful mitotic recombination technique, elegant genetic screens based on clonal analysis have led to the identification of signaling pathways involved in eye development and photoreceptor (PR) differentiation at larval stages. We describe here the Tomato/GFP-FLP/FRT method, which can be used for rapid clonal analysis in the eye of living adult Drosophila. Fluorescent photoreceptor cells are imaged with the cornea neutralization technique, on retinas with mosaic clones generated by flipase-mediated recombination. This method has several major advantages over classical histological sectioning of the retina: it can be used for high-throughput screening and has proved an effective method for identifying the factors regulating PR survival and function. It can be used for kinetic analyses of PR degeneration in the same living animal over several weeks, to demonstrate the requirement for specific genes for PR survival or function in the adult fly. This method is also useful for addressing cell autonomy issues in developmental mutants, such as those in which the establishment of planar cell polarity is affected.
Developmental Biology, Issue 79, Eye, Photoreceptor Cells, Genes, Developmental, neuron, visualization, degeneration, development, live imaging,Drosophila, photoreceptor, cornea neutralization, mitotic recombination
Play Button
Detection of Alternative Splicing During Epithelial-Mesenchymal Transition
Authors: Huilin Huang, Yilin Xu, Chonghui Cheng.
Institutions: Northwestern University Feinberg School of Medicine.
Alternative splicing plays a critical role in the epithelial-mesenchymal transition (EMT), an essential cellular program that occurs in various physiological and pathological processes. Here we describe a strategy to detect alternative splicing during EMT using an inducible EMT model by expressing the transcription repressor Twist. EMT is monitored by changes in cell morphology, loss of E-cadherin localization at cell-cell junctions, and the switched expression of EMT markers, such as loss of epithelial markers E-cadherin and γ-catenin and gain of mesenchymal markers N-cadherin and vimentin. Using isoform-specific primer sets, the alternative splicing of interested mRNAs are analyzed by quantitative RT-PCR. The production of corresponding protein isoforms is validated by immunoblotting assays. The method of detecting splice isoforms described here is also suitable for the study of alternative splicing in other biological processes.
Cellular Biology, Issue 92, alternative splicing, EMT, RNA, primer design, real time PCR, splice isoforms
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Quantifying Agonist Activity at G Protein-coupled Receptors
Authors: Frederick J. Ehlert, Hinako Suga, Michael T. Griffin.
Institutions: University of California, Irvine, University of California, Chapman University.
When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (Kb) is much greater than that for the inactive state (Ka). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (Kobs), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the Kobs and relative efficacy of an agonist 1,2. In this report, we show how to modify this analysis to estimate the agonist Kb value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate Kb in absolute units of M-1. Our method of analyzing agonist concentration-response curves 3,4 consists of global nonlinear regression using the operational model 5. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of Kobs and a parameter proportional to efficacy (τ). The estimate of τKobs of one agonist, divided by that of another, is a relative measure of Kb (RAi) 6. For any receptor exhibiting constitutive activity, it is possible to estimate a parameter proportional to the efficacy of the free receptor complex (τsys). In this case, the Kb value of an agonist is equivalent to τKobssys 3. Our method is useful for determining the selectivity of an agonist for receptor subtypes and for quantifying agonist-receptor signaling through different G proteins.
Molecular Biology, Issue 58, agonist activity, active state, ligand bias, constitutive activity, G protein-coupled receptor
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
Play Button
Studying Age-dependent Genomic Instability using the S. cerevisiae Chronological Lifespan Model
Authors: Min Wei, Federica Madia, Valter D. Longo.
Institutions: University of Southern California, Los Angeles.
Studies using the Saccharomyces cerevisiae aging model have uncovered life span regulatory pathways that are partially conserved in higher eukaryotes1-2. The simplicity and power of the yeast aging model can also be explored to study DNA damage and genome maintenance as well as their contributions to diseases during aging. Here, we describe a system to study age-dependent DNA mutations, including base substitutions, frame-shift mutations, gross chromosomal rearrangements, and homologous/homeologous recombination, as well as nuclear DNA repair activity by combining the yeast chronological life span with simple DNA damage and mutation assays. The methods described here should facilitate the identification of genes/pathways that regulate genomic instability and the mechanisms that underlie age-dependent DNA mutations and cancer in mammals.
Genetics, Issue 55, saccharomyces cerevisiae, life span, aging, mutation frequency, genomic instability
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.